
mTouch Cap Library Help

Copyright (c) 2012. All rights reserved.

Table of Contents

Introduction 1

Software License Agreement 2

Overview 5
Acquisition Level 5

Sensors Level 6

Controls Level 6

Getting Started 7
mTouch Library Files 8

mTouch Library Configuration 9

Using API 11

Sensor Optimization (Debug Module) 15
Step 1. Optimal CTMU current selection 15

Step 2. Optimal CTMU charge delay selection 15

Step 3. Optimal oversampling factor selection 15

Step 4. Optimal press detection threshold selection 16

Optimization example 16

mTouch GUI 18

Code and RAM memories size 20
RAM 20

Code 20

Acquisition time for one sensor 22

Demo Projects 23

API Reference 24

mTouch Cap Library Help

ii

Common 24

void MTouchInit(void) 24

MTouchSetCTMUCurrent(current) 24

Acquisition 24

MTouchAcquisition(void) 24

Sensors 24

void MTouchSetSensor(UINT8 sensorNumber, SFR tris, SFR lat, UINT8 ioBitNumber, UINT8
channelNumber, INT16 threshold, INT16 oversampling, INT8 chargeDelay)

25

MTouchSuspendSensor(sensorNumber) 25

MTouchResumeSensor(sensorNumber) 25

MTouchSetChargeDelay(sensorNumber, delay) 25

MTouchSetThreshold(sensorNumber, _threshold) 26

MTouchSetOversampling(sensorNumber, oversampling) 26

MTouchGetSensorState(sensorNumber) 26

Controls 26

void mTouchDecode(void) 26

void MTouchSetButton(UINT8 buttonNumber, UINT8 sensorNumber, UINT8 decode) 27

MTouchGetButtonState(buttonNumber) 27

void MTouchSetMatrixButton(UINT8 buttonNumber, UINT8 ch1SensorNumber, UINT8 ch2SensorNumber,
UINT8 decode)

27

MTouchGetMatrixButtonState(buttonNumber) 27

void MTouchSet2ChSlider(UINT8 sliderNumber, UINT8 ch1SensorNumber, UINT8 ch2SensorNumber) 28

MTouchGet2ChSliderState(sliderNumber) 28

MTouchGet2ChSliderValue(sliderNumber) 28

void MTouchSet4ChSlider(UINT8 sliderNumber, UINT8 ch1SensorNumber, UINT8 ch2SensorNumber,
UINT8 ch3SensorNumber, UINT8 ch4SensorNumber)

28

MTouchGet4ChSliderState(sliderNumber) 29

MTouchGet4ChSliderValue(sliderNumber) 29

Debug Module 29

void LogChar(char ch) 29

DEBUGCURRENT* MTouchDebugCurrent(UINT8 sensorNumber) 29

INT16 MTouchDebugThreshold(UINT8 sensorNumber) 30

DEBUGDELAY* MTouchDebugDelay(UINT8 sensorNumber) 30

void MTouchDebugLogDeltas(void) 30

void MTouchDebugLogAverages(void) 31

Structures and Enumerations 31

MTOUCHSENSORSTATE Enum 31

MTOUCHCONTROLSTATE Enum 31

MTOUCHCONTROLDECODE Enum 31

DEBUGCURRENT Struct 32

DEBUGDELAY Struct 32

mTouch Cap Library Help

iii

Known Limitations 33

Resources 34

Index a

mTouch Cap Library Help

iv

1 Introduction

Introduction

The Capacitive mTouchTM Software Library provides the API's to develop capacitive touch applications using the Charge
Time Measurement Unit (CTMU) and Capacitive Voltage Divider (CVD) technique on PIC18F and PIC24F Microcontrollers
(MCUs).

The software stack is developed using ‘C’ language and can be compiled by Microchip's C18 ,PICC18 and C30 compilers for
PIC18 and PIC24F Microcontrollers.

Users of the mTouchTM Software Library can select the PIC microcontroller used for the application and configure the CTMU
or CVD Demos as required for the application. The API's helps the user to integrate the mTouch Capacitive Library with the
end application. This library is also designed to operate with other libraries developed by Microchip.

The CTMU has a constant current source that can be used for relative capacitance measurement, absolute capacitance
measurement and accurate time measurement. This library will use the relative capacitance measurement for capacitive
touch sensing application. Refer to the CTMU Family Reference Manual (DS39724) for more details of CTMU.

The CVD technique resides in successive charging and discharging cycles of ADC sample and holds capacitor and the
external capacity of the sensor, while measuring the voltage left on the sample and hold capacitor after each cycle. This
library contains the implementation of the CVD technique. Refer to the Capacitive Touch Using Only ADC (CVD) – AN1298
for more details.

The Capacitive mTouchTM Software library is also implemented for PIC16F CVD Framework.

The Help file for PIC16F is available in the following location:

....\Microchip\Help\mTouch CVD Framework Documentation.

Hardware Setup :

The PIC18F and PIC24F Enhanced Capacitive Touch Evaluation kit (DM183026-2) is used for demonstrating the Capacitive
mTouchTM Software Library functionality.

1 mTouch Cap Library Help

1

1

2 Software License Agreement

MICROCHIP IS WILLING TO LICENSE THE ACCOMPANYING SOFTWARE AND DOCUMENTATION TO YOU ONLY ON
THE CONDITION THAT YOU ACCEPT ALL OF THE FOLLOWING TERMS. TO ACCEPT THE TERMS OF THIS LICENSE,
CLICK "I ACCEPT" AND PROCEED WITH THE DOWNLOAD OR INSTALL. IF YOU DO NOT ACCEPT THESE LICENSE
TERMS, CLICK "I DO NOT ACCEPT," AND DO NOT DOWNLOAD OR INSTALL THIS SOFTWARE.

NON-EXCLUSIVE SOFTWARE LICENSE AGREEMENT

This Nonexclusive Software License Agreement ("Agreement") is a contract between you, your heirs, successors and
assigns ("Licensee") and Microchip Technology Incorporated, a Delaware corporation, with a principal place of business at
2355 W. Chandler Blvd., Chandler, AZ 85224-6199, and its subsidiary, Microchip Technology (Barbados) II Incorporated
(collectively, "Microchip") for the accompanying Microchip software including, but not limited to, Graphics Library Software,
IrDA Stack Software, MCHPFSUSB Stack Software, Memory Disk Drive File System Software, mTouch(TM) Capacitive
Library Software, Smart Card Library Software, TCP/IP Stack Software, MiWi(TM) DE Software, Security Package Software,
and/or any PC programs and any updates thereto (collectively, the "Software"), and accompanying documentation, including
images and any other graphic resources provided by Microchip ("Documentation").

1. Definitions. As used in this Agreement, the following capitalized terms will have the meanings defined below:

a. "Microchip Products" means Microchip microcontrollers and Microchip digital signal controllers.

b. "Licensee Products" means Licensee products that use or incorporate Microchip Products.

c. "Object Code (see page 20)" means the Software computer programming code that is in binary form (including related
documentation, if any), and error corrections, improvements, modifications, and updates.

d. "Source Code (see page 20)" means the Software computer programming code that may be printed out or displayed in
human readable form (including related programmer comments and documentation, if any), and error corrections,
improvements, modifications, and updates.

e. "Third Party" means Licensee’s agents, representatives, consultants, clients, customers, or contract manufacturers.

f. "Third Party Products" means Third Party products that use or incorporate Microchip Products.

