
MDDFS Interface Library
Help

Copyright (c) 2012 Microchip Technology Inc. All rights reserved.

Table of Contents

Microchip MDD File System Interface Library 1

SW License Agreement 2

Release Notes 5

Getting Started 11
Terminology 11

Boot sector 11

Cluster 11

Current Working Directory 11

Directory 11

FAT 11

Master Boot Record 12

Root directory 12

Sector 12

LFN 12

Required Hardware 12

Configuration 1: PIC18 Explorer Board 12

Configuration 2: Explorer 16 Board 12

Configuration 3: PIC24FJ256DA210 Development Board 13

Configuring Hardware 13

Configuration using PIC18 Explorer Board 13

Configuration using Explorer 16 Board 14

Configuration using PIC24FJ256DA210 Development Board 15

Firmware Directory Structure 16

Firmware 17

Running the SD Card Demo 17

Example Code 19

Configuring the library 22

APIs 24
File Manipulation Layer (FSIO) 24

MDDFS Interface Library Help

ii

Functions 24

FSInit 25

FSfopen 26

FSfopenpgm 27

wFSfopen 27

FSrename 28

FSrenamepgm 29

wFSrename 30

FSremove 30

FSremovepgm 31

wFSremove 32

FindFirst 33

FindFirstpgm 34

wFindFirst 34

FindNext 36

FSfwrite 36

FSfread 37

FSfseek 38

FSftell 39

FSfclose 40

FSfeof 40

FSerror 41

FSattrib 45

FSfprintf 46

FSrewind 47

FSformat 47

FSCreateMBR 48

FSGetDiskProperties 49

FSgetcwd 51

wFSgetcwd 52

FSmkdir 52

FSmkdirpgm 53

wFSmkdir 54

FSchdir 54

FSchdirpgm 55

wFSchdir 56

FSrmdir 56

FSrmdirpgm 57

wFSrmdir 58

intmax_t 59

Types 59

CETYPE 59

MDDFS Interface Library Help

iii

FSFILE 61

SearchRec 62

Macros 63

MDD_InitIO 63

MDD_MediaInitialize 64

MDD_ReadCapacity 64

MDD_ReadSectorSize 64

MDD_SectorRead 64

MDD_SectorWrite 64

MDD_ShutdownMedia 65

MDD_WriteProtectState 65

ALLOW_DIRS 65

ALLOW_FILESEARCH 65

ALLOW_FORMATS 66

ALLOW_WRITES 66

FAT12 66

FAT16 66

FAT32 67

FILE_NAME_SIZE_8P3 67

FS_DYNAMIC_MEM 67

FS_MAX_FILES_OPEN 67

MAX_FILE_NAME_LENGTH_LFN 68

MAX_HEAP_SIZE 68

MEDIA_SECTOR_SIZE 68

SEEK_SET 69

SEEK_CUR 69

SEEK_END 69

SUPPORT_FAT32 69

SUPPORT_LFN 70

USE_SD_INTERFACE_WITH_SPI 70

USEREALTIMECLOCK 70

SD-SPI Physical Layer 70

Functions 71

MDD_SDSPI_MediaDetect 71

MDD_SDSPI_InitIO 72

MDD_SDSPI_MediaInitialize 72

MDD_SDSPI_SectorRead 73

MDD_SDSPI_SectorWrite 74

MDD_SDSPI_ReadSectorSize 75

MDD_SDSPI_ReadCapacity 75

MDD_SDSPI_ShutdownMedia 76

MDDFS Interface Library Help

iv

CF Physical Layer 76

Functions 77

MDD_CFBT_MediaDetect 77

MDD_CFBT_InitIO 78

MDD_CFBT_MediaInitialize 78

MDD_CFBT_SectorRead 79

MDD_CFBT_SectorWrite 79

MDD_CFBT_WriteProtectState 80

MDD_CFBT_CFwait 80

MDD_CFPMP_MediaDetect 81

MDD_CFPMP_MediaInitialize 82

MDD_CFPMP_SectorRead 82

MDD_CFPMP_SectorWrite 83

MDD_CFPMP_WriteProtectState 84

MDD_CFPMP_CFwait 84

Index a

MDDFS Interface Library Help

v

1 Microchip MDD File System Interface
Library

Welcome to the Microchip Memory Disk Drive File System Interface Library!

Microchip's Memory Disk Drive File System(MDDFS) supports FAT12, FAT16 and FAT32 format for all 8, 16 and 32 bit
PIC® MCU's. MDDFS software is independent of the physical layer used and can be easily integrated to any of the physical
layers like USB, SD card, compact flash...etc...

MDDFS supports all file and directory operations(like read,write,remove,rename...etc...). The maximum length of any file or
directory name is restricted to 255 characters. The Long File Name(LFN) support is available for 16 and 32 bit PIC®

microcontrollers. 8 bit PIC® MCU's doesn't support LFN feature due to comparatively lesser RAM size. Whereas the basic
8.3 format filename is supported by all 8, 16 & 32 bit PIC® MCU's.The MDD File System Interface Library will provide an
easy way to create and manipulate files on removable flash-based media devices.

USB Functionality

Note that the source code package and help file for this library do not include USB physical layer information. For more
information about using the USB Host stack as a physical layer, please visit Microchip's USB Development Page or the
AN1145: Using a USB Flash Drive with an Embedded Host page.

Updates

The latest version of the Microchip MDD File System Interface library is always available at Microchip MDD File System
page.

Getting Help

The MDDFS Interface Library is supported through Microchip's standard support channels. If you encounter difficulties, you
may submit ticket requests at http://support.microchip.com.

Thank You!

We appreciate your interest in the Microchip MDD File System Interface Library, and thank you for choosing Microchip
products!

MDDFS Interface Library Help

1

1

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en534219
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en532040
http://support.microchip.com

2 SW License Agreement

MICROCHIP IS WILLING TO LICENSE THE ACCOMPANYING SOFTWARE AND DOCUMENTATION TO YOU ONLY ON
THE CONDITION THAT YOU ACCEPT ALL OF THE FOLLOWING TERMS. TO ACCEPT THE TERMS OF THIS LICENSE,
CLICK "I ACCEPT" AND PROCEED WITH THE DOWNLOAD OR INSTALL. IF YOU DO NOT ACCEPT THESE LICENSE
TERMS, CLICK "I DO NOT ACCEPT," AND DO NOT DOWNLOAD OR INSTALL THIS SOFTWARE.

NON-EXCLUSIVE SOFTWARE LICENSE AGREEMENT

This Nonexclusive Software License Agreement ("Agreement") is a contract between you, your heirs, successors and
assigns ("Licensee") and Microchip Technology Incorporated, a Delaware corporation, with a principal place of business at
2355 W. Chandler Blvd., Chandler, AZ 85224-6199, and its subsidiary, Microchip Technology (Barbados) II Incorporated
(collectively, "Microchip") for the accompanying Microchip software including, but not limited to, Graphics Library Software,
IrDA Stack Software, MCHPFSUSB Stack Software, Memory Disk Drive File System Software, mTouch(TM) Capacitive
Library Software, Smart Card Library Software, TCP/IP Stack Software, MiWi(TM) DE Software, Security Package Software,
and/or any PC programs and any updates thereto (collectively, the "Software"), and accompanying documentation, including
images and any other graphic resources provided by Microchip ("Documentation").

1. Definitions. As used in this Agreement, the following capitalized terms will have the meanings defined below:

a. "Microchip Products" means Microchip microcontrollers and Microchip digital signal controllers.

b. "Licensee Products" means Licensee products that use or incorporate Microchip Products.

c. "Object Code" means the Software computer programming code that is in binary form (including related documentation, if
any), and error corrections, improvements, modifications, and updates.

d. "Source Code" means the Software computer programming code that may be printed out or displayed in human readable
form (including related programmer comments and documentation, if any), and error corrections, improvements,
modifications, and updates.

e. "Third Party" means Licensee’s agents, representatives, consultants, clients, customers, or contract manufacturers.

f. "Third Party Products" means Third Party products that use or incorporate Microchip Products.

2. Software License Grant. Microchip grants strictly to Licensee a non-exclusive, non-transferable, worldwide license to:

a. use the Software in connection with Licensee Products and/or Third Party Products;

b. if Source Code is provided, modify the Software; provided that Licensee clearly notifies Third Parties regarding the source
of such modifications;

c. distribute the Software to Third Parties for use in Third Party Products, so long as such Third Party agrees to be bound by
this Agreement (in writing or by "click to accept") and this Agreement accompanies such distribution;

d. sublicense to a Third Party to use the Software, so long as such Third Party agrees to be bound by this Agreement (in
writing or by "click to accept");

e. with respect to the TCP/IP Stack Software, Licensee may port the ENC28J60.c, ENC28J60.h, ENCX24J600.c, and
ENCX24J600.h driver source files to a non-Microchip Product used in conjunction with a Microchip ethernet controller;

f. with respect to the MiWi (TM) DE Software, Licensee may only exercise its rights when the Software is embedded on a
Microchip Product and used with a Microchip radio frequency transceiver or UBEC UZ2400 radio frequency transceiver
which are integrated into Licensee Products or Third Party Products.

For purposes of clarity, Licensee may NOT embed the Software on a non-Microchip Product, except as described in this

MDDFS Interface Library Help

2

2

Section.

3. Documentation License Grant. Microchip grants strictly to Licensee a non-exclusive, non-transferable, worldwide license
to use the Documentation in support of Licensee's authorized use of the Software

4. Third Party Requirements. Licensee acknowledges that it is Licensee’s responsibility to comply with any third party license
terms or requirements applicable to the use of such third party software, specifications, systems, or tools. This includes, by
way of example but not as a limitation, any standards setting organizations requirements and, particularly with respect to the
Security Package Software, local encryption laws and requirements. Microchip is not responsible and will not be held
responsible in any manner for Licensee’s failure to comply with such applicable terms or requirements.

5. Open Source Components. Notwithstanding the license grant in Section 1 above, Licensee further acknowledges that
certain components of the Software may be covered by so-called "open source" software licenses ("Open Source
Components"). Open Source Components means any software licenses approved as open source licenses by the Open
Source Initiative or any substantially similar licenses, including without limitation any license that, as a condition of
distribution of the software licensed under such license, requires that the distributor make the software available in source
code format. To the extent required by the licenses covering Open Source Components, the terms of such license will apply
in lieu of the terms of this Agreement. To the extent the terms of the licenses applicable to Open Source Components
prohibit any of the restrictions in this Agreement with respect to such Open Source Components, such restrictions will not
apply to such Open Source Component.

