
mComm Users Guide

Contents

1. Quick Start Guides

a. One-way Data Output

i. Configuring a hardware UART module

ii. Configuring a bit-banged, software UART implementation

b. Two-way Data Communication

i. Configuring the Features

1. Non-Volatile Memory Access

2. Stream

3. Custom, User-Implemented Command

ii. Configuring the Configuration Data Block

1. Literal Values

2. Address Values

2. mComm Protocol

a. Complete Packet Structure

i. UART

ii. I2C

iii. SPI

b. Master Request Payloads

i. Read

1. Configuration

2. RAM

3. NVM

4. Custom

ii. Write

1. RAM

2. NVM

3. Custom

3. Examples

Quick Start Guides

One-way Data Output
The one-way communication type is implemented only for UART transmission. The data it outputs

depends on the values that are defined in the configuration file. The packet is sent at the end of each

mTouch decode routine before returning to the application.

Open MCOMM_CONFIG.H.
Make sure:

 MCOMM_ENABLED is defined

 MCOMM_TYPE is defined as MCOMM_UART_ONE_WAY

Configuring a Hardware UART Module

#define MCOMM_UART_1WAY_MODULE MCOMM_UART_HARDWARE_MODULE

Hardware module will be used.
The valid values for MCOMM_UART_BAUDRATE are greater for this configuration. The top supported
speed is 115200 in most cases.

Configuring a Bit-Banged Software-UART Implementation
#define MCOMM_UART_1WAY_MODULE MCOMM_UART_SOFTWARE_IMPLEMENTATION

#define MCOMM_UART_SOFT_TXPORT PORTA // TX Port Register

#define MCOMM_UART_SOFT_TXTRIS TRISA // TX Tris Register

#define MCOMM_UART_SOFT_TXPIN 5 // TX Pin

Bit-banged, software-UART will be implemented.
The ‘Soft TX’ definitions, above, determine which pin is used for TX.
The valid values for MCOMM_UART_BAUDRATE are fewer for this configuration. The most commonly
supported speeds are 9600, 19200, and 38400.

Other Configuration Options
#define MCOMM_UART_1WAY_OUTPUT MCOMM_UART_1WAY_DECIMAL

#define MCOMM_UART_1WAY_DELIMITER ';'

#define MCOMM_UART_1WAY_OUT_STATE // Output state mask

#define MCOMM_UART_1WAY_OUT_TOGGLE // Output toggle mask

#define MCOMM_UART_1WAY_OUT_READING // Output readings

#define MCOMM_UART_1WAY_OUT_BASELINE // Output baselines

#define MCOMM_UART_1WAY_OUT_MATRIX // Output matrix value

#define MCOMM_UART_1WAY_OUT_SLIDER // Output slider value

The 1-way output definition decides whether the output will be in hex or decimal.
The delimiter is placed between each output value.

If the “1-way Out” definitions are defined, that data will be output by the communications.

Two-way Data Communication
The two-way communications for mComm are highly flexible. Most features may be optionally disabled
to reduce the resource requirements of the program.

There are three supported communication types for the two-way communications:

 Asynchronous, hardware UART

 I2C

 SPI

If I2C or SPI are used, the communications will be synchronous. If enabled, the stream functions as a
prebuilt output packet of RAM arrays.

If UART is used, the communications will be asynchronous. If enabled, the stream outputs at the end of
the mTouch decode function or if the master issues a ‘read stream’ command.

RAM Access

If two-way communications are enabled, RAM access is implemented. Unlike the other memory access
methods, this one is not optional.

 0x00 :: Write to RAM

 0x01 :: Read from RAM

Non-Volatile Memory Access

Access to reading/writing EEPROM is toggled by (un)commenting MCOMM_ENABLE_NVM_ACCESS.

NOTE: This value turns on/off the ability of the master to access this region of memory. It does

not affect whether or not mTouch configuration values are stored in EEPROM. To turn on that

feature of the mTouch Framework, see the top part of MTOUCH_CONFIG.H

If MCOMM_ENABLE_NVM_ACCESS is defined, mComm will implement the opcodes:

 0x02 :: Write to EEPROM

 0x03 :: Read from EEPROM
If it is not defined, commands received with those opcodes will be ignored.