2. Software License Grant. Microchip grants strictly to Licensee a non-exclusive, non-transferable, worldwide license to:

a. use the Software in connection with Licensee Products and/or Third Party Products;

b. if Source Code (see page 20) is provided, modify the Software; provided that Licensee clearly notifies Third Parties
regarding the source of such modifications;

c. distribute the Software to Third Parties for use in Third Party Products, so long as such Third Party agrees to be bound by
this Agreement (in writing or by "click to accept") and this Agreement accompanies such distribution;

d. sublicense to a Third Party to use the Software, so long as such Third Party agrees to be bound by this Agreement (in
writing or by "click to accept");

e. with respect to the TCP/IP Stack Software, Licensee may port the ENC28J60.c, ENC28J60.h, ENCX24J600.c, and
ENCX24J600.h driver source files to a non-Microchip Product used in conjunction with a Microchip ethernet controller;

f. with respect to the MiWi (TM) DE Software, Licensee may only exercise its rights when the Software is embedded on a
Microchip Product and used with a Microchip radio frequency transceiver or UBEC UZ2400 radio frequency transceiver
which are integrated into Licensee Products or Third Party Products.

For purposes of clarity, Licensee may NOT embed the Software on a non-Microchip Product, except as described in this

2 mTouch Cap Library Help

2

2

Section.

3. Documentation License Grant. Microchip grants strictly to Licensee a non-exclusive, non-transferable, worldwide license
to use the Documentation in support of Licensee's authorized use of the Software

4. Third Party Requirements. Licensee acknowledges that it is Licensee’s responsibility to comply with any third party license
terms or requirements applicable to the use of such third party software, specifications, systems, or tools. This includes, by
way of example but not as a limitation, any standards setting organizations requirements and, particularly with respect to the
Security Package Software, local encryption laws and requirements. Microchip is not responsible and will not be held
responsible in any manner for Licensee’s failure to comply with such applicable terms or requirements.

5. Open Source Components. Notwithstanding the license grant in Section 1 above, Licensee further acknowledges that
certain components of the Software may be covered by so-called "open source" software licenses ("Open Source
Components"). Open Source Components means any software licenses approved as open source licenses by the Open
Source Initiative or any substantially similar licenses, including without limitation any license that, as a condition of
distribution of the software licensed under such license, requires that the distributor make the software available in source
code format. To the extent required by the licenses covering Open Source Components, the terms of such license will apply
in lieu of the terms of this Agreement. To the extent the terms of the licenses applicable to Open Source Components
prohibit any of the restrictions in this Agreement with respect to such Open Source Components, such restrictions will not
apply to such Open Source Component.

6. Licensee Obligations. Licensee will not: (a) engage in unauthorized use, modification, disclosure or distribution of
Software or Documentation, or its derivatives; (b) use all or any portion of the Software, Documentation, or its derivatives
except in conjunction with Microchip Products, Licensee Products or Third Party Products; or (c) reverse engineer (by
disassembly, decompilation or otherwise) Software or any portion thereof. Licensee may not remove or alter any Microchip
copyright or other proprietary rights notice posted in any portion of the Software or Documentation. Licensee will defend,
indemnify and hold Microchip and its subsidiaries harmless from and against any and all claims, costs, damages, expenses
(including reasonable attorney's fees), liabilities, and losses, including without limitation: (x) any claims directly or indirectly
arising from or related to the use, modification, disclosure or distribution of the Software, Documentation, or any intellectual
property rights related thereto; (y) the use, sale and distribution of Licensee Products or Third Party Products; and (z) breach
of this Agreement.

7. Confidentiality. Licensee agrees that the Software (including but not limited to the Source Code (see page 20), Object
Code (see page 20) and library files) and its derivatives, Documentation and underlying inventions, algorithms, know-how
and ideas relating to the Software and the Documentation are proprietary information belonging to Microchip and its
licensors ("Proprietary Information"). Except as expressly and unambiguously allowed herein, Licensee will hold in
confidence and not use or disclose any Proprietary Information and will similarly bind its employees and Third Party(ies) in
writing. Proprietary Information will not include information that: (i) is in or enters the public domain without breach of this
Agreement and through no fault of the receiving party; (ii) the receiving party was legally in possession of prior to receiving it;
(iii) the receiving party can demonstrate was developed by the receiving party independently and without use of or reference
to the disclosing party's Proprietary Information; or (iv) the receiving party receives from a third party without restriction on
disclosure. If Licensee is required to disclose Proprietary Information by law, court order, or government agency, License will
give Microchip prompt notice of such requirement in order to allow Microchip to object or limit such disclosure. Licensee
agrees that the provisions of this Agreement regarding unauthorized use and nondisclosure of the Software, Documentation
and related Proprietary Rights are necessary to protect the legitimate business interests of Microchip and its licensors and
that monetary damage alone cannot adequately compensate Microchip or its licensors if such provisions are violated.
Licensee, therefore, agrees that if Microchip alleges that Licensee or Third Party has breached or violated such provision
then Microchip will have the right to injunctive relief, without the requirement for the posting of a bond, in addition to all other
remedies at law or in equity.

8. Ownership of Proprietary Rights. Microchip and its licensors retain all right, title and interest in and to the Software and
Documentation including, but not limited to all patent, copyright, trade secret and other intellectual property rights in the
Software, Documentation, and underlying technology and all copies and derivative works thereof (by whomever produced).
Licensee and Third Party use of such modifications and derivatives is limited to the license rights described in this
Agreement.

9. Termination of Agreement. Without prejudice to any other rights, this Agreement terminates immediately, without notice by
Microchip, upon a failure by Licensee or Third Party to comply with any provision of this Agreement. Upon termination,

2 mTouch Cap Library Help

3

2

Licensee and Third Party will immediately stop using the Software, Documentation, and derivatives thereof, and immediately
destroy all such copies.

10. Warranty Disclaimers. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. MICROCHIP AND
ITS LICENSORS ASSUME NO RESPONSIBILITY FOR THE ACCURACY, RELIABILITY OR APPLICATION OF THE
SOFTWARE OR DOCUMENTATION. MICROCHIP AND ITS LICENSORS DO NOT WARRANT THAT THE SOFTWARE
WILL MEET REQUIREMENTS OF LICENSEE OR THIRD PARTY, BE UNINTERRUPTED OR ERROR-FREE. MICROCHIP
AND ITS LICENSORS HAVE NO OBLIGATION TO CORRECT ANY DEFECTS IN THE SOFTWARE.

11. Limited Liability. IN NO EVENT WILL MICROCHIP OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER ANY
LEGAL OR EQUITABLE THEORY FOR ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES INCLUDING BUT NOT
LIMITED TO INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR
LOST DATA, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY
THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS. The
aggregate and cumulative liability of Microchip and its licensors for damages hereunder will in no event exceed $1000 or the
amount Licensee paid Microchip for the Software and Documentation, whichever is greater. Licensee acknowledges that the
foregoing limitations are reasonable and an essential part of this Agreement.