6. Licensee Obligations. Licensee will not: (a) engage in unauthorized use, modification, disclosure or distribution of
Software or Documentation, or its derivatives; (b) use all or any portion of the Software, Documentation, or its derivatives
except in conjunction with Microchip Products, Licensee Products or Third Party Products; or (c) reverse engineer (by
disassembly, decompilation or otherwise) Software or any portion thereof. Licensee may not remove or alter any Microchip
copyright or other proprietary rights notice posted in any portion of the Software or Documentation. Licensee will defend,
indemnify and hold Microchip and its subsidiaries harmless from and against any and all claims, costs, damages, expenses
(including reasonable attorney's fees), liabilities, and losses, including without limitation: (x) any claims directly or indirectly
arising from or related to the use, modification, disclosure or distribution of the Software, Documentation, or any intellectual
property rights related thereto; (y) the use, sale and distribution of Licensee Products or Third Party Products; and (z) breach
of this Agreement.

7. Confidentiality. Licensee agrees that the Software (including but not limited to the Source Code, Object Code and library
files) and its derivatives, Documentation and underlying inventions, algorithms, know-how and ideas relating to the Software
and the Documentation are proprietary information belonging to Microchip and its licensors ("Proprietary Information").
Except as expressly and unambiguously allowed herein, Licensee will hold in confidence and not use or disclose any
Proprietary Information and will similarly bind its employees and Third Party(ies) in writing. Proprietary Information will not
include information that: (i) is in or enters the public domain without breach of this Agreement and through no fault of the
receiving party; (ii) the receiving party was legally in possession of prior to receiving it; (iii) the receiving party can
demonstrate was developed by the receiving party independently and without use of or reference to the disclosing party's
Proprietary Information; or (iv) the receiving party receives from a third party without restriction on disclosure. If Licensee is
required to disclose Proprietary Information by law, court order, or government agency, License will give Microchip prompt
notice of such requirement in order to allow Microchip to object or limit such disclosure. Licensee agrees that the provisions
of this Agreement regarding unauthorized use and nondisclosure of the Software, Documentation and related Proprietary
Rights are necessary to protect the legitimate business interests of Microchip and its licensors and that monetary damage
alone cannot adequately compensate Microchip or its licensors if such provisions are violated. Licensee, therefore, agrees
that if Microchip alleges that Licensee or Third Party has breached or violated such provision then Microchip will have the
right to injunctive relief, without the requirement for the posting of a bond, in addition to all other remedies at law or in equity.

8. Ownership of Proprietary Rights. Microchip and its licensors retain all right, title and interest in and to the Software and
Documentation including, but not limited to all patent, copyright, trade secret and other intellectual property rights in the
Software, Documentation, and underlying technology and all copies and derivative works thereof (by whomever produced).
Licensee and Third Party use of such modifications and derivatives is limited to the license rights described in this
Agreement.

9. Termination of Agreement. Without prejudice to any other rights, this Agreement terminates immediately, without notice by
Microchip, upon a failure by Licensee or Third Party to comply with any provision of this Agreement. Upon termination,
Licensee and Third Party will immediately stop using the Software, Documentation, and derivatives thereof, and immediately

MDDFS Interface Library Help

3

2

destroy all such copies.

10. Warranty Disclaimers. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. MICROCHIP AND
ITS LICENSORS ASSUME NO RESPONSIBILITY FOR THE ACCURACY, RELIABILITY OR APPLICATION OF THE
SOFTWARE OR DOCUMENTATION. MICROCHIP AND ITS LICENSORS DO NOT WARRANT THAT THE SOFTWARE
WILL MEET REQUIREMENTS OF LICENSEE OR THIRD PARTY, BE UNINTERRUPTED OR ERROR-FREE. MICROCHIP
AND ITS LICENSORS HAVE NO OBLIGATION TO CORRECT ANY DEFECTS IN THE SOFTWARE.

11. Limited Liability. IN NO EVENT WILL MICROCHIP OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER ANY
LEGAL OR EQUITABLE THEORY FOR ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES INCLUDING BUT NOT
LIMITED TO INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR
LOST DATA, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY
THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS. The
aggregate and cumulative liability of Microchip and its licensors for damages hereunder will in no event exceed $1000 or the
amount Licensee paid Microchip for the Software and Documentation, whichever is greater. Licensee acknowledges that the
foregoing limitations are reasonable and an essential part of this Agreement.

12. General. THIS AGREEMENT WILL BE GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF
ARIZONA AND THE UNITED STATES WITHOUT REGARD TO CONFLICTS OF LAWS PROVISIONS. Licensee agrees
that any disputes arising out of or related to this Agreement, Software or Documentation will be brought exclusively in either
the U.S. District Court for the District of Arizona, Phoenix Division, or the Superior Court of Arizona located in Maricopa
County, Arizona. This Agreement will constitute the entire agreement between the parties with respect to the subject matter
hereof. It will not be modified except by a written agreement signed by an authorized representative of Microchip. If any
provision of this Agreement will be held by a court of competent jurisdiction to be illegal, invalid or unenforceable, that
provision will be limited or eliminated to the minimum extent necessary so that this Agreement will otherwise remain in full
force and effect and enforceable. No waiver of any breach of any provision of this Agreement will constitute a waiver of any
prior, concurrent or subsequent breach of the same or any other provisions hereof, and no waiver will be effective unless
made in writing and signed by an authorized representative of the waiving party. Licensee agrees to comply with all import
and export laws and restrictions and regulations of the Department of Commerce or other United States or foreign agency or
authority. The indemnities, obligations of confidentiality, and limitations on liability described herein, and any right of action
for breach of this Agreement prior to termination, will survive any termination of this Agreement. Any prohibited assignment
will be null and void. Use, duplication or disclosure by the United States Government is subject to restrictions set forth in
subparagraphs (a) through (d) of the Commercial Computer-Restricted Rights clause of FAR 52.227-19 when applicable, or
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, and in
similar clauses in the NASA FAR Supplement. Contractor/manufacturer is Microchip Technology Inc., 2355 W. Chandler
Blvd., Chandler, AZ 85224-6199.

If Licensee has any questions about this Agreement, please write to Microchip Technology Inc., 2355 W. Chandler Blvd.,
Chandler, AZ 85224-6199 USA. ATTN: Marketing.

Copyright (c) 2012 Microchip Technology Inc. All rights reserved.

License Rev. No. 05-012412

MDDFS Interface Library Help

4

2

3 Release Notes

Microchip Memory Disk Drive File System Release Notes

Description

This library is intended to provide an interface to file systems compatible with ISO/IEC specification 9293 (commonly referred
to as FAT12 and FAT16). The FAT32 file system is also supported, along with Long File Name(LFN) support for files and
directories. This library includes four different physical interface files:

• SecureDigital card interface using the SPI module

• CompactFlash card interface using manual bit toggling

• CompactFlash card interface using the Parallel Master Port module included on several PIC24/PIC32 microcontrollers.

• and one template interface file that can be modified by the user to create a custom interface layer to an unsupported
device.

In addition, Microchip’s USB Host stack (available from www.microchip.com/usb can be used as a physical layer.

Latest version - 1.3.8 Log

1. Internal Flash.c Modifications:-

• Modified "MDD_IntFlash_SectorRead" to write the correct word data in 'buffer' pointer.

Compiler Version Used

This library was compiled using MPLAB C18 v.3.40, MPLAB C30 v.3.31, and MPLAB C32 v2.02a complier.

Memory Size

Unoptimized memory usage for the file interface library using the SD-SPI physical layer is given in Table 1. 512 bytes of data
memory are used for the data buffer, and an additional 512 are used for the file allocation table buffer. Additional data
memory will be needed based on the number of files opened by the user at once. The default data

memory values provided include space for two files opened in static allocation mode. The

C18 data memory value includes a 512 byte stack. The first row of the table indicates the smallest amount of memory that
the library will use (for read-only mode), and each subsequent row indicates the increase in memory caused by enabling
other functionality. Optimized and unoptimized totals for program and data memory with all functions enabled are listed after
the table. This data was compiled while allowing two file objects to be opened simultaneously.

Table 1: Memory Usage (Unoptimized)

MDDFS Interface Library Help

5

3

Total memory usage*

• C18 (without LFN support):

Unoptimized Program memory- 73702 bytes Unoptimized Data memory- 1976 bytes Optimized Program memory- 38834
bytes Optimized Data Memory- 1976 bytes

• C30 (with LFN support):

Unoptimized Program memory- 60606 bytes Unoptimized Data memory- 5104 bytes Optimized Program memory- 32903
bytes Optimized Data memory- 5104 bytes

• C32 (with LFN support):

Unoptimized Program memory- 80192 bytes Unoptimized Data memory- 6096 bytes Optimized Program memory- 41236
bytes Optimized Data memory- 6096 bytes

*Note: C18 total memory usage does not include FSfprintf functionality. Since FSfprintf requires integer promotion to be
enabled, using it greatly increases the code size of all functions.

More Information

More detailed information about the operation of this library is available in Application Note 1045, available from
www.microchip.com.

Previous Versions Log

version 1.3.6

1. SD-SPI.c Modifications:-

• Modified "FSConfig.h" to "FSconfig.h" in '#include' directive.

• Moved 'spiconvalue' variable definition to only C30 usage, as C32 is not using it.

MDDFS Interface Library Help

6

3

• Modified 'MDD_SDSPI_MediaDetect' function to ensure that CMD0 is sent freshly after CS is asserted low. This
minimizes the risk of SPI clock pulse master/slave syncronization problems.

2. FSIO.c Modifications:-

• The function "FILEget_next_cluster" is made public.

• Modified "FILEfind" function such that when using 8.3 format the file searches are not considered as case sensitive

• In function 'CacheTime', the variables 'ptr1' & 'ptr0' are not used when compiled for PIC32. So there definitions were
removed for PIC32.

• Modified "rmdirhelper", "FormatDirName" & "writeDotEntries" functions to remove non-critical warnings during
compilation.

• Updated comments in most of the function header blocks.

3. FSIO.h Modifications:-

• The function "FILEget_next_cluster" is made public.

version 1.3.4

1. SD-SPI.c Modifications:-

• Added support for dsPIC33E & PIC24E controllers.