Stream

Implementation of the stream feature can be toggled using MCOMM_ENABLE_STREAM

If MCOMM_ENABLE_STREAM is defined, mComm will implement the opcodes:

 0x04 :: Write to Stream

 0x05 :: Read from Stream
If it is not defined, commands received with those opcodes will be ignored.

If MCOMM_STREAM_STORED_IN_RAM is defined, the stream will be stored in RAM. This allows the

master to edit the vectors stored in the stream at run-time. If this is not defined, the stream will be

stored in constant memory to reduce the RAM requirements.

If MCOMM_STREAM_EN_ON_POR is defined and the UART is being used to asynchronously send new

data, the stream will begin outputting immediately on power-up. Otherwise, the stream will only be

enabled once bit 0 of the mComm_streamConfig variable is set. (The address of mComm_streamConfig

in RAM will be stored in the configuration address block. This is accessed by reading from RAM location

0x0001.)

The stream is implemented as an array of vectors. Each vector is three bytes: a pointer and an 8-bit

length. MCOMM_STREAM_SIZE determines how many vectors the stream will store. NOTE: The actual

size of the stream array will be MCOMM_STREAM_SIZE+1. A 0-length vector is always placed at the end

of the array.

To define the default values of the stream, start with MCOMM_STREAM_VALUE0 and increment the

index with each vector entry. If the size of the stream array is larger than the number of defined initial

stream values, the non-defined values will be filled with 0’s. The stream will stop after reaching the first

0-length vector.

By default, the stream is configured to output the sensor state mask, reading, and baseline values. Use

these as examples for customizing the stream to your needs.

Custom, User-Implemented Commands

There is built-in support for custom opcodes. MCOMM_ENABLE_CUSTOM_OPCODE must be defined.

If MCOMM_ENABLE_CUSTOM_OPCODE is defined, mComm will implement the opcodes:

 0x06 :: Custom Write Operation

 0x07 :: Custom Read Operation
If it is not defined, commands received with those opcodes will be ignored.

If UART is being implemented, read and write commands are processed at the end of the mTouch

decode. While processing the input commands, mComm will also ask the application if it has any data to

send.

 Only if UART is being implemented:
MCOMM_CUSTOM_CALLBACK must be defined to the name of the callback function which
returns a 1 if data needs to be sent, 0 otherwise.
An example is available in mComm_config.h which checks to see if any sensors have changed
state and if the custom command is currently enabled.

If I2C or SPI is being implemented, read and write commands are executed immediately.

For all communication types (UART, I2C, SPI):
MCOMM_CUSTOM_PROCESS must be defined to the name of the function that will process the input

buffer and prepare for either the read or write iterator function to be called for the first time.

MCOMM_CUSTOM_READ_ITERATOR must be defined to the name of the function that will be called

when the opcode is ‘0x07’. This iterator will be continuously called until the output vector’s hasNext flag

is cleared. The first time this function is called will be right after the process function has been called.

MCOMM_CUSTOM_WRITE_ITERATOR must be defined to the name of the function that will be called

when the opcodes is ‘0x08’. This iterator will be continuously called until the output vector’s hasNext

flag is cleared. The first time this function is called will be right after the process function has been

called.

Configuring the Literal and Address Configuration Blocks
The first thing the master should do on power-up is read the PIC’s configuration. The configuration

comes in two packets of data: literals and addresses.

The literal data contains values that change only at compile-time. It stores information about the

number of implemented sensors, the size of the EEPROM, the application’s version numbers, and other

configuration details.

 The values stored in this packet can be edited at the bottom of the configuration file.

The address data contains the addresses of RAM variables and arrays. Since compilers will relocate

variables during development, this allows the master to always find the correct location to access.

 The values stored in this packet can be edited at the bottom of the configuration file.

NOTE: If you change the configuration blocks, adjust the associated size definitions.