12. General. THIS AGREEMENT WILL BE GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF
ARIZONA AND THE UNITED STATES WITHOUT REGARD TO CONFLICTS OF LAWS PROVISIONS. Licensee agrees
that any disputes arising out of or related to this Agreement, Software or Documentation will be brought exclusively in either
the U.S. District Court for the District of Arizona, Phoenix Division, or the Superior Court of Arizona located in Maricopa
County, Arizona. This Agreement will constitute the entire agreement between the parties with respect to the subject matter
hereof. It will not be modified except by a written agreement signed by an authorized representative of Microchip. If any
provision of this Agreement will be held by a court of competent jurisdiction to be illegal, invalid or unenforceable, that
provision will be limited or eliminated to the minimum extent necessary so that this Agreement will otherwise remain in full
force and effect and enforceable. No waiver of any breach of any provision of this Agreement will constitute a waiver of any
prior, concurrent or subsequent breach of the same or any other provisions hereof, and no waiver will be effective unless
made in writing and signed by an authorized representative of the waiving party. Licensee agrees to comply with all import
and export laws and restrictions and regulations of the Department of Commerce or other United States or foreign agency or
authority. The indemnities, obligations of confidentiality, and limitations on liability described herein, and any right of action
for breach of this Agreement prior to termination, will survive any termination of this Agreement. Any prohibited assignment
will be null and void. Use, duplication or disclosure by the United States Government is subject to restrictions set forth in
subparagraphs (a) through (d) of the Commercial Computer-Restricted Rights clause of FAR 52.227-19 when applicable, or
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, and in
similar clauses in the NASA FAR Supplement. Contractor/manufacturer is Microchip Technology Inc., 2355 W. Chandler
Blvd., Chandler, AZ 85224-6199.

If Licensee has any questions about this Agreement, please write to Microchip Technology Inc., 2355 W. Chandler Blvd.,
Chandler, AZ 85224-6199 USA. ATTN: Marketing.

Copyright (c) 2012 Microchip Technology Inc. All rights reserved.

License Rev. No. 05-012412

2 mTouch Cap Library Help

4

2

3 Overview

This document describes capacitive touch library forPIC18F and PIC24F family of Microcontrollers.

The library has three levels: acquisition, sensors and controls. The acquisition level gets raw samples from the sensors. The
sensors level allows initialization and press/release events detection for all sensors in the system. The controls level gets
information from sensors level and contains implementation of different capacitive controls such as buttons, matrix buttons
and sliders. Also there is a debug module helping adjustment of the sensors’ settings.

3.1 Acquisition Level

The acquisition level of the stack abstracts the hardware and acquires samples for the capacitive touch sensing.To perform
acquisition the MTouchAcquisition(…) function should be called periodically in the application. Depending on the hardware
modules used on a PIC Microcontroller, the library supports two acquisition methods: capacitive voltage divider (CVD) and
charging of the sensors using constant current source (CTMU).

· CVD: PIC Microcontroller's ADC holding capacitor (Chold) is used for the measurements. Initially the capacitive sensor
(Csensor) is disconnected from Chold. Chold should be charged to Vdd and Csensor should be discharged. Then both

3.1 Acquisition Level mTouch Cap Library Help

5

3

capacitors are connected together to divide a charge between them. Capacitance of Chold is constant so the result voltage
will depend on capacitance of Csensor. When sensor is touched the capacitance is increased and voltage is decreased.
When the sensor is released the capacitance is decreased and voltage is increased. The minimum number of sensors
required for this acquisition method is 2.

· CTMU: If the capacitive sensor will be charged by a constant current source during a constant time then the voltage
on the sensor after the charge will depend on the capacitance. When sensor is touched the capacitance is increased and
voltage is decreased. When the sensor is released the capacitance is decreased and voltage is increased.

3.2 Sensors Level

To improve noise immunity the samples from sensors go through two filters: decimate and oversampling. If the sample is
bigger than decimate filter value then the filter value is incremented otherwise it is decremented. Data from decimate filter go
to oversampling filter. The oversampling filter performs averaging. Output from filters is used to form a long time average.
Difference between value from filters and this average is used for comparison with threshold to detect state of the sensor.

MTouchGetSensorState(…) function returns a current state of the sensor. The sensor acts as a basic button which can have
two states: pressed or released.

3.3 Controls Level

The control level contains implementations of the more complex capacitive controls. To decode states of the controls the
MTouchDecode(…) function should be called periodically in the application. Some examples of these are matrix keys, sliders
etc.

3.3 Controls Level mTouch Cap Library Help

6

3

4 Getting Started

The folder structure of mTouchCap Software Library is shown below:

The folder structure of mTouchCapDemos are as follows:

You can add code and modules to the demo sub directories that will use and interact with the library. For example, you could
add a folder named "Your Applications Directory" to the mTouchCapDemos folder that contains your application source
code. The library specific folders are the following:

• The ..\Microchip folder will contain the library components.

• The Help sub-folder under ..\Microchip folder will contain this document (mTouch Cap Library Help.chm file).

• The ..\mTouchCap sub-folder under the ..\Microchip folder is where the C files, documentation related to mTouch stack are
located.

• The ..\mTouchCap sub-folder under the Include folder is where the Header files related to the mTouch stack are located.

4.1 mTouch Library Files mTouch Cap Library Help

7

4

4.1 mTouch Library Files

The following files should be included in the project:

Common (see page 24)

Compiler.h Contains compiler specific definitions.

GenericTypeDefs.h Standard MLA types definitions.

mTouch.h This file joins all definitions, macros and functions prototypes related to
mTouch library. To use the library API only this header can be included in the
application code.

mTouchConfig.h mTouch library configurations.

Acquisition (see page 24)

mTouchAcquisitionPIC18.h ,

mTouchAcquisitionPIC24.h

Acquisition (see page 24) macros defining timing, CTMU and ADC
operation.

mTouchAcquistion.c Acquisition (see page 24) CVD or CTMU routines.

Sensors (see page 24)

mTouchSensor.h ,

mTouchSensor.c

Sensors (see page 24)’ filtration and decoding. It provides basic button
functionality.

Controls (see page 26)

mTouchControl.h ,

mTouchControl.c

Common (see page 24) definitions and functions for all controls.

mTouchButton.h ,

mTouchButton.c

Definitions and functions for the button controls with different decoding
methods.

mTouchMatrixButton.h,

mTouchMatrixButton.c

Definitions and functions for the matrix button controls.

mTouch2ChSlider.h ,

mTouch2ChSlider.c

Definitions and functions for the 2 channel slider controls.

4.1 mTouch Library Files mTouch Cap Library Help

8

4

mTouch4ChSlider.h ,

mTouch4ChSlider.c

Definitions and functions for the 4 channel slider controls.

Debug

mTouchDebug.h ,

mTouchDebug.c

This module contains means to log information from sensors and to calculate
the optimal CTMU current, charge delay for the CTMU acquisition and press
detection threshold.

4.2 mTouch Library Configuration

The following mTouch Library settings should be defined in mTouchConfig.h file:

MTOUCH_USE_10_BITS_ADC,

MTOUCH_USE_12_BITS_ADC

ADC type (see PIC Microcontroller datasheet). Select (uncomment) only
one: 10bits or 12bits.

MTOUCH_CTMU_HAS_CTMUCON2_REG,

MTOUCH_CTMU_HAS_NO_CTMUCON2_REG

CTMU type (see PIC Microcontroller datasheet). Select (uncomment)
only one: with CTMUCON2 register or without CTMUCON2 register.

MTOUCH_USE_CTMU,

MTOUCH_USE_CVD

Acquisition (see page 24) method. Select (uncomment) only one:
CTMU or CVD.

MTOUCH_DEBUG Debugging. Uncomment to enable debug functions.