• #include "HardwareProfile.h" is moved up in the order.

• "#define SPI_INTERRUPT_FLAG_ASM PIR1, 3" is removed from SD-SPI.c. "SPI_INTERRUPT_FLAG_ASM" macro
has to be defined in "HardwareProfile.h" file for PIC18 microcontrollers.

• Replaced "__C30" usage with "__C30__"

2. FSIO.c Modifications:-

• Initialized some of the local variables to default values to remove non-critical compiler warnings for code sanitation.

• In function "FILEfind", local variables "fileFoundLfnIndex", "fileFoundMaxLfnIndex", "fileFoundDotPosition",
"lfnMaxSequenceNum" & "reminder" initialized to '0'.

• In function "FindEmptyEntries", local variable "a" initialized to '0'.

• In function "FILEerase", local variable "clus" initialized to '0'.

• In function "FormatFileName", local pointer variable "localFileName" initialized to 'NULL'.

• The sector size of the media device is obtained from the MBR of media. So, instead of using the hard coded macro
"DIRENTRIES_PER_SECTOR", the variables "dirEntriesPerSector" & "disk->sectorSize" are used in the code. The
above mentioned variables use the sector size from the media rather than depending upon predefined macro
"MEDIA_SECTOR_SIZE". Refer "Cache_File_Entry", "EraseCluster" & "writeDotEntries" fucntions to see the change.

version 1.3.2

1. Modified SD-SPI.c, MDD_SDSPI_AsyncWriteTasks() so pre-erase command only gets used for multi-block write
scenarios. .

version 1.3.0

1. Supported LFN entries for files and directories.

2. Implemented new functions to improve the previous performance/flexibility issues in SD- SPI.c and .h files.

3. Fixed SD Card Initialization Issues, especially with SDHC.

version 1.2.4

1. Add a software mechanism for the card detection to be used when the connectors does not provide a card detect signal
(e.g. MicroSD connectors).

2. Optimize some code by collapsing duplicated code into a single for loop.

3. Update to use the CSD register data to calculate the SD card capacity.

4. Fixed compatibility problems in SD-SPI.c that was preventing it from working with some of the cards.

5. Make modifications to allow dynamic sector size giving the possibility to use thumb drives with different sector sizes.

6. Corrected a bug that prevented the last two clusters of a drive to be able to be written to.

MDDFS Interface Library Help

7

3

7. Add the GetDiskProperties function to allow the users to get the disk properties (size of disk, free space, etc)

version 1.2.3

1. Added FSGetDiskProperties() function. This function gets the remaining disk space as well as other properties such as
sector size, clusters per sector, partition format, etc.

2. Fixed bug that prevented the last two clusters in a partition from being allocated.

3. Added SDHC support for the MDD file system.

4. Fixed the problem where on an append to a file that is smaller than a sector.

5. Fixed TODO that limited internal flash to PSV page boundaries in on PIC24 and only PSVPAG = 1.

6. Fixed an issue with the FSattrib function that was changing the wrong cached file object.

version 1.2.2

1. Improved the SPI code operation and prescaler calculation.

2. Cast the root directory size value determination to a double word for devices in which the root directory begins after
0xFFFF clusters.

3. Changed the size of the index variable in the FSformat function to allow calculation in devices with larger FATs.

4. Replaced several hard-coded values with references to MEDIA_SECTOR_SIZE.

5. Changed the return mechanism of the MediaInitialize function to provide compatibility with the USB stack. This function
will now return a pointer to a MEDIA_INFORMATION structure, which contains an error code and (for the USB stack) the
size of a sector (in bytes) and the number of LUNs on the device. This structure’s definition is located in FSDefs.h.

6. Added a new error code: CE_UNSUPPORTED_SECTOR_SIZE indicates that the sector size of the device is not
supported by the file system.

version 1.2.1

1. Fixed an issue with the calculation of the SPI prescaler value for 16-bit microcontrollers.

2. Changed the ‘cwdclus’ type in the SearchRec structure to ‘unsigned long’

3. Fixed a potential null-pointer reference in the Cache_File_Entry() function

4. Improved PIC32 reliability.

5. Changed PIC32 code to allow the user to select which SPI module to use. Selection is performed using #define macros in
HardwareProfile.h.

6. Changed PIC32 code to allow the user to define the desired SPI clock frequency. Selection is performed by setting
#define SPI_FREQUENCY to the desired value in HardwareProfiles.h.

7. Changed the return type of MDD_SDSPI_ShutdownMedia to match the USB Host ShutdownMedia function.

8. Replaced instances of C18XX with 18CXX

9. Added the packed attribute to several structures in FSDefs.h.

version 1.2.0

1. Fixed a bug that prevented the library from correctly loading the boot sector on devices with no Master Boot Record.

2. Added support for 8.3 format directory names (up to 8 name characters and 3 extension characters.) To create or access
directories with extensions, use path strings with radix characters (e.g. FSmkdir (“EXAMPLE.DIR”)).

3. Added checks to the FSmkdir function to prevent the user from creating files with too many radix characters (‘.’). Radixes
at the beginning of the directory name will cause the FSmkdir function to fail.

4. Added a check to the FSrmdir function to prevent the user from using it to delete non- directory files or the current working
directory.

5. Added the question mark (‘?’) partial string search operator to the FindFirst and FindNext functions. Now when calling
FindFirst or FindNext, you can skip checks of individual characters by replacing them with question marks in the search
string. For example, calling FindFirst (“F?L?.TX?, ATTR_ARCHIVE, &rec); would let you find the files “FILE.TXT,”
“FOLD.TXT,” “FILM.TXM,” etc.

6. Modified the FindFirst and FindNext functions to correctly output directory names with extensions.

7. Modified the FSgetcwd function to correctly insert directory names with extensions in a path string.

MDDFS Interface Library Help

8

3

8. Merged the functions to validate file/directory name characters together.

9. Added three new methods of opening files. To use these methods, just specify the new strings as the mode argument in
the FSfopen function. The new modes are:

• “r+”: File will be opened for reading or writing

• “w+”: File will be opened for reading or writing. If the file exists, its length will be truncated to 0.

• “a+”: File will be opened for reading or writing. If the file exists, the current location within the file will be set to the end
of the file.

10. Modified the FSfopen function to allow the user to open directories in the read mode.

11. Modified the FSrename function. Now, to rename a directory, open the directory in read mode with FSfopen and pass
the pointer to that open directory into FSrename.

12. Added a new function. The FSattrib function will allow the user to change the attributes of files and directories.

13. Modified the SD Data Logger project to include a new shell command; the ‘ATTRIB’ command will let the user change or
display the attributes of a file.

• Example 1: ATTRIB +R +S –H –A FILE.TXT This command will give the file FILE.TXT the read-only and system
attributes, and remove the hidden and archive attributes, if they’re set.

• Example 2: ATTRIB FILE.TXT This example will display the attributes of FILE.TXT.

14. Added a new function. The FSferror function will provide information about why a previously called function failed.

15. Revised most of the comment headers in the library.

16. Generated a CHM help file for the library. This file can be found in the (default) directory “…\Microchip
Solutions\Microchip\Help”

17. Removed extraneous macros and definitions.

18. Added a new Microchip standard header file (Compiler.h) to the library.

19. Removed the architecture-type configuration from the sample HardwareProfile.h files. This will now be taken care of
automatically within the source files.

version 1.1.2

1. Fixed a bug that prevented the allocation of new clusters to the root directory in FAT32 implementations.

2. Fixed a bug that prevented writing more than one cluster’s worth of file entries to the root directory in FAT16/FAT12
implementations.

3. Fixed a bug that returned an incorrect date for directory entries located in the first directory entry after a cluster boundary
of a FAT32 root directory.

4. Fixed a bug with FSrename that would cause the function to improperly fail if the directory entries in the current working
directory (or previous directory, when renaming the CWD) completely filled a cluster (and no data clusters were allocated
to the directory after that).

version 1.1.1

1. Fixed a bug with the PIC24 clock divider that was causing the interface to run more slowly than intended.

2. Added support for PIC32 microcontrollers.

version 1.1.0

1. Added support for FAT32. To enable this functionality, make sure the SUPPORT_FAT32 macro is uncommented in
FSconfig.h.

2. Added functions to provide support for the USB Mass Storage Host code.

3. Moved pin and hardware definitions from physical interface files to HardwareProfiles.h.

4. Created function pointers for functions that vary between interface files. These are located in FSconfig.h.

5. Moved macros to select the correct physical layer to HardwareProfiles.h.

6. Modified the SD-SPI physical layer to ensure that communication speed during startup falls between 100 kHz and 400 kHz

7. Created a new example project: MDD File System-PIC24-SD Data Logger. This project contains code for a shell-style
program based on the USB Thumb-drive shell demonstrated in Application Note 1145.

8. Decreased the delay in the SD-SPI media initialization from 100 ms to 1 ms. i. Added the ability to change directories

MDDFS Interface Library Help

9

3

when writes are disabled.

version 1.01

1. FindFirst and FindNext will now return the create time/data in the timestamp field of a SearchRec object when they return
values for a directory.

2. Corrects a bug in the FindEmptyCluster function when searching for files beyond the end of a storage device.

3. Automatically aligns buffers for 16-bit architectures.

4. For the SPI interface, prescaler divides will now be determined dynamically based on the system clock speed defined in
FSconfig.h.

5. The DiskMount, LoadMBR, LoadBootSector, and FSFormat functions, as well as the gDiskData, gFATBuffer, and
gDataBuffer structures are now located in FSIO.c instead of in the interface files.

6. The SectorRead function will now do a dummy read of the sector and discard the data if it is called with NULL as the data
pointer.

7. Replaced the device initialization code in the FSFormat function with calls to InitIO and MediaInitialize.

8. The MediaDetect function is not de-bounced. In order to determine that a device is available, you must call MediaDetect,
wait for an appropriate amount of time, and then call it again.

9. The sample linker script in the MDD File System-PIC18-CF-DynMem-UserDefClock project has been modified.
Previously, several databanks were merged together; this caused an issue accessing variables that spanned multiple
data banks. C18 only allows users to access variables like these using pointers.

10. Added a new user function. The FSrename function will allow the user to rename files and directories. A version that
accepts a ROM filename is available for PIC18 (FSrenamepgm).