(MCOMM_CONFIG_LIT_SIZE and MCOMM_CONFIG_ADDR_SIZE)

mComm Two-Way Protocol

The packet structures for the communication types are different, but the payloads for both master and

slave do not change.

UART
Two-way UART communications start with a BREAK character and a byteCount. After that, the payload is

consistent with the other protocols.

Master mComm:

BREAK byteCount opCode addr:l addr:h length optional, variable payload checksum

 Where:

- byteCount :: Total length of the packet in bytes, including the checksum
- length

o If ‘read’ :: Number of requested bytes to read
o If ‘write’ :: Number of bytes in the payload, excluding the checksum

- checksum :: XOR of all bytes, excluding byteCount

mComm Master:

BREAK byteCount opCode optional, variable payload checksum

 Where:

- byteCount :: Total length of the packet in bytes, including the checksum
- opCode :: Either:

o Repeat of opcode used for master’s request
o 0xAA for ‘ACK’
o 0xA5 for ‘NACK’

- checksum :: XOR of all bytes, excluding the byteCount

I2C
Two-way I2C communications begin with a START bit and a write address, and end with a STOP bit.

Other than these changes, the payload for both master and slave remain the same as with the other

communication types.

Write:

START addr:W opCode addr:l addr:h length variable payload checksum STOP

 Where:

- addr:W :: I2C write address of the PIC
- addr:l :: low-byte of the address to access
- addr:h :: high-byte of the address to access
- length :: Number of bytes in the payload, excluding the checksum
- checksum :: XOR of all bytes, excluding I2C write address

Read:

 Where:
- addr:W :: I2C write address of the PIC
- addr:l :: low-byte of the address to access
- addr:h :: high-byte of the address to access
- chksum :: XOR of all previous bytes, excluding the write address
- addr:R :: I2C read address of the PIC

- variable payload :: Sent by PIC, number of bytes dependant on ‘length’ value
- chksum :: Sent by PIC, XOR of all bytes in the variable payload.

START addr:W opCode addr:l addr:h length chksum START addr:R variable payload chksum STOP

SPI
Two-way SPI communications begin the address of the write address of the PIC and the byteCount for

the packet length. After this, the payload is identical to the other communication methods with the

exception of the ‘ack’ value being sent after a valid address has been read and once the write is

complete.

Write:

Master addr:W byteCount opCode addr:l addr:h length optional, variable payload checksum 0x00

mComm 0x00 ack 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 ack

 Where:
- addr:W :: SPI write address of the PIC
- byteCount :: length of the packet in bytes, including checksum
- addr:l :: low-byte of the address to access
- addr:h :: high-byte of the address to access
- length :: Number of bytes in the payload, excluding the checksum
- checksum :: XOR of all bytes, excluding the write address and byteCount
- ack

o Sent after valid address
o Sent once a write is complete.

 NOTE: mComm will send 0x00 until the write has finished.

Read:

Master addr:W byteCount opCode addr:l addr:h length checksum 0x00 0x00 0x00 0x00

mComm 0x00 ack 0x00 0x00 0x00 0x00 0x00 variable payload chksum

 Where:
- addr:W :: SPI write address of the PIC
- byteCount :: length of the packet in bytes, including checksum
- addr:l :: low-byte of the address to access
- addr:h :: high-byte of the address to access
- checksum :: XOR of all previous bytes, excluding the write address and byteCount
- addr:R :: I2C read address of the PIC

- variable payload :: Sent by PIC, number of bytes dependant on ‘length’ value
- chksum :: Sent by PIC, XOR of all bytes in the variable payload.

mComm Master Payloads

These payloads are common across all communication types. The payload is stored in the input buffer
and is provided to the ‘process’ and ‘iterator’ functions for execution of the command.

The ‘process’ and ‘iterator’ functions are only called if the checksum has been verified as valid. The
checksum is provided in the input buffer, but does not need to be checked.