MTOUCH_SENSORS_NUMBER Number of sensors (analog inputs connected to sensors). The minimum
number of sensors required for CVD acquisition method is 2.

MTOUCH_BUTTONS_NUMBER Number of button controls.

MTOUCH_MATRIXBUTTONS_NUMBER Number of matrix button controls.

MTOUCH_2CHSLIDERS_NUMBER Number of 2 channels slider controls.

MTOUCH_4CHSLIDERS_NUMBER Number of 4 channels slider controls.

AVG_SLIDER_VALUE The slider value is filtered. When the slider value is updated, this factor
determines what weight is given in the calculation. Can be set to 0(100%
new value/no averaging), 1(50% of new value), 2(25% of new value),
3(12.5% of new value) and so on.

4.2 mTouch Library Configuration mTouch Cap Library Help

9

4

MTOUCH_DEFAULT_CHARGE_DELAY Default CTMU charge delay settings. This value is used in
MTouchSetSensor(...) when "chargeDelay" is set to -1. Use
MTouchDebugDelay(…) function to calculate CTMU charge delay value
(to charge the sensor to about 75% of AVdd). If adjustment of this
parameter gives a value less than 4 decrease CTMU current with
MTOUCH_CTMU_CURRENT.

MTOUCH_DEFAULT_THRESHOLD Default threshold for press event detection. This value is used when
"threshold" is set to -1 in MTouchSetSensor(...) call. The optimal
threshold value is about 20% of sensor signal (delta) amplitude. The
sensor signal amplitude can be determined using debug module.

MTOUCH_DEFAULT_OVERSAMPLING Default number of acquisitions for one sample of the sensor. This value
is used when "oversampling" is set to -1 in MTouchSetSensor(...) call.
The oversampling factor should be selected to maximize the amplitude of
the signal from sensor and to provide fast enough response time (see
“Acquisition (see page 24) time for one sensor” chapter for the
response time estimation).

POWER_UP_SAMPLES This is the number of total scans that should be taken for the sensor
before it will be considered initialized. Allowable range is from 1 to 65535.

DEBOUNCE_COUNT Number of consecutive scans a sensor must be seen as pressed or
released before an updated state is declared. Allowable range is from 1
to 255.

MCONTROL_REPEAT_INITIAL_DELAY Initial delay for the control DECODE_PRESS_REPEAT decoding
method. Defines how many times the control decoding must be done
before the control starts repeating
CONTROL_PRESS/CONTROL_RELEASE events.Allowable range is
from 1 to 65535.

MCONTROL_REPEAT_DELAY Delay between CONTROL_PRESS/CONTROL_RELEASE events for the
control DECODE_PRESS_REPEAT decoding method. Allowable range
is from 1 to 65535.

AVG_UPDATE When the average updates itself using a new sample, this value
determines what weight is given to the new sample in the calculation of
the new average. The new sample will have a weight of 1/AVG_UPDATE
in the average calculation. Can be set to 2,4,8 or 16.

AVG_RATE_RELEASED The update rate of the sensors' average values when sensor is
released. Allowable Range from 1 to 65535.

AVG_RATE_PRESSED The update rate of the sensors' average values when sensor is pressed.
Allowable Range from 1 to 65535.

MTOUCH_CTMU_CURRENT CTMU current settings. Bits 1-0 select the current source range (IRNG)
and bits 7-2 select current trim value (ITRIM, signed). The current must
be selected such way to get CTMU charge delay more than 4 (see
MTOUCH_DEFAULT_CHARGE_DELAY).

4.3 Using API mTouch Cap Library Help

10

4

4.3 Using API

Let’s consider an application example for the following hardware configuration:

In the system there are 2 sensors, 1 button and 1 matrix button. Thus in mTouchConfig.h MTOUCH_SENSORS_NUMBER
must be set to 2, MTOUCH_BUTTONS_NUMBER and MTOUCH_MATRIXBUTTONS_NUMBER must be set to 1. All IOs
connected to sensors must be set as ANALOG in the application (see PCFGx, ANSx or ANSELx registers description in PIC
Microcontroller datasheet).

The program should be started from MTouchInit(…) function call to initialize the mTouch Library. Then for each sensor in the
system the sensors parameters must be set with MTouchSetSensor(…) function calls. From this point the mTouch library
has all information about sensors and the application can get samples from them by calling MTouchAcquisition(…) function
periodically. It can be done with a timer interrupt.

All controls in the application also must be initialized. In this example we have button and matrix button. Functions
MTouchSetButton(…) and MTouchSetMatrixButton(…)assign sensors for these controls and define decoding methods. To
get states of controls the MTouchDecode() must be run periodically. For this example the application code can be:

// Header file for mTouch library API.

#include "mTouch.h"

void main(void)

{

...

 // STEP 1

 // mTouch library initialization.

 MTouchInit();

 // STEP 2

4.3 Using API mTouch Cap Library Help

11

4

 // Sensors (see page 24) initialization. All sensors must be initialized

 // see MTOUCH_SENSORS_NUMBER in mTouchConfig.h).

 // PLEASE READ "SENSOR OPTIMIZATION (DEBUG MODULE)" CHAPTER

 // TO SELECT OPTIMAL PARAMETERS.

 // Sensor #0 is connected to RB1/AN2 pin

 MTouchSetSensor(0, // sensor number

 &TRISB, // port B

 &LATB,

 1, // IO bit number

 2, // analog channel number

 -1, // press detection threshold by default

 // (see MTOUCH_DEFAULT_THRESHOLD in mTouchConfig.h)

 -1, // oversampling by default

 //(see MTOUCH_DEFAULT_OVERSAMPLING in mTouchConfig.h)

 -1); // CTMU charge delay by default

 //(see MTOUCH_DEFAULT_CHARGE_DELAY in mTouchConfig.h,

 // not used for CVD acquisition)

 // Sensor #1 is connected to RF3/AN12 pin

 MTouchSetSensor(1, // sensor number

 &TRISF, // port F

 &LATF,

 3, // IO bit number

 12, // analog channel number

 -1, // press detection threshold by default

 // (see MTOUCH_DEFAULT_THRESHOLD in mTouchConfig.h)

 -1, // oversampling by default

 //(see MTOUCH_DEFAULT_OVERSAMPLING in mTouchConfig.h)

 -1); // CTMU charge delay by default

 //(see MTOUCH_DEFAULT_CHARGE_DELAY in mTouchConfig.h,

 // not used for CVD acquisition)

 // STEP 3

 // Buttons initialization. All buttons must be initialized

 //(see MTOUCH_BUTTONS_NUMBER and MTOUCH_MATRIXBUTTONS_NUMBER in

 // mTouchConfig.h).

 // The button #0 is connected to sensor # 0

4.3 Using API mTouch Cap Library Help

12

4

 MTouchSetButton(0, // button number

 0, // sensor number

 DECODE_TOGGLE); // decode method

 // The matrix button #0 is connected to sensor # 0 and sensor # 1

 MTouchSetMatrixButton(0, // button number

 0, // first sensor number

 1, // second sensor number

 DECODE_PRESS_RELEASE); // decode method

 // STEP 4

 // Timer interrupt initialization to call mTouch acquisition

 // pereodically.

 TimerInterruptInitialization();

 while(1)

 {

 // STEP 4

 // Decode all controls periodically.

 MTouchDecode();

 // STEP 5

 // Get current states of the buttons.