MDDFS Interface Library Help

10

3

4 Getting Started

Information about how to easily get started with the MDDFS library.

Description

This section will walk through the terminologies used in FAT file systems, initial configuration of the stack and compatible
Microchip development hardware.

4.1 Terminology
Below are the terms which are frequently referred in the File Systems.

4.1.1 Boot sector

The boot sector is the first sector of a partition. It contains information about how the partition is organized.

4.1.2 Cluster

A cluster is a group of sectors in the data region of a FAT partition. The number of sectors per cluster can be any positive,
power-of-two signed 8-bit value (1, 2, 4, 8, 16, 32, or 64) and is set when the partition is formatted.

4.1.3 Current Working Directory

All file I/O operations (except those that accept a path variable) take place within the current working directory. When FSInit
completes successfully the CWD will be set the the root directory. It can be changed using the FSchdir or FSchdirpgm
function.

4.1.4 Directory

A directory is a type of file that contains pointers to other files or directories.

4.1.5 FAT

The File Allocation Table. The FAT is an array-based linked list with one entry for each data cluster on the device. Each
entry either points to the next cluster of a file or contains a special value. FAT12 has 12-bit entries, FAT16 has 16-bit entries,
and FAT32 has 32-bit entries.

MDDFS Interface Library Help

11

4

FAT can also refer to the FAT file system itself.

4.1.6 Master Boot Record

The first cluster of a device. The master boot record contains pointers to different partitions on the device and information
about how they're organized.

4.1.7 Root directory

The root directory is a directory that is the base of the directory tree. For FAT12 and FAT16 the root directory is located after
the FAT; for FAT32 the root directory is make up of clusters (like a regular directory) and is located in the data region of the
device.

4.1.8 Sector

A sector is a group of bytes in the FAT file system. Sectors are most commonly 512 bytes.

4.1.9 LFN

LFN refers to the Long File Name entries of the files and directories present in the memory. As per the LFN specifications,
the file or directory name can be maximum of 255 characters.

4.2 Required Hardware
To run this project, you will need one of the following sets of hardware:

4.2.1 Configuration 1: PIC18 Explorer Board

1. PIC18 Explorer Board (Microchip part number DM183032)

2. SD Card PICTail™ Plus Daughter Card (Microchip part number AC164122)

3. PIC18F87J50 Plug-In-Module (PIM)(Microchip part number MA180021)

4.2.2 Configuration 2: Explorer 16 Board

1. Explorer 16 (Microchip part number DM240001)

2. SD Card PICTail™ Plus Daughter Card (Microchip part number AC164122)

MDDFS Interface Library Help

12

4

3. And one of the following PIMs

1. PIC24FJ128GA010 Plug-In-Module (PIM)(Microchip part number MA240011)

2. PIC24FJ256GB110 Plug-In-Module (PIM)(Microchip part number MA240014)

3. PIC24EP512GU810 Plug-In-Module (PIM)(Microchip part number MA240025-1)

4. dsPIC33EP512MU810 Plug-In-Module (PIM)

5. PIC32MX360F512L Plug-In-Module (PIM)(Microchip part number MA320001)

6. PIC32MX460F512L Plug-In-Module (PIM)(Microchip part number MA320002)

4.2.3 Configuration 3: PIC24FJ256DA210 Development
Board

1. PIC24FJ256DA210 Development Board (Microchip part number DM240312)

2. SD Card PICTail™ Plus Daughter Card (Microchip part number AC164122)

4.3 Configuring Hardware
This section describes how to set up the various configurations of hardware to run this demo.

4.3.1 Configuration using PIC18 Explorer Board

1. Before inserting PIC18F87J50 PIM PIM in the PIC18 Explorer board, insure that the processor selector switch (S4) is in
the “ICE” position as seen in the image below. Failure to so will result in difficulties in getting the PIC18F87J50 PIM to sit
properly on the PIC18 Explorer.

• Note: The processor selector switch (S4) should be in “PIC® MCU” position when on board PIC18F8722 chip is used for
the demo application.

2. Be careful while inserting the PIC18F87J50 PIM into PIC18 board. Insure that no pins are bent or damaged during the
process. Also insure that the PIM is not shifted in any direction and that all of the headers are properly aligned.

3. On the SD Card PICTail™ Plus board, short JP1, JP2, and JP3 on the side farthest from the SD Card holder. Depending
on the revision of the board you have the silk-screen on the board may incorrectly label the top as the “HPC-EXP” setting.
Please ignore this silk screen and place the jumpers as described above and seen below.

MDDFS Interface Library Help

13

4

4. Insert the J4 port pins of SD Card PICTail™ Plus Daughter Card in the J3 port of PIC18 Explorer board with correct pin to
pin mapping. Insert the SD Card in SD Card PICTail™ Plus Daughter board.

4.3.2 Configuration using Explorer 16 Board

1. Before attaching the PIM to the Explorer 16 board, insure that the processor selector switch (S2) is in the “PIM” position
as seen in the image below.

2. Short the J7 jumper to the “PIC24” setting:

MDDFS Interface Library Help

14

4

3. Be careful while inserting the appropriate PIM into Exp 16 board. Insure that no pins are bent or damaged during the
process. Also insure that the PIM is not shifted in any direction and that all of the headers are properly aligned.

4. On the SD Card PICTail™ Plus board, short JP1, JP2, and JP3 on the side farthest from the SD Card holder. Depending
on the revision of the board you have the silk-screen on the board may incorrectly label the top as the “HPC-EXP” setting.
Please ignore this silk screen and place the jumpers as described above and seen below.

5. Insert the J2 slot of SD Card PICTail™ Plus Daughter Card into J5 port of Explorer 16 board. Make sure that the SD Card
Connector is facing towards the Explorer 16 board. Insert the SD Card in SD Card PICTail™ Plus Daughter board.

4.3.3 Configuration using PIC24FJ256DA210 Development
Board

1. Before attaching the SD Card PICTail™ Plus Daughter Card to the PIC24FJ256DA210 Development Board, make sure
that the jumpers on the development board are set to the default positions as seen in the image below.

1. JP8 – Install jumper

2. JP9, JP10, JP11 – Install jumper to pins 1-2

3. JP12 – Install jumper to pins 2-4

4. JP13 – Install jumper to pins RG8-S1

5. JP14 – Install jumper to pins RE9-S2

6. JP15 – Install jumper to pins RB5-POT

7. JP16 – Install jumper to TX-USART_TX

8. JP17 – Install jumper to RX-USART_RX

9. JP23 – Install jumper to PMCS2-SPI

MDDFS Interface Library Help

15

4

2. On the SD Card PICTail™ Plus board, short JP1, JP2, and JP3 on the side farthest from the SD Card holder. Depending
on the revision of the board you have the silk- screen on the board may incorrectly label the top as the “HPC-EXP”
setting. Please ignore this silk screen and place the jumpers as described above and seen below.

3. Insert the J2 slot of SD Card PICTail™ Plus Daughter Card into PICTail™ Plus (J8) port of PIC24FJ256DA210
development board with correct pin to pin mapping. Make sure that the SD Card Connector is facing away from the
PIC24FJ256DA210 chip of the development board. Insert the SD Card in SD Card PICTail™ Plus Daughter board.

4.4 Firmware Directory Structure
The MDDFS Library comes with many files, documents, and project examples. Before getting started, take a moment to
familiarize yourself with the firmware directory structure so that you may find what you need quickly.

Directory Structure

By default, the MDDFS Library installs into C:\Microchip Solutions along with any other Microchip software stacks you may
be using. Inside that folder, several subdirectories are created, as documented in the table below.

C:\Microchip Solutions Root folder for all library files

\MDD File System-SD Card Main demo application for file system interfacing with SD card.

MDDFS Interface Library Help

16

4

\MDD File System-SD Card\PIC18F Configuration, linker & demo file for the PIC18F project.

\MDD File System-SD Card\PIC24F Configuration & demo files for the PIC24F project.

\MDD File System-SD
Card\dsPIC33E_PIC24E

Configuration & demo files for the dsPIC33E and PIC24E project.

\MDD File System-SD Card\PIC32 Configuration & demo files for the PIC32 project.

\Microchip Internal stack files. These files rarely need modification.

\Microchip\MDD File System Source (*.c) files of the MDD File System Library

\Microchip\PIC18 salloc Source (*.c) files for dynamic memory allocation for PIC18

\Microchip\MDD File
System\Documentation

Readme files, schematics, and AN1045 application note.

\Microchip\Help The location of this help file.

\Microchip\Include Internal stack header files. These files rarely need modification

\Microchip\Include\MDD File System Header (*.h) files for the MDDFS Library

\Microchip\Include\PIC18 salloc Header (*.h) files for dynamic memory allocation for PIC18

4.5 Firmware
To run this project, you will need to load the corresponding firmware into the devices.

The source code for this demo is available in the "\Microchip Solutions\MDD File System-SD Card" directory. In this directory
you will find all of the user level source and header files, linker file as well as project file for each of the hardware platforms.
Find the project (*.mcp) file that corresponds to the hardware platform you wish to test. Compile and program the demo code
into the hardware platform. For more help on how to compile and program projects, please refer to the MPLAB® IDE help
available through the help menu of MPLAB (Help->Topics…->MPLAB IDE).

4.6 Running the SD Card Demo
The “MDD File System - SD Card” demo application supports PIC18, PIC24F, PIC24E, dsPIC33E and PIC32 architectures.
The demo uses the selected hardware platform for data I/O operations with SD card through SPI channel. This demo shows
how to create a file, write into the file, close the file, read from the file, rename the file, delete a file, create a directory,
change the current working directory, delete the directory and it's contents, search a file in the directory...etc...etc.. in the SD
card memory. The maximum length of any file or directory name is restricted to 255 characters (LFN format). The Long File
Name (LFN) format is supported for only 16 and 32 bit PIC® microcontrollers. PIC18 microcontrollers doesn’t support LFN
feature due to comparatively lesser RAM size. Whereas the basic 8.3 format filename is supported by all 8, 16 & 32 bit PIC®
microcontrollers. All the project demos of “MDD File System - SD Card” have to be programmed & verified in debug mode of
MPLAB IDE.

After programming the appropriate firmware on the appropriate hardware platform, run the demo application till the last
while(1) loop in the main() function. Remove the SD card from the SD Card PICTail™ Plus Daughter board and verify the
final contents of the SD card in your Laptop or PC. The contents of the SD card should match the below file and directory
structure.