Reading

RAM

0x01 addr:l addr:h length checksum

Where:
- addr:l :: RAM address, low byte
- addr:h :: RAM address, high byte
- length :: Number of requested bytes
- checksum :: XOR of all bytes in the payload

mComm response:

0x01 'Length' RAM bytes starting at Addr checksum

EXCEPTION: Reading from RAM address 0x0000 or 0x0001 will result in the output of the
mComm configuration arrays. Address 0x0000 will output the literal configuration array.
Address 0x0001 will output the address configuration array. The length value is ignored for
these two conditions. The full array is always output.

NVM

0x03 addr:l addr:h length checksum

Where:
- addr:l :: EEPROM address, low byte
- addr:h :: EEPROM address, high byte
- length :: Number of requested bytes
- checksum :: XOR of all bytes in the payload

mComm response:

0x03 'Length' EEPROM bytes starting at Addr checksum

Stream

0x05 addr:l addr:h length checksum

Where:
- addr:l :: Stream vector index to start reading from
- addr:h :: Not applicable to this opcode. Ignored.

- length :: Not applicable to this opcode. Ignored.
- checksum :: XOR of all bytes in the payload

mComm response:

0x05 All stream vectors w/ index 'addr:l' and higher checksum

Custom

0x07 User-Defined Structure checksum

Where:
- 0x07 :: Fixed ‘user opcode’ value
- checksum :: XOR of all bytes in the payload

mComm response:

User-Defined Output Structure checksum

Writing
The response of the mComm module to a write will vary with the communication type.

When UART is enabled, write commands are not executed until the mComm_Service() function has
been called from either the mTouch decode routine or elsewhere in the main loop. When the write
completes, an ‘acknowledge’ packet is sent. (BREAK 0x02 0xAA 0xAA – where 0x02 is the byteLength,
0xAA is the opcode, and the final 0xAA is the checksum: the XOR of 0xAA with 0).

When I2C or SPI is enabled, the write command is executed immediately on receiving the valid
checksum and before returning from the receive ISR.

RAM

0x00 addr:l addr:h length variable-length data checksum

Where:
- addr:l :: The RAM address at which to start writing, low byte
- addr:h :: The RAM address at which to start writing, high byte
- length :: Number of data bytes to write
- checksum :: XOR of all bytes in the payload (opcode, addr, length, and data)

NVM
0x02 addr:l addr:h length variable-length data checksum

Where:
- addr:l :: The EEPROM address at which to start writing, low byte
- addr:h :: The EEPROM address at which to start writing, high byte
- length :: Number of data bytes to write
- checksum :: XOR of all bytes in the payload (opcode, addr, length, and data)

EXCEPTION: Writing to EEPROM location 0x0000 will reset the mTouch EEPROM values to
compile-time settings. All applications should avoid placing data at address 0x0000 due to errors
that can occur with EEPROM writes during brown-outs. The mTouch EEPROM initialization byte
is stored at address 0x0001, so the recommended starting address for all EEPROM applications,
including mTouch, is 0x0002.

Stream
If the stream is stored in RAM (configuration option, located in mComm_config.h), the stream’s vectors

may be changed by the master. Writing to the stream (changing the vector address/length) should be

handled with a RAM write instruction. The address of the stream array is provided in the address

configuration output.

Each vector in the stream consists of 3 bytes. The first two bytes are the RAM address to access. The

third byte is the number of bytes to read from that location.

The final stream vector must have a length of 0. To help with this, the length of the stream provided in

the configuration file is automatically increased by 1 and a 0-length vector is added to the final position.

You have the ability to write to this location, but the length must be 0 or the stream will continue

outputting until it stumbles upon a 0 somewhere in RAM.

Custom
The default operation for a ‘custom write’ is to perform a software reset on the microcontroller. The
implementation for this can be edited in mComm_custom.c.

Examples

Reading the Literal Configuration Block
UART: BREAK 0x05 0x01 0x00 0x00 0x00 0x01
I2C: START 0xA0 0x01 0x00 0x00 0x00 0x01 START 0xA1 <PIC> STOP
SPI: 0xA0 0x05 0x01 0x00 0x00 0x00 0x01