 Led_ALLOff();

 // button #0

 if(MTouchGetButtonState(0) == CONTROL_PRESSED) { Led0On(); }

 // matrix button #0

 if(MTouchGetMatrixButtonState(0) == CONTROL_PRESSED) { Led1On(); }

 }

}

// Timer interrupt service routine.

void __attribute__((interrupt, shadow, auto_psv)) _T4Interrupt(void)

4.3 Using API mTouch Cap Library Help

13

4

{

 // STEP 6

 // Get samples from sensors periodically.

 MTouchAcquisition();

 IFS1bits.T4IF = 0;

}

.

4.3 Using API mTouch Cap Library Help

14

4

5 Sensor Optimization (Debug Module)

During initialization the application must pass a few parameters to MTouchSetSensor(…) for each sensor. This chapter
describes how to select optimal values for a press detection threshold, oversampling factor, CTMU current and charge
delay. If these parameters are not optimized then it can influence on the sensors’ performance especially in a noisy
environment. The optimization of sensors can be divided in a few steps:

· Step 1. Optimal CTMU current selection (MTOUCH_CTMU_CURRENT parameter in mTouchConfig.h).

· Step 2. Optimal CTMU charge delay selection.

· Step 3. Optimal oversampling factor selection.

· Step 4. Optimal press detection threshold selection.

5.1 Step 1. Optimal CTMU current selection

To achieve the maximum of sensitivity the sensors must be charged to the voltage level about 75% of AVdd . The rounding
error depends on the charge delay parameter.The rounding error in percentage is (100/CTMU charge delay) of AVdd. The
recommended minimum value for the CTMU charge delay is 8 (default charge delay) .This provides charge to the optimal
level with rounding error about +-12.5% of AVdd. MTouchDebugCurrent(…) function returns the CTMU current source
settings when the optimal charge delay value is 8. Assign this value to MTOUCH_CTMU_CURRENT parameter in
mTouchConfig.h.

5.2 Step 2. Optimal CTMU charge delay
selection

To achieve the maximum of sensitivity the CTMU charge delay must be set to charge the sensor to the voltage level about
75% of AVdd . This optimal delay value can be calculated with MTouchDebugDelay(…) function. The calculated optimal
value should be passed for initialization to MTouchSetSensor(…).

5.3 Step 3. Optimal oversampling factor
selection

The oversampling factor should be set as big as possible to get maximum of signal amplitude and to increase noise
immunity. But this parameter is limited by the sensors response time. See time requirements for one acquisition to estimate

5.3 Step 3. Optimal oversampling factor mTouch Cap Library Help

15

5

how many samples can be used for one sample. The calculated optimal value should be passed for initialization to
MTouchSetSensor(…).

5.4 Step 4. Optimal press detection threshold
selection

The big noise can decrease sensitivity more than in 4 times. So the recommended value for the press detection threshold is
1/8th of the sensor signal amplitude (delta). To calculate the optimal threshold value MTouchDebugThreshold(…) function
can be used. It waits for the user presses the sensor and returns the optimal threshold value as 1/8th of the detected
amplitude. The calculated optimal value should be passed for initialization to MTouchSetSensor(…).

5.5 Optimization example

For the optimal parameters calculation the compiler optimization must be set to the required level. If the version of the
compiler or optimization level is changed then the optimization process must be repeated again. The Debugger Watch
Window can be used to see the result of the optimization. When the compiler optimization is on some variables can be
optimized out and can be not available for the debugger. All variables displayed in the Watch Window must be global and
declared as volatile. The code below calculates optimal parameters:

// Header file for mTouch library API

#include "mTouch.h"

//

// GLOBAL VARIABLES

//

// This structure will contain the optimal CTMU current.

volatile DEBUGDELAY* pOptimalCurrent;

// This structure will contain the optimal CTMU charge delay.

volatile DEBUGDELAY* pOptimalDelay;

// This variable will contain the optimal threshold.

volatile UINT16 optimalThreshold;

void main(void)

{

 // STEP 1

 // mTouch library initialization.

 MTouchInit();

5.5 Optimization example mTouch Cap Library Help

16

5

 // STEP 2

 // Sensors (see page 24) initialization. All sensors must be initialized

 // see MTOUCH_SENSORS_NUMBER in mTouchConfig.h).

 // Set default parameters.

 // Sensor #0 is connected to RB0/AN0 pin

 MTouchSetSensor(0, // sensor number

 &TRISB, // port B

 &LATB,

 0, // IO bit number

 0, // analog channel number

 -1, // press detection threshold by default

 // (see MTOUCH_DEFAULT_THRESHOLD in

 // mTouchConfig.h)

 -1, // oversampling by default

 //(see MTOUCH_DEFAULT_OVERSAMPLING in

 // mTouchConfig.h)

 -1); // CTMU charge delay by default

 //(see MTOUCH_DEFAULT_CHARGE_DELAY in

 // mTouchConfig.h,

 // not used for CVD acquisition)

 // STEP 3

 // MTouchDebugCurrent(sensorNumber) function calculates the optimal CTMU

 // current value (optimal CTMU charge delay will be about 8).

 // This will be a final value for MTOUCH_CTMU_CURRENT parameter in

 // mTouchConfig.h.

 // Before measurement set MTOUCH_CTMU_CURRENT to 0x01.

 // Sensor #0 is tested.

 pOptimalCurrent = MTouchDebugCurrent(0);

 // Set adjusted CTMU current value.

 MTouchSetCTMUCurrent(pOptimalCurrent->current);

 // STEP 4

 // MTouchDebugDelay(sensorNumber) function calculates the optimal

 // CTMU charge delay value to provide charging of sensor to

5.5 Optimization example mTouch Cap Library Help

17

5

 // about 75% of AVdd.

 // Optimal delay for sensor #0.

 pOptimalDelay = MTouchDebugDelay(0);

 // Set adjusted CTMU charge delay value for the sensor # 0

 MTouchSetChargeDelay(0, pOptimalDelay->delay);

 // STEP 5

 // MTouchDebugThreshold(sensorNumber) function calculates the optimal

 // press detection threshold value. It waits for the sensor press event

 // from user to measure maximum signal amplitude (delta).

 // Optimal threshold for sensor #0.

 optimalThreshold = MTouchDebugThreshold(0);

 // Set adjusted threshold value for the sensor # 0

 MTouchSetThreshold(0, optimalThreshold);

 // STEP 6

 // Put break point here. Use Watch Window to see

 // pOptimalCurrent->current, pOptimalDelay->delay and optimalThreshold

 // values.

 while(1);

}

After the code execution the result in the Debugger Watch Window can be:

pOptimalCurrent->error field shows an offset of the CTMU charge delay from nominal value (8). pOptimalDelay->error fiels
shows an offset of the sample for the adjusted charge delay from the nominal value (should be less than 128 for 10-bit ADC
and less than 512 for 12-bit ADC).

5.6 mTouch GUI
The library has capability to stream data from sensors to a text log file or to a special graphics tool –mTouch GUI. To use
this functionality the LogChar(…) function must be implemented in the application. Usually this function should transmit a
byte via PIC UART. The mTouch GUI utility is located in “….\Microchip Solutions\mTouchCapDemos\Utilities\PIC18F

5.6 mTouch GUI mTouch Cap Library Help

18

5

PIC24F Tools\mTouch GUI” folder. “mTouch GUI Help.chm” file in this folder contains all required information about setup,
configuration and usage.