MDDFS Interface Library Help

17

4

Note:

1. Please open the corresponding "Demonstration .c" file to understand the flow of the source code thoroughly.

2. "Demonstration.c" & "Demonstration1.c" files show the usage of File System API’s when the file & directory names are in
8.3 Format.

3. "Demonstration2.c" file shows the usage of File System API’s when the file & directory names are in LFN Format.

4. "Demonstration3.c" file shows the usage of File System API’s when the file & directory names are in UTF-16 bit Format.

For more details about SD card communication using MDD – File System Library, please refer AN1045

Troubleshooting Tips:

Issue 1: How to increase the speed of SD card read/write operation?

Solution: The main bottleneck to increase the speed for SD card read/write operation is SPI clock frequency. In the released
stack the SPI clock rate is set as 4 MHz. Please search for “OpenSPIM(SYNC_MODE_FAST)” in the stack. This function
sets the SPI clock speed during the data transfers with the SD card. This function is called in
“MDD_SDSPI_MediaInitialize()” function. If you want to increase the SPI clock rate for PIC18/PIC24F, modify the
SYNC_MODE_FAST macro value. The maximum value of SPI clock frequency that can be set for PIC18/PIC24F
microcontrollers is 8 MHz.

For PIC32, modify the macro “SPI_FREQUENCY” to change the SPI clock rate for the data transfers. The maximum value of
SPI clock frequency that can be set for PIC32 microcontrollers is 25 MHz.

Please verify peripheral bus frequency, system clock frequency, SPI Baud Rate register values (SPI Baud Rate Calculation
formula) and the corresponding PIC® microcontroller datasheet before modifying the macro “SYNC_MODE_FAST” or
“SPI_FREQUENCY” in the source code.

MDDFS Interface Library Help

18

4

http://ww1.microchip.com/downloads/en/AppNotes/01045b.pdf

4.7 Example Code
• Below is an example on PIC24/PIC32/dsPIC devices which shows how to create a file, write a file, read a file, close a

file...etc...

 FSFILE * pointer;
 char sendBuffer[] = "This is test string 1";
 char receiveBuffer[50];

 // Wait in while loop until the physical media device like SD card, CF card or
 // USB memory device is detected in the software...
 while (!MDD_MediaDetect());

 // Initialize the file system library & the physical media device
 while (!FSInit());

 // Create a file
 pointer = FSfopen ("FILE1.TXT", "w");
 if (pointer == NULL)
 while(1);

 // Write 21 1-byte objects from sendBuffer into the file
 if (FSfwrite (sendBuffer, 1, 21, pointer) != 21)
 while(1);

 // Close the file
 if (FSfclose (pointer))
 while(1);

 // Open file 1 in read mode
 pointer = FSfopen ("FILE1.TXT", "r");
 if (pointer == NULL)
 while(1);

 // Renames the file FILE1.TXT to Microchip File 2.TXT
 if (FSrename ("Microchip File 2.TXT", pointer))
 while(1);

 // Read one four-byte object
 if (FSfread (receiveBuffer, 4, 1, pointer) != 1)
 while(1);

 // Close the file
 if (FSfclose (pointer))
 while(1);

• Below is an example on PIC24/PIC32/dsPIC devices which shows how to create a directory, change the current working
directory, delete the directory...etc...

 // Wait in while loop until the physical media device like SD card, CF card or
 // USB memory device is detected in the software...
 while (!MDD_MediaDetect());

 // Initialize the file system library & the physical media device
 while (!FSInit());

 // Create a small directory tree
 // Beginning the path string with a '.' will create the directory tree in the
 // current directory.
 if (FSmkdir (".\\Mchp Directory 1\\Dir2\\Directory 3"))
 while(1);

 // Change to current working directory to 'Directory 3'
 if (FSchdir ("Mchp Directory 1\\Dir2\\Directory 3"))
 while(1);

MDDFS Interface Library Help

19

4

 // Create another tree in 'Directory 3'
 if (FSmkdir ("Directory 4\\Directory 5\\Directory 6"))
 while(1);

 // This will delete Directory 5 and all three of its sub-directories
 if (FSrmdir ("Directory 4\\Directory 5", TRUE))
 while(1);

 // Change directory to the root dir
 if (FSchdir ("\\"))
 while(1);

• Below is an example on PIC24/PIC32/dsPIC devices which shows how to create files,search files & delete specific file

 FSFILE * pointer;
 char sendBuffer[] = "This is test string 1";
 unsigned char attributes;
 unsigned char size = 0, i;

 // Wait in while loop until the physical media device like SD card, CF card or
 // USB memory device is detected in the software...
 while (!MDD_MediaDetect());

 // Initialize the file system library & the physical media device
 while (!FSInit());

 // Create a file FILE1.TXT
 pointer = FSfopen ("FILE1.TXT", "w");
 if (pointer == NULL)
 while(1);

 // Write 21 1-byte objects from sendBuffer into the file
 if (FSfwrite (sendBuffer, 1, 21, pointer) != 21)
 while(1);

 // Close the file
 if (FSfclose (pointer))
 while(1);

 // Create a file FILE2.TXT
 pointer = FSfopen ("FILE2.TXT", "w");
 if (pointer == NULL)
 while(1);

 // Write 21 1-byte objects from sendBuffer into the file
 if (FSfwrite (sendBuffer, 1, 21, pointer) != 21)
 while(1);

 // Close the file
 if (FSfclose (pointer))
 while(1);

 // Create a file FILE3.TXT
 pointer = FSfopen ("FILE3.TXT", "w");
 if (pointer == NULL)
 while(1);

 // Write 21 1-byte objects from sendBuffer into the file
 if (FSfwrite (sendBuffer, 1, 21, pointer) != 21)
 while(1);

 // Close the file
 if (FSfclose (pointer))
 while(1);

 // Set attributes
 attributes = ATTR_ARCHIVE | ATTR_READ_ONLY | ATTR_HIDDEN;

 // Functions "FindFirst" & "FindNext" can be used to find files

MDDFS Interface Library Help

20

4

 // and directories with required attributes in the current working directory.

 // Find the first .TXT file with any (or none) of those attributes that
 // has a name beginning with the letters "FILE" in your current working
 // directory
 if (FindFirst ("FILE*.TXT", attributes, &rec))
 while(1);

 // Keep finding files until we get FILE2.TXT
 while(rec.filename[4] != '2')
 {
 if (FindNext (&rec))
 while(1);
 }

 // Delete FILE2.TXT
 if (FSremove (rec.filename))
 while(1);

Note:

• For UTF16 file names 'wFSfopen','wFSrename', 'wFSmkdir', wFSchdir','wFSrmdir'...etc...has to be used instead of
'FSfopen','FSrename', 'FSmkdir', FSchdir','FSrmdir'...

• The LFN support can be enabled by defining the "SUPPORT_LFN" macro in 'FSconfig.h' file. If "SUPPORT_LFN" macro
is not defined, then only 8.3 format filename is supported.

• For further clarifications, please refer "MDD File System-SD Card" demo source code. By default it is installed on
"C:\Microchip Solutions" folder.

MDDFS Interface Library Help

21

4

5 Configuring the library

Library configuration is stored as a set of configuration macros in FSconfig.h and HardwareProfiles.h in the demo application
folders. These macros has to be modified as per the application requirement.

FSconfig.h

This file contains options to configure the library firmware. The configuration macros include:

Macro/Option Category Indication

FS_MAX_FILES_OPEN Definition Describes the maximum number of files that can/will be opened at once.

SUPPORT_LFN Definition When enabled, the file system supports Long File Name entries for files and
directories.

MEDIA_SECTOR_SIZE Definition Describes the size of a sector on the device. This will almost always equal
512.

ALLOW_FILESEARCH Feature toggle Comment this definition out to disable the file search functions (FindFirst and
FindNext). This will reduce code size.

ALLOW_WRITES Feature toggle Comment this definition out to disable all write functionality. This will reduce
code size.

ALLOW_FORMATS Feature toggle Comment this definition out to disable the format function. This will reduce
code size.

ALLOW_DIRS Feature toggle Comment this definition out to disable all directory functionality. This will
reduce code size.

ALLOW_PGMFUNCTIONS Feature toggle Comment this definition out to disable -pgm functions. The library requires
-pgm functions to be disabled when not using PIC18. This will reduce code
size.

ALLOW_FSFPRINTF Feature toggle Comment this definition out to disable the FSfprintf function. This will reduce
code size.

SUPPORT_FAT32 Feature toggle Comment this definition out to disable FAT32 support. FAT12 and FAT16 will
still be supported.

USEREALTIMECLOCK Create/last
modified
timestamp
generator

Uncomment this macro to generate timestamps automatically with the RTCC
module. You must configure the RTCC for this method to work correctly. Only
one timestamp generation method may be enabled at one time.

USERDEFINEDCLOCK Create/last
modified
timestamp
generator

Uncomment this macro to generate timestamps based on global variabled
that are set manually by the user using the SetClockVars() function. Only one
timestamp generation method may be enabled at one time.

INCREMENTTIMESTAMP Create/last
modified
timestamp
generator

Uncomment this macro to generate static timestamps. These timestamps will
be incremented by 1 whenever the file is accessed. This should only be used
in applications when create.modified times are not required. Only one
timestamp generation method may be enabled at one time.

FS_DYNAMIC_MEM Static/dynamic
FSFILE object
allocation.

Set the #if preprocessor definition to 1 to allocate FSFILE objects
dynamically. You will be required to allocate a heap to do this. For PIC18,
you will be required to include the salloc.c and salloc.h files in your project. If
the #if statement is set to 0, FSFILE objects will be allocated in a static array,
with the maximum number of FSFILE objects determined by the
FS_MAX_FILES_OPEN macro.

HardwareProfiles.h

The HardwareProfiles.h header file reflects the state of the hardware. It contains the following macros:

MDDFS Interface Library Help

22

5

Macro Indication

GetSystemClock() Returns the value of the system clock.

GetPeripheralClock() Returns the value of the microcontroller's peripheral clock

GetInstructionClock() Returns the value of the microcontroller's instruction clock

USE_SD_INTERFACE_WITH_SPI Uncomment this definition to use the SD-SPI physical layer. Only one physical layer
may be enabled at one time.

USE_CF_INTERFACE_WITH_PMP Uncomment this definition to use the CF-PMP physical layer. Only one physical layer
may be enabled at one time.