5.6 mTouch GUI mTouch Cap Library Help

19

5

6 Code and RAM memories size

6.1 RAM
Here is a list of RAM requirements per each sensor and control.

Object Size less than

Sensor (basic button) 34 Bytes

Button (button with different decoding methods) 8 Bytes

Matrix Button 10 Bytes

2 Channel Slider 8 Bytes

4 Channel Slider 12 Bytes

6.2 Code
Here is a list of program memory requirements per each library module.

Module Size for MPLAB C18 compiler
less than

Size for MPLAB C30 compiler
less than

CTMU Acquisition (see page 24) with Sensors (
see page 24) (basic buttons)

2050 Bytes 1750 Bytes

CVD Acquisition (see page 24) with Sensors (
see page 24) (basic buttons)

2700 Bytes 1850 Bytes

Button (buttons with different decoding methods) 680 Bytes 280 Bytes

Matrix Button 790 Bytes 330 Bytes

2 Channel Slider 1000 Bytes 280 Bytes

6.2 Code mTouch Cap Library Help

20

6

4 Channel Slider 1320 Bytes 430 Bytes

6.2 Code mTouch Cap Library Help

21

6

7 Acquisition time for one sensor

Acquisition (see page
24) method

Average time for MPLAB C18 compiler Average time for MPLAB C30 compiler

CTMU 530 Instructions 160 Instructions

CVD 840 Instructions 290 Instructions

7 mTouch Cap Library Help

22

7

8 Demo Projects

The mTouch library demo projects are located in “…\Microchip Solutions\mTouchCapDemos\PIC18F PIC24F Demos”.
All hardware dependent settings, definitions, macros and functions for each demo project can be found in “…\Microchip
Solutions\mTouchCapDemos\PIC18F PIC24F Demos\Configurations” folder. The system.h and system.c files in this
folder contain the code specific for PIC Microcontroller device and development board used (such as configuration bits,
ISRs, peripherals’ initialization). There is one special demo project “User Configurable Demo”. This project can be used as
a start point for the custom application. This demo supports almost all PIC Microcontroller devices and all required mTouch
library files are added to the project by default. The PIC Microcontroller device specific information for this demo project is
placed in “…\Microchip Solutions\mTouchCapDemos\PIC18F PIC24F Demos\Configurations\User_Board” folder and
mTouchConfig.h file.

Please read ReadMe.txt files in demo project folders to get more details about each demo.

8 mTouch Cap Library Help

23

8

9 API Reference

9.1 Common
In this section the common library functions are described.

9.1.1 void MTouchInit(void)

Description: this function initializes mTouch library.

9.1.2 MTouchSetCTMUCurrent(current)

Description: this macro sets CTMU current range and trim bits.

 Parameters:

· current - current value. Bits 1-0 define the current source range (IRNG) and bits 7-2 define current trim value (ITRIM,
signed).

9.2 Acquisition
In this section the acquisition level library functions are described.

9.2.1 MTouchAcquisition(void)

Description: this function performs an acquisition for all sensors (using CVD or CTMU).Contains decimate and
oversampling filters. When oversampling is finished it decodes the sensor state. This function can be called periodically (for
example by timer interrupt). The initialization should be done with MTouchInit() and MTouchSetSensor(...)functions.

9.3 Sensors
In this section the sensors level library functions are described.

9.3 Sensors mTouch Cap Library Help void MTouchSetSensor(UINT8

24

9

9.3.1 void MTouchSetSensor(UINT8 sensorNumber, SFR
tris, SFR lat, UINT8 ioBitNumber, UINT8 channelNumber,
INT16 threshold, INT16 oversampling, INT8 chargeDelay)

Description: this function initializes a sensor. All sensors must be set before acquisition.

Parameters:

· sensorNumber - sensor number.

· tris - address of TRIS register for the sensor.

· lat - address of LAT register for the sensor.

· ioBitNumber - sensor IO bit number for LAT and TRIS registers.

· channelNumber - analog input number for the sensor.

· threshold - press detection threshold. Set this parameter to -1 to use default value
MTOUCH_DEFAULT_THRESHOLD (mTouchConfig.h).

· oversampling - defines how many samples used for oversampling. Set this parameter to -1 to use default value
MTOUCH_DEFAULT_OVERSAMPLING (mTouchConfig.h).

· chargeDelay - CTMU charge delay. Set this parameter to -1 to use default value
MTOUCH_DEFAULT_CHARGE_DELAY (mTouchConfig.h).

9.3.2 MTouchSuspendSensor(sensorNumber)

Description: this macro excludes the sensor from scan. Use MTouchResumeSensor(...) to start the sensor scanning again.

Parameters:

· sensorNumber - sensor number.

9.3.3 MTouchResumeSensor(sensorNumber)

Description: this macro resumes the sensor scanning stopped by MTouchSuspendSensor(...).

Parameters:

· sensorNumber - sensor number.

9.3.4 MTouchSetChargeDelay(sensorNumber, delay)

Description: this macro sets charge delay value for sensor.

Parameters:

· sensorNumber - sensor number.

9.3 Sensors mTouch Cap Library Help MTouchSetChargeDelay(sensorNumber,

25

9

· delay - charge delay.

9.3.5 MTouchSetThreshold(sensorNumber, _threshold)

Description: this macro sets press detection threshold for sensor.

Parameters:

· sensorNumber - sensor number.

· threshold - press detection threshold.

9.3.6 MTouchSetOversampling(sensorNumber,
oversampling)

Description: this macro sets oversampling factor for sensor.

Parameters:

· sensorNumber - sensor number.

· oversampling - oversampling factor.

9.3.7 MTouchGetSensorState(sensorNumber)

Description: this macro returns current state of sensor.

Parameters:

· sensorNumber - sensor number.

Returns: state of sensor (see MTOUCHSENSORSTATE enumeration in mTouchSensor.h).

9.4 Controls
In this section the controls level library functions are described.

9.4.1 void mTouchDecode(void)

Description: this function decodes states for all controls. It should be called periodically before reading of the controls states.

9.4 Controls mTouch Cap Library Help void MTouchSetButton(UINT8

26

9

9.4.2 void MTouchSetButton(UINT8 buttonNumber, UINT8
sensorNumber, UINT8 decode)

Description: this function initializes button.

 Parameters:

· buttonNumber - button number.

· sensorNumber - sensor number.

· decode - ORed combination of decode methods (see MTOUCHCONTROLDECODE union in mTouchControl.h).

9.4.3 MTouchGetButtonState(buttonNumber)

Description: this macro returns the button state.

 Parameters:

· buttonNumber - button number.

Returns: button state flags (see MTOUCHCONTROLSTATE union in mTouchControl.h).

9.4.4 void MTouchSetMatrixButton(UINT8 buttonNumber,
UINT8 ch1SensorNumber, UINT8 ch2SensorNumber,
UINT8 decode)

Description: this function initializes matrix button.

Parameters:

· buttonNumber - button number.

· ch1SensorNumber - first sensor number (row or column).

· ch2SensorNumber - second sensor number (row or column).

· decode - ORed combination of decode methods (see MTOUCHCONTROLDECODE union in mTouchControl.h).

9.4.5 MTouchGetMatrixButtonState(buttonNumber)

Description: this macro returns the matrix button state.

 Parameters:

· buttonNumber - matrix button number.

Returns: matrix button state flags(see MTOUCHCONTROLSTATE union in mTouchControl.h).

9.4 Controls mTouch Cap Library Help void MTouchSet2ChSlider(UINT8

27

9

9.4.6 void MTouchSet2ChSlider(UINT8 sliderNumber,
UINT8 ch1SensorNumber, UINT8 ch2SensorNumber)

Description: this function initializes 2 channels slider.

 Parameters:

· sliderNumber - slider number.

· ch1SensorNumber - first sensor number.

· ch2SensorNumber - second sensor number.

9.4.7 MTouchGet2ChSliderState(sliderNumber)

Description: this macro returns the slider state.

Parameters:

· sliderNumber - slider number.

Returns: slider state (see MTOUCHCONTROLSTATE union in mTouchControl.h).

9.4.8 MTouchGet2ChSliderValue(sliderNumber)

Description: this macro returns the slider current position.

Parameters:

· sliderNumber - number of slider.

Returns: slider value (current position) from 0 to 1000.

9.4.9 void MTouchSet4ChSlider(UINT8 sliderNumber,
UINT8 ch1SensorNumber, UINT8 ch2SensorNumber,
UINT8 ch3SensorNumber, UINT8 ch4SensorNumber)

 Description: this function initializes 4 channels slider.

Parameters:

· sliderNumber - slider number.

· ch1SensorNumber - sensor 1 number.

9.4 Controls mTouch Cap Library Help void MTouchSet4ChSlider(UINT8

28

9

· ch2SensorNumber - sensor 2 number.

· ch1SensorNumber - sensor 3 number.

· ch2SensorNumber - sensor 4 number.

9.4.10 MTouchGet4ChSliderState(sliderNumber)

Description: this macro returns the slider state.

 Parameters:

· sliderNumber - number of slider.

Returns: slider state (see MTOUCHCONTROLSTATE union in mTouchControl.h).

9.4.11 MTouchGet4ChSliderValue(sliderNumber)

Description: this macro returns the slider current position.

 Parameters:

· sliderNumber - number of slider.

Returns: slider value (current position) from 0 to 1000.

9.5 Debug Module
In this section the debug module library functions are described.

9.5.1 void LogChar(char ch)

Description:This function outputs character to debug log. It MUST BE defined in application.

Parameters:

· ch - character to be transmitted.

9.5.2 DEBUGCURRENT* MTouchDebugCurrent(UINT8
sensorNumber)

9.5 Debug Module mTouch Cap Library Help DEBUGCURRENT*

29

9

Description:The function adjusts CTMU current to charge the sensor to 75% of AVdd for unpressed state when charge
delay is 8. Before the adjustment MTOUCH_CTMU_CURRENT parameter in mTouchConfig.h must be set to 0x01 and
sensor must be initialized with MTouchSetSensor(...). The CTMU current result can be set to MTOUCH_CTMU_CURRENT
parameter directly.

Parameters:

sensorNumber - sensor number.

Returns: the function returns a pointer to the structure with the CTMU current settings value and corresponding error in the
sensor charge delay.

9.5.3 INT16 MTouchDebugThreshold(UINT8
sensorNumber)

Description:This function waits for the sensor press event and returns an optimal sensor threshold. The threshold should be
about 12.5% percents of the signal(delta) amplitude. Before measurement the sensor must be initialized with
MTouchSetSensor(...). Use the threshold result to intialize sensor (see parameter "threshold" in MTouchSetSensor(...)
function).

Parameters:

· sensorNumber - sensor number.

Returns: the function returns an optimal sensor threshold value.

9.5.4 DEBUGDELAY* MTouchDebugDelay(UINT8
sensorNumber)

Description:this function adjusts CTMU charge delay to charge the unpressed sensor to 75% of AVdd. Sensor must be
initialized with MTouchSetSensor(...). The charge delay result returned by this function can be used to intialize sensor (see
parameter "chargeDelay" in MTouchSetSensor(...) function).

Parameters:

· sensorNumber - sensor number.

Returns: a pointer to the structure with the charge delay adjustment.

9.5.5 void MTouchDebugLogDeltas(void)

Description:This function sends deltas for all sensors to debug log as a semicolon delimited ASCII string of 5 digit decimal
numbers. The first number in the string is the sensors’ states, other numbers are deltas.

9.5 Debug Module mTouch Cap Library Help void MTouchDebugLogAverages(void)

30

9

9.5.6 void MTouchDebugLogAverages(void)

Description:This function sends averages values for all sensors to debug log as a semicolon delimited ASCII string of 5
digit decimal numbers. The first number in the string is the sensors’ states, other numbers are average values.

9.6 Structures and Enumerations
In this section the library structures and enumerations are described.

9.6.1 MTOUCHSENSORSTATE Enum

Enumeration: MTOUCHSENSORSTATE

This enumeration defines all possible states for sensor.

Values:

· SENSOR_INITIALIZING - sensor is still initializing (see POWER_UP_SAMPLES in mTouchConfig.h),

· SENSOR_RELEASED - sensor is currently released,

· SENSOR_PRESSED - sensor is currently pressed,

· SENSOR_DISCONNECTED = 0x80 - bit 7 shows that the sensor must be removed from scan.

9.6.2 MTOUCHCONTROLSTATE Enum

Enumeration: MTOUCHCONTROLSTATE

This enumeration defines possible state flags for controls.

Values:

· CONTROL_IDLE = 0x80 - bit 7 shows that control is in idle state (the state was not changed),

· CONTROL_PRESSED – control pressed,

· CONTROL_RELEASED – control released.

9.6.3 MTOUCHCONTROLDECODE Enum

Enumeration: MTOUCHCONTROLDECODE

9.6 Structures and Enumerations mTouch Cap Library Help MTOUCHCONTROLDECODE Enum

31

9

This enumeration defines possible decode method flags for controls. These flags can be ORed.

Values:

· DECODE_TOGGLE - toggled button,

· DECODE_PRESS_RELEASE - simple button (reports pressed or released states),

· DECODE_MOST_PRESSED - looks through all pressed buttons having the decode method DECODE_MOST_PRESSED
and reports "pressed" state only for one which has a bigger signal,

· DECODE_PRESS_REPEAT - if button is held pressed it starts to generate "pressed"/"released" events periodically. See
MCONTROL_REPEAT_INITIAL_DELAY and MCONTROL_REPEAT_DELAY settings in mTouchConfig.h,

· DECODE_ONE_EVENT - if control's state is not changed CONTROL_IDLE state flag will be set.

9.6.4 DEBUGCURRENT Struct

Structure: DEBUGCURRENT

This structure contains results for the CTMU current adjustment. This resut can be used directly for
MTOUCH_CTMU_CURRENT setting in mTouchConfig.h file. It is used by MTouchDebugCurrent(...) function.

Fields:

· INT16 error - charge delay error for the adjusted current from the nominal charge delay (equals 8).

· UINT8 current - settings for CTMU current. Bits 1-0 define the current source range (IRNG) and bits 7-2 define current trim
value (ITRIM, signed).

9.6.5 DEBUGDELAY Struct

Structure: DEBUGDELAY

This structure contains results for CTMU charge delay adjustment. It is used by MTouchDebugDelay(...) function.

Fields:

· INT8 delay - settings for CTMU charge delay.

· INT16 error – sample error for the adjusted delay from the nominal value (75% of AVdd). The error should be less than 128
for 10-bit ADC and less than 512 for 12-bit ADC.

9.6 Structures and Enumerations mTouch Cap Library Help DEBUGDELAY Struct

32

9

10 Known Limitations

The known limitations of mTouchTM software library version 1.40 are listed below:

• The PIC18 demos work with Hi-Tech PICC18 compiler v9.66 but may not work with Hi-Tech PICC18 compiler v9.80.