USE_MANUAL_CF_INTERFACE Uncomment this definition to use the CF-Manual physical layer. Only one physical
layer may be enabled at one time.

USE_USB_INTERFACE Uncomment this definition to use the USB host physical layer. This physical layer is
described in greater detail at http://www.microchip.com/usb. Only one physical layer
may be enabled at one time.

SD_CS, SD_CD, SD_WE Used for the SD-SPI physical layer. Set these to the I/O port register locations for the
chip select, card detect, and write protect signals (e.g. PORTBbits.RB3).

SD_CS_TRIS, SD_CD_TRIS,
SD_WE_TRIS

Used for the SD-SPI physical layer. Set these to the I/O tris register locations that
correspond to the pins used for each signal (e.g. TRISBbits.TRISB3).

SPICON1, SPISTAT, SPIBUF,
SPISTAT_RBF, SPICON1bits,
SPISTATbits,
SPI_INTERRUPT_FLAG,
SPIENABLE

Used for the SD-SPI physical layer. Set these to the SPI registers or bits that
correspond to the module you're using (e.g. SSP1CON1, SSP1STAT, SSP1BUF,
SSP1STATbits.BF, SSP1CON1bits, SSP1STATbits, PIR1bits.SSPIF).

SPICLOCK, SPIIN, SPIOUT,
SPICLOCKLAT, SPIINLAT,
SPIOUTLAT, SPICLOCKPORT,
SPIINPORT, SPIOUTPORT

Used for the SD-SPI physical layer. Set these to the SPI tris/lat/port register bits for
the module you're using.

CF_PMP_RST, CF_PMP_RDY,
CF_PMP_CD1

Used with the CF-PMP physical layer. Set these to the I/O port register locations for
the reset, ready, and card detect signals for your card.

CF_PMP_RESETDIR,
CF_PMP_READYDIR,
CF_PMP_CD1DIR

Used with the CF-PMP physical layer. Set these to the I/O tris register that
corresponds to the reset, ready, and card detect signals.

MDD_CFPMP_DATADIR Used with the CF-PMP physical layer. Set this to the tris register that corresponds to
the PMP data bus.

ADDBL, ADDDIR Used with the CF-Manual physical layer. Set these to the lat and tris registers that
correspond to the address bus (PIC18).

ADDR0, ADDR1, ADDR2, ADDR3 Used with the CF-Manual physical layer. Set these to the 4 lat pins used for your
address bus.

ADRTRIS0, ADRTRIS1,
ADRTRIS2, ADRTRIS3

Used with the CF-Manual physical layer. Set these to the corresponding tris bits for
your data bus.

MDD_CFBT_DATABIN,
MDD_CFBT_DATABOUT,
MDD_CFBT_DATADIR

Used with the CF-Manual physical layer. Set these to the port, lat, and tris registers
that correspond to your data bus.

CF_CE, CF_OE, CF_WE,
CF_BT_RST, CF_BT_RDY,
CF_BT_CD1

Used with the CF-Manual physical layer. Set these to the I/O lat and port bits that
correspond to the chip select, output enable strobe, write enable strobe, reset, ready,
and card detect signals, respectively.

CF_CEDIR, CF_OEDIR,
CF_WEDIR, CF_BT_RESETDIR,
CF_BT_READYDIR,
CF_BT_CD1DIR

Used with the CF-Manual physical layer. Set these to tris bits that correspond to the
control signals for the card.

MDDFS Interface Library Help

23

5

http://www.microchip.com/usb

6 APIs

The file system performs file operations on one of the physical interface device like SD card ,CF cards or USB. The APIs of
file manipulation layer,SD card layer & CF cards layer is described in this section. The file system operations on USB as host
is provided in AN1145: Using a USB Flash Drive with an Embedded Host page.

6.1 File Manipulation Layer (FSIO)
The File Manipulation Layer contains functions for manipulating files or functions to access the device that are common
across all physical layers.

6.1.1 Functions

Functions

Name Description

FSInit Function to initialize the device.

FSfopen Opens a file with ascii input 'fileName' on PIC24/PIC32/dsPIC MCU's.

FSfopenpgm Opens a file on PIC18 Microcontrollers where 'fileName' ROM string is given in
Ascii format.

wFSfopen Opens a file with UTF16 input 'fileName' on PIC24/PIC32/dsPIC MCU's.

FSrename Renames the Ascii name of the file or directory on PIC24/PIC32/dsPIC devices

FSrenamepgm Renames the file with the ascii ROM string(PIC18)

wFSrename Renames the name of the file or directory to the UTF16 input fileName on
PIC24/PIC32/dsPIC devices

FSremove Deletes the file on PIC24/PIC32/dsPIC device.The 'fileName' is in ascii format.

FSremovepgm Deletes the file on PIC18 device

wFSremove Deletes the file on PIC24/PIC32/dsPIC device.The 'fileName' is in UTF16
format.

FindFirst Initial search function for the input Ascii fileName on PIC24/PIC32/dsPIC
devices.

FindFirstpgm Find a file named with a ROM string on PIC18

wFindFirst Initial search function for the 'fileName' in UTF16 format on PIC24/PIC32/dsPIC
devices.

FindNext Sequential search function

FSfwrite Write data to a file

FSfread Read data from a file

FSfseek Change the current position in a file

FSftell Determine the current location in a file

FSfclose Update file information and free FSFILE objects

FSfeof Indicate whether the current file position is at the end

FSerror Return an error code for the last function call

FSattrib Change the attributes of a file

FSfprintf Function to write formatted strings to a file

MDDFS Interface Library Help

24

6

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en534219

FSrewind Set the current position in a file to the beginning

FSformat Formats a device

FSCreateMBR Creates a master boot record

FSGetDiskProperties Allows user to get the disk properties (size of disk, free space, etc)

FSgetcwd Get the current working directory path in Ascii format

wFSgetcwd Get the current working directory path in UTF16 format

FSmkdir Creates a directory as per the ascii input path (PIC24/PIC32/dsPIC)

FSmkdirpgm Creates a directory as per the path mentioned in the input string on PIC18
devices.

wFSmkdir Creates a directory as per the UTF16 input path (PIC24/PIC32/dsPIC)

FSchdir Changes the current working directory to the ascii input
path(PIC24/PIC32/dsPIC)

FSchdirpgm Changes the CWD to the input path on PIC18

wFSchdir Change the current working directory as per the path specified in UTF16 format
(PIC24/PIC32/dsPIC)

FSrmdir Deletes the directory as per the ascii input path (PIC24/PIC32/dsPIC).

FSrmdirpgm Deletes the directory as per the ascii input path (PIC18).

wFSrmdir Deletes the directory as per the UTF16 input path (PIC24/PIC32/dsPIC).

Macros

Name Description

intmax_t A data type indicating the maximum integer size in an architecture

Description

The following functions are available for the user application.

6.1.1.1 FSInit
Function to initialize the device.

File

FSIO.h

C

int FSInit();

Side Effects

The FSerrno variable will be changed.

Description

This function initializes the file system stack & the interfacing device. Initializes the static or dynamic memory slots for
holding file structures. Initializes the device with the DISKmount function. Loads MBR and boot sector information. Initializes
the current working directory to the root directory for the device if directory support is enabled.

Remarks

None

Preconditions

The physical device should be connected to the microcontroller.

Return Values

Return Values Description

TRUE Initialization successful

FALSE Initialization unsuccessful

MDDFS Interface Library Help

25

6

Function

int FSInit(void)

6.1.1.2 FSfopen
Opens a file with ascii input 'fileName' on PIC24/PIC32/dsPIC MCU's.

File

FSIO.h

C

FSFILE * FSfopen(
 const char * fileName,
 const char * mode
);

Side Effects

The FSerrno variable will be changed.

Description

This function will open a ascii name file or directory on PIC24/PIC32/dsPIC MCU's. First, RAM in the dynamic heap or static
array will be allocated to a new FSFILE object. Then, the specified file name will be formatted to ensure that it's in 8.3 format
or LFN format. Next, the FILEfind function will be used to search for the specified file name. If the name is found, one of
three things will happen: if the file was opened in read mode, its file info will be loaded using the FILEopen function; if it was
opened in write mode, it will be erased, and a new file will be constructed in its place; if it was opened in append mode, its
file info will be loaded with FILEopen and the current location will be moved to the end of the file using the FSfseek function.
If the file was not found by FILEfind, a new file will be created if the mode was specified as a write or append mode. In these
cases, a pointer to the heap or static FSFILE object array will be returned. If the file was not found and the mode was
specified as a read mode, the memory allocated to the file will be freed and the NULL pointer value will be returned.

Remarks

None.

Preconditions

For read modes, file exists; FSInit performed

Parameters

Parameters Description

fileName The name of the file to open

mode • FS_WRITE - Create a new file or replace an existing file

• FS_READ - Read data from an existing file

• FS_APPEND - Append data to an existing file

• FS_WRITEPLUS - Create a new file or replace an existing file (reads also
enabled)

• FS_READPLUS - Read data from an existing file (writes also enabled)

• FS_APPENDPLUS - Append data to an existing file (reads also enabled)

Return Values

Return Values Description

FSFILE * The pointer to the file object

NULL The file could not be opened

MDDFS Interface Library Help

26

6

Function

FSFILE * FSfopen (const char * fileName, const char *mode)

6.1.1.3 FSfopenpgm
Opens a file on PIC18 Microcontrollers where 'fileName' ROM string is given in Ascii format.

File

FSIO.h

C

FSFILE * FSfopenpgm(
 const rom char * fileName,
 const rom char * mode
);

Side Effects

The FSerrno variable will be changed.

Description

This function opens a file on PIC18 Microcontrollers where 'fileName' ROM string is given in Ascii format.The FSfopenpgm
function will copy a PIC18 ROM fileName and mode argument into RAM arrays, and then pass those arrays to the FSfopen
function.

Remarks

This function is for use with PIC18 when passing arguments in ROM.

Preconditions

For read modes, file exists; FSInit performed

Parameters

Parameters Description

fileName The name of the file to be opened (ROM)

mode The mode the file will be opened in (ROM)

Return Values

Return Values Description

FSFILE * A pointer to the file object

NULL File could not be opened

Function

FSFILE * FSfopenpgm(const rom char * fileName, const rom char *mode)

6.1.1.4 wFSfopen
Opens a file with UTF16 input 'fileName' on PIC24/PIC32/dsPIC MCU's.