• The PIC18 demos when used with HiTech PICC18 compiler with MPLAB-X , the default setting should be changed from
LITE to PRO version for successful compilation.

10 mTouch Cap Library Help

33

10

11 Resources

To get more information about mTouch sensing solutions visit http://www.mirochip.com/mtouch and read the following
articles:

· Capacitive Sensors (see page 24) by Larry K. Baxter ISBN 0-7803-5351-X

· AN1101, AN1102, AN1103, AN1104 – Covers Basic Cap Touch

· AN1250 – Cap Touch with CTMU

· AN1254 – Capacitive Touch Algorithm Simulation

· AN1298 – Capacitive Touch Using Only an ADC (CVD)

· AN1325 – mTouch™ Metal Over Cap Technology

· AN 1334 –Techniques for Robust Touch Sensing Design

11 mTouch Cap Library Help

34

11

http://www.mirochip.com/mtouch

Index

A
Acquisition 24

Acquisition Level 5

Acquisition time for one sensor 22

API Reference 24

C
Code 20

Code and RAM memories size 20

Common 24

Controls 26

Controls Level 6

D
Debug Module 29

DEBUGCURRENT Struct 32

DEBUGCURRENT* MTouchDebugCurrent(UINT8
sensorNumber) 29

DEBUGDELAY Struct 32

DEBUGDELAY* MTouchDebugDelay(UINT8 sensorNumber)
30

Demo Projects 23

G
Getting Started 7

I
INT16 MTouchDebugThreshold(UINT8 sensorNumber) 30

Introduction 1

K
Known Limitations 33

M
mTouch GUI 18

mTouch Library Configuration 9

mTouch Library Files 8

MTouchAcquisition(void) 24

MTOUCHCONTROLDECODE Enum 31

MTOUCHCONTROLSTATE Enum 31

MTouchGet2ChSliderState(sliderNumber) 28

MTouchGet2ChSliderValue(sliderNumber) 28

MTouchGet4ChSliderState(sliderNumber) 29

MTouchGet4ChSliderValue(sliderNumber) 29

MTouchGetButtonState(buttonNumber) 27

MTouchGetMatrixButtonState(buttonNumber) 27

MTouchGetSensorState(sensorNumber) 26

MTouchResumeSensor(sensorNumber) 25

MTOUCHSENSORSTATE Enum 31

MTouchSetChargeDelay(sensorNumber, delay) 25

MTouchSetCTMUCurrent(current) 24

MTouchSetOversampling(sensorNumber, oversampling) 26

MTouchSetThreshold(sensorNumber, _threshold) 26

MTouchSuspendSensor(sensorNumber) 25

O
Optimization example 16

Overview 5

R
RAM 20

Resources 34

S
Sensor Optimization (Debug Module) 15

Sensors 24

Sensors Level 6

Software License Agreement 2

Step 1. Optimal CTMU current selection 15

Step 2. Optimal CTMU charge delay selection 15

Step 3. Optimal oversampling factor selection 15

Step 4. Optimal press detection threshold selection 16

Structures and Enumerations 31

U
Using API 11

V
void LogChar(char ch) 29

void MTouchDebugLogAverages(void) 31

12 mTouch Cap Library Help

a

void MTouchDebugLogDeltas(void) 30

void mTouchDecode(void) 26

void MTouchInit(void) 24

void MTouchSet2ChSlider(UINT8 sliderNumber, UINT8
ch1SensorNumber, UINT8 ch2SensorNumber) 28

void MTouchSet4ChSlider(UINT8 sliderNumber, UINT8
ch1SensorNumber, UINT8 ch2SensorNumber, UINT8
ch3SensorNumber, UINT8 ch4SensorNumber) 28

void MTouchSetButton(UINT8 buttonNumber, UINT8
sensorNumber, UINT8 decode) 27

void MTouchSetMatrixButton(UINT8 buttonNumber, UINT8
ch1SensorNumber, UINT8 ch2SensorNumber, UINT8
decode) 27

void MTouchSetSensor(UINT8 sensorNumber, SFR tris, SFR
lat, UINT8 ioBitNumber, UINT8 channelNumber, INT16
threshold, INT16 oversampling, INT8 chargeDelay) 25

12 mTouch Cap Library Help

b

	mTouch Cap Library Help
	Table of Contents
	Introduction
	Software License Agreement
	Overview
	Acquisition Level
	Sensors Level
	Controls Level

	Getting Started
	mTouch Library Files
	mTouch Library Configuration
	Using API

	Sensor Optimization (Debug Module)
	Step 1. Optimal CTMU current selection
	Step 2. Optimal CTMU charge delay selection
	Step 3. Optimal oversampling factor selection
	Step 4. Optimal press detection threshold selection
	Optimization example
	mTouch GUI

	Code and RAM memories size
	RAM
	Code

	Acquisition time for one sensor
	Demo Projects
	API Reference
	Common
	void MTouchInit(void)
	MTouchSetCTMUCurrent(current)

	Acquisition
	MTouchAcquisition(void)

	Sensors
	void MTouchSetSensor(UINT8 sensorNumber, SFR tris, SFR lat, UINT8 ioBitNumber, UINT8 channelNumber, INT16 threshold, INT16 oversampling, INT8 chargeDelay)
	MTouchSuspendSensor(sensorNumber)
	MTouchResumeSensor(sensorNumber)
	MTouchSetChargeDelay(sensorNumber, delay)
	MTouchSetThreshold(sensorNumber, _threshold)
	MTouchSetOversampling(sensorNumber, oversampling)
	MTouchGetSensorState(sensorNumber)

	Controls
	void mTouchDecode(void)
	void MTouchSetButton(UINT8 buttonNumber, UINT8 sensorNumber, UINT8 decode)
	MTouchGetButtonState(buttonNumber)
	void MTouchSetMatrixButton(UINT8 buttonNumber, UINT8 ch1SensorNumber, UINT8 ch2SensorNumber, UINT8 decode)
	MTouchGetMatrixButtonState(buttonNumber)
	void MTouchSet2ChSlider(UINT8 sliderNumber, UINT8 ch1SensorNumber, UINT8 ch2SensorNumber)
	MTouchGet2ChSliderState(sliderNumber)
	MTouchGet2ChSliderValue(sliderNumber)
	void MTouchSet4ChSlider(UINT8 sliderNumber, UINT8 ch1SensorNumber, UINT8 ch2SensorNumber, UINT8 ch3SensorNumber, UINT8 ch4SensorNumber)
	MTouchGet4ChSliderState(sliderNumber)
	MTouchGet4ChSliderValue(sliderNumber)

	Debug Module
	void LogChar(char ch)
	DEBUGCURRENT* MTouchDebugCurrent(UINT8 sensorNumber)
	INT16 MTouchDebugThreshold(UINT8 sensorNumber)
	DEBUGDELAY* MTouchDebugDelay(UINT8 sensorNumber)
	void MTouchDebugLogDeltas(void)
	void MTouchDebugLogAverages(void)

	Structures and Enumerations
	MTOUCHSENSORSTATE Enum
	MTOUCHCONTROLSTATE Enum
	MTOUCHCONTROLDECODE Enum
	DEBUGCURRENT Struct
	DEBUGDELAY Struct

	Known Limitations
	Resources
	Index