File

FSIO.h

C

FSFILE * wFSfopen(
 const unsigned short int * fileName,
 const char * mode
);

MDDFS Interface Library Help

27

6

Side Effects

The FSerrno variable will be changed.

Description

This function opens a file with UTF16 input 'fileName' on PIC24/PIC32/dsPIC MCU's. First, RAM in the dynamic heap or
static array will be allocated to a new FSFILE object. Then, the specified file name will be formatted to ensure that it's in 8.3
format or LFN format. Next, the FILEfind function will be used to search for the specified file name. If the name is found, one
of three things will happen: if the file was opened in read mode, its file info will be loaded using the FILEopen function; if it
was opened in write mode, it will be erased, and a new file will be constructed in its place; if it was opened in append mode,
its file info will be loaded with FILEopen and the current location will be moved to the end of the file using the FSfseek
function. If the file was not found by FILEfind, a new file will be created if the mode was specified as a write or append mode.
In these cases, a pointer to the heap or static FSFILE object array will be returned. If the file was not found and the mode
was specified as a read mode, the memory allocated to the file will be freed and the NULL pointer value will be returned.

Remarks

None.

Preconditions

For read modes, file exists; FSInit performed

Parameters

Parameters Description

fileName The name of the file to open

mode • FS_WRITE - Create a new file or replace an existing file

• FS_READ - Read data from an existing file

• FS_APPEND - Append data to an existing file

• FS_WRITEPLUS - Create a new file or replace an existing file (reads also
enabled)

• FS_READPLUS - Read data from an existing file (writes also enabled)

• FS_APPENDPLUS - Append data to an existing file (reads also enabled)

Return Values

Return Values Description

FSFILE * The pointer to the file object

NULL The file could not be opened

Function

FSFILE * wFSfopen (const unsigned short int * fileName, const char *mode)

6.1.1.5 FSrename
Renames the Ascii name of the file or directory on PIC24/PIC32/dsPIC devices

File

FSIO.h

C

int FSrename(
 const char * fileName,
 FSFILE * fo
);

MDDFS Interface Library Help

28

6

Side Effects

The FSerrno variable will be changed.

Description

Renames the Ascii name of the file or directory on PIC24/PIC32/dsPIC devices. First, it will search through the current
working directory to ensure the specified new filename is not already in use. If it isn't, the new filename will be written to the
file entry of the file pointed to by 'fo.'

Remarks

None

Preconditions

File opened.

Parameters

Parameters Description

fileName The new name of the file

fo The file to rename

Return Values

Return Values Description

0 File was renamed successfully

EOF File was not renamed

Function

int FSrename (const rom char * fileName, FSFILE * fo)

6.1.1.6 FSrenamepgm
Renames the file with the ascii ROM string(PIC18)

File

FSIO.h

C

int FSrenamepgm(
 const rom char * fileName,
 FSFILE * fo
);

Side Effects

The FSerrno variable will be changed.

Description

Renames the file with the ascii ROM string(PIC18).The Fsrenamepgm function will copy the rom fileName specified by the
user into a RAM array and pass that array into the FSrename function.

Remarks

This function is for use with PIC18 when passing arguments in ROM.

Preconditions

File opened.

Parameters

Parameters Description

fileName The new name of the file (in ROM)

MDDFS Interface Library Help

29

6

fo The file to rename

Return Values

Return Values Description

0 File renamed successfully

-1 File could not be renamed

Function

int FSrenamepgm(const rom char * fileName, FSFILE * fo)

6.1.1.7 wFSrename
Renames the name of the file or directory to the UTF16 input fileName on PIC24/PIC32/dsPIC devices

File

FSIO.h

C

int wFSrename(
 const unsigned short int * fileName,
 FSFILE * fo
);

Side Effects

The FSerrno variable will be changed.

Description

Renames the name of the file or directory to the UTF16 input fileName on PIC24/PIC32/dsPIC devices. First, it will search
through the current working directory to ensure the specified new UTF16 filename is not already in use. If it isn't, the new
filename will be written to the file entry of the file pointed to by 'fo.'

Remarks

None

Preconditions

File opened.

Parameters

Parameters Description

fileName The new name of the file

fo The file to rename

Return Values

Return Values Description

0 File was renamed successfully

EOF File was not renamed

Function

int wFSrename (const rom unsigned short int * fileName, FSFILE * fo)

6.1.1.8 FSremove
Deletes the file on PIC24/PIC32/dsPIC device.The 'fileName' is in ascii format.

MDDFS Interface Library Help

30

6

File

FSIO.h

C

int FSremove(
 const char * fileName
);

Side Effects

The FSerrno variable will be changed.

Description

Deletes the file on PIC24/PIC32/dsPIC device.The 'fileName' is in ascii format. The FSremove function will attempt to find
the specified file with the FILEfind function. If the file is found, it will be erased using the FILEerase function. The user can
also provide ascii alias name of the ascii long file name as the input to this function to get it erased from the memory.

Remarks

None

Preconditions

File not opened, file exists

Parameters

Parameters Description

fileName Name of the file to erase

Return Values

Return Values Description

0 File removed

EOF File was not removed

Function

int FSremove (const char * fileName)

6.1.1.9 FSremovepgm
Deletes the file on PIC18 device

File

FSIO.h

C

int FSremovepgm(
 const rom char * fileName
);

Side Effects

The FSerrno variable will be changed.

Description

Deletes the file on PIC18 device.The FSremovepgm function will copy a PIC18 ROM fileName argument into a RAM array,
and then pass that array to the FSremove function.

Remarks

This function is for use with PIC18 when passing arguments in ROM.

MDDFS Interface Library Help

31

6

Preconditions

File not opened; file exists

Parameters

Parameters Description

fileName The name of the file to be deleted (ROM)

Return Values

Return Values Description

0 File was removed successfully

-1 File could not be removed

Function

int FSremovepgm (const rom char * fileName)

6.1.1.10 wFSremove
Deletes the file on PIC24/PIC32/dsPIC device.The 'fileName' is in UTF16 format.

File

FSIO.h

C

int wFSremove(
 const unsigned short int * fileName
);

Side Effects

The FSerrno variable will be changed.

Description

Deletes the file on PIC24/PIC32/dsPIC device.The 'fileName' is in UTF16 format. The wFSremove function will attempt to
find the specified UTF16 file name with the FILEfind function. If the file is found, it will be erased using the FILEerase
function.

Remarks

None

Preconditions

File not opened, file exists

Parameters

Parameters Description

fileName Name of the file to erase

Return Values

Return Values Description

0 File removed

EOF File was not removed

Function

int wFSremove (const unsigned short int * fileName)

MDDFS Interface Library Help

32

6

6.1.1.11 FindFirst
Initial search function for the input Ascii fileName on PIC24/PIC32/dsPIC devices.

File

FSIO.h

C

int FindFirst(
 const char * fileName,
 unsigned int attr,
 SearchRec * rec
);

Side Effects

Search criteria from previous FindFirst call on passed SearchRec object will be lost. "utf16LFNfound" is overwritten after
subsequent FindFirst/FindNext operations.It is the responsibility of the application to read the "utf16LFNfound" before it is
lost.The FSerrno variable will be changed.

Description

Initial search function for the input Ascii fileName on PIC24/PIC32/dsPIC devices. The FindFirst function will search for a file
based on parameters passed in by the user. This function will use the FILEfind function to parse through the current working
directory searching for entries that match the specified parameters. If a file is found, its parameters are copied into the
SearchRec structure, as are the initial parameters passed in by the user and the position of the file entry in the current
working directory.If the return value of the function is 0 then "utf16LFNfoundLength" indicates whether the file found was
long file name or short file name(8P3 format). The "utf16LFNfoundLength" is non-zero for long file name and is zero for 8P3
format."utf16LFNfound" points to the address of long file name if found during the operation.

Remarks

Call FindFirst or FindFirstpgm before calling FindNext

Preconditions

None

Parameters

Parameters Description

fileName The name to search for

• Parital string search characters

• * - Indicates the rest of the filename or extension can vary (e.g. FILE.*)

• ? - Indicates that one character in a filename can vary (e.g. F?LE.T?T)

attr The attributes that a found file may have

• ATTR_READ_ONLY - File may be read only

• ATTR_HIDDEN - File may be a hidden file

• ATTR_SYSTEM - File may be a system file

• ATTR_VOLUME - Entry may be a volume label

• ATTR_DIRECTORY - File may be a directory

• ATTR_ARCHIVE - File may have archive attribute

• ATTR_MASK - All attributes

rec pointer to a structure to put the file information in

MDDFS Interface Library Help

33

6

Return Values

Return Values Description

0 File was found

-1 No file matching the specified criteria was found

Function

int FindFirst (const char * fileName, unsigned int attr, SearchRec * rec)

6.1.1.12 FindFirstpgm
Find a file named with a ROM string on PIC18

File

FSIO.h

C

int FindFirstpgm(
 const rom char * fileName,
 unsigned int attr,
 SearchRec * rec
);

Side Effects

Search criteria from previous FindFirstpgm call on passed SearchRec object will be lost.The FSerrno variable will be
changed.

Description

This function finds a file named with 'fileName' on PIC18. The FindFirstpgm function will copy a PIC18 ROM fileName
argument into a RAM array, and then pass that array to the FindFirst function.

Remarks

Call FindFirstpgm or FindFirst before calling FindNext. This function is for use with PIC18 when passing arguments in ROM.

Preconditions

None

Parameters

Parameters Description

fileName The name of the file to be found (ROM)

attr The attributes of the file to be found

rec Pointer to a search record to store the file info in

Return Values

Return Values Description

0 File was found

-1 No file matching the given parameters was found

Function

int FindFirstpgm (const char * fileName, unsigned int attr, SearchRec * rec)

6.1.1.13 wFindFirst
Initial search function for the 'fileName' in UTF16 format on PIC24/PIC32/dsPIC devices.

MDDFS Interface Library Help

34

6

File

FSIO.h

C

int wFindFirst(
 const unsigned short int * fileName,
 unsigned int attr,
 SearchRec * rec
);

Side Effects

Search criteria from previous wFindFirst call on passed SearchRec object will be lost. "utf16LFNfound" is overwritten after
subsequent wFindFirst/FindNext operations.It is the responsibility of the application to read the "utf16LFNfound" before it is
lost.The FSerrno variable will be changed.

Description

Initial search function for the 'fileName' in UTF16 format on PIC24/PIC32/dsPIC devices. The wFindFirst function will search
for a file based on parameters passed in by the user. This function will use the FILEfind function to parse through the current
working directory searching for entries that match the specified parameters. If a file is found, its parameters are copied into
the SearchRec structure, as are the initial parameters passed in by the user and the position of the file entry in the current
working directory.If the return value of the function is 0 then "utf16LFNfoundLength" indicates whether the file found was
long file name or short file name(8P3 format). The "utf16LFNfoundLength" is non-zero for long file name and is zero for 8P3
format."utf16LFNfound" points to the address of long file name if found during the operation.

Remarks

Call FindFirst or FindFirstpgm before calling FindNext

Preconditions

None

Parameters

Parameters Description

fileName The name to search for

• Parital string search characters

• * - Indicates the rest of the filename or extension can vary (e.g. FILE.*)

• ? - Indicates that one character in a filename can vary (e.g. F?LE.T?T)

attr The attributes that a found file may have

• ATTR_READ_ONLY - File may be read only

• ATTR_HIDDEN - File may be a hidden file

• ATTR_SYSTEM - File may be a system file

• ATTR_VOLUME - Entry may be a volume label

• ATTR_DIRECTORY - File may be a directory

• ATTR_ARCHIVE - File may have archive attribute

• ATTR_MASK - All attributes

rec pointer to a structure to put the file information in

Return Values

Return Values Description

0 File was found

-1 No file matching the specified criteria was found

MDDFS Interface Library Help

35

6

Function

int wFindFirst (const unsigned short int * fileName, unsigned int attr, SearchRec * rec)

6.1.1.14 FindNext
Sequential search function

File

FSIO.h

C

int FindNext(
 SearchRec * rec
);

Side Effects

Search criteria from previous FindNext call on passed SearchRec object will be lost. "utf16LFNfound" is overwritten after
subsequent FindFirst/FindNext operations.It is the responsibility of the application to read the "utf16LFNfound" before it is
lost.The FSerrno variable will be changed.

Description

The FindNext function performs the same function as the FindFirst funciton, except it does not copy any search parameters
into the SearchRec structure (only info about found files) and it begins searching at the last directory entry offset at which a
file was found, rather than at the beginning of the current working directory.If the return value of the function is 0 then
"utf16LFNfoundLength" indicates whether the file found was long file name or short file name(8P3 format). The
"utf16LFNfoundLength" is non-zero for long file name and is zero for 8P3 format."utf16LFNfound" points to the address of
long file name if found during the operation.

Remarks

Call FindFirst or FindFirstpgm before calling this function

Preconditions

None

Parameters

Parameters Description

rec The structure to store the file information in

Return Values

Return Values Description

0 File was found

-1 No additional files matching the specified criteria were found

Function

int FindNext (SearchRec * rec)

6.1.1.15 FSfwrite
Write data to a file

File

FSIO.h

MDDFS Interface Library Help

36

6

C

size_t FSfwrite(
 const void * data_to_write,
 size_t size,
 size_t n,
 FSFILE * stream
);

Side Effects

The FSerrno variable will be changed.

Returns

size_t - number of units written

Description

The FSfwrite function will write data to a file. First, the sector that corresponds to the current position in the file will be loaded
(if it hasn't already been cached in the global data buffer). Data will then be written to the device from the specified buffer
until the specified amount has been written. If the end of a cluster is reached, the next cluster will be loaded, unless the
end-of-file flag for the specified file has been set. If it has, a new cluster will be allocated to the file. Finally, the new position
and filesize will be stored in the FSFILE object. The parameters 'size' and 'n' indicate how much data to write. 'Size' refers to
the size of one object to write (in bytes), and 'n' will refer to the number of these objects to write. The value returned will be
equal to 'n' unless an error occured.

Remarks

None.

Preconditions

File opened in FS_WRITE, FS_APPEND, FS_WRITE+, FS_APPEND+, FS_READ+ mode

Parameters

Parameters Description

data_to_write Pointer to source buffer

size Size of units in bytes

n Number of units to transfer

stream Pointer to file structure

Function

size_t FSfwrite(const void *data_to_write, size_t size, size_t n, FSFILE *stream)

6.1.1.16 FSfread
Read data from a file

File

FSIO.h

C

size_t FSfread(
 void * ptr,
 size_t size,
 size_t n,
 FSFILE * stream
);

Side Effects

The FSerrno variable will be changed.

MDDFS Interface Library Help

37

6

Returns

size_t - number of units read

Description

The FSfread function will read data from the specified file. First, the appropriate sector of the file is loaded. Then, data is
read into the specified buffer until the specified number of bytes have been read. When a cluster boundary is reached, a new
cluster will be loaded. The parameters 'size' and 'n' indicate how much data to read. 'Size' refers to the size of one object to
read (in bytes), and 'n' will refer to the number of these objects to read. The value returned will be equal to 'n' unless an error
occured or the user tried to read beyond the end of the file.

Remarks

None.

Preconditions

File is opened in a read mode

Parameters

Parameters Description

ptr Destination buffer for read bytes

size Size of units in bytes

n Number of units to be read

stream File to be read from

Function

size_t FSfread(void *ptr, size_t size, size_t n, FSFILE *stream)

6.1.1.17 FSfseek
Change the current position in a file

File

FSIO.h

C

int FSfseek(
 FSFILE * stream,
 long offset,
 int whence
);

Side Effects

The FSerrno variable will be changed.

Description

The FSfseek function will change the current position in the file to one specified by the user. First, an absolute offset is
calculated using the offset and base location passed in by the user. Then, the position variables are updated, and the sector
number that corresponds to the new location. That sector is then loaded. If the offset falls exactly on a cluster boundary, a
new cluster will be allocated to the file and the position will be set to the first byte of that cluster.

Remarks

None

Preconditions

File opened

MDDFS Interface Library Help

38

6

Parameters

Parameters Description

stream Pointer to file structure

offset Offset from base location

whence • SEEK_SET - Seek from start of file

• SEEK_CUR - Seek from current location

• SEEK_END - Seek from end of file (subtract offset)

Return Values

Return Values Description

0 Operation successful

-1 Operation unsuccesful

Function

int FSfseek(FSFILE *stream, long offset, int whence)

6.1.1.18 FSftell
Determine the current location in a file

File

FSIO.h

C

long FSftell(
 FSFILE * fo
);

Side Effects

The FSerrno variable will be changed

Returns

Current location in the file

Description

The FSftell function will return the current position in the file pointed to by 'fo' by returning the 'seek' variable in the FSFILE
object, which is used to keep track of the absolute location of the current position in the file.

Remarks

None

Preconditions

File opened

Parameters

Parameters Description

fo Pointer to file structure

Function

long FSftell (FSFILE * fo)

MDDFS Interface Library Help

39

6

6.1.1.19 FSfclose
Update file information and free FSFILE objects

File

FSIO.h

C

int FSfclose(
 FSFILE * fo
);

Side Effects

The FSerrno variable will be changed.

Description

This function will update the directory entry for the file pointed to by 'fo' with the information contained in 'fo,' including the
new file size and attributes. Timestamp information will also be loaded based on the method selected by the user and written
to the entry as the last modified time and date. The file entry will then be written to the device. Finally, the memory used for
the specified file object will be freed from the dynamic heap or the array of FSFILE objects.

Remarks

A function to flush data to the device without closing the file can be created by removing the portion of this function that frees
the memory and the line that clears the write flag.

Preconditions

File opened

Parameters

Parameters Description

fo Pointer to the file to close

Return Values

Return Values Description

0 File closed successfully

EOF Error closing the file

Function

int FSfclose(FSFILE *fo)

6.1.1.20 FSfeof
Indicate whether the current file position is at the end

File

FSIO.h

C

int FSfeof(
 FSFILE * stream
);

Side Effects

The FSerrno variable will be changed.

MDDFS Interface Library Help

40

6

Description

The FSfeof function will indicate that the end-of- file has been reached for the specified file by comparing the absolute
location in the file to the size of the file.

Remarks

None.

Preconditions

File is open in a read mode

Parameters

Parameters Description

stream Pointer to the target file

Return Values

Return Values Description

Non-Zero EOF reached

0 Not at end of File

Function

int FSfeof(FSFILE * stream)

6.1.1.21 FSerror
Return an error code for the last function call

File

FSIO.h

C

int FSerror();

Side Effects

None.

Description

The FSerror function will return the FSerrno variable. This global variable will have been set to an error value during the last
call of a library function.

Remarks

None

Preconditions

The return value depends on the last function called.

MDDFS Interface Library Help

41

6

Return Values

Return Values Description

FSInit • CE_GOOD – No Error

• CE_INIT_ERROR – The physical media could not be initialized

• CE_BAD_SECTOR_READ – The MBR or the boot sector could not be
read correctly

• CE_BAD_PARITION – The MBR signature code was incorrect.

• CE_NOT_FORMATTED – The boot sector signature code was incorrect or
indicates an invalid number of bytes per sector.

• CE_UNSUPPORTED_SECTOR_SIZE - The number of bytes per sector is
unsupported

• CE_CARDFAT32 – The physical media is FAT32 type (only an error when
FAT32 support is disabled).

• CE_UNSUPPORTED_FS – The device is formatted with an unsupported
file system (not FAT12 or 16).

FSfopen • CE_GOOD – No Error

• CE_NOT_INIT – The device has not been initialized.

• CE_TOO_MANY_FILES_OPEN – The function could not allocate any
additional file information to the array of FSFILE structures or the heap.

• CE_INVALID_FILENAME – The file name argument was invalid.

• CE_INVALID_ARGUMENT – The user attempted to open a directory in a
write mode or specified an invalid mode argument.

• CE_FILE_NOT_FOUND – The specified file (which was to be opened in
read mode) does not exist on the device.

• CE_BADCACHEREAD – A read from the device failed.

• CE_ERASE_FAIL – The existing file could not be erased (when opening a
file in FS_WRITE mode).

• CE_DIR_FULL – The directory is full.

• CE_DISK_FULL– The data memory section is full.

• CE_WRITE_ERROR – A write to the device failed.

• CE_SEEK_ERROR – The current position in the file could not be set to the
end (when the file was opened in FS_APPEND mode).

FSfclose • CE_GOOD – No Error

• CE_WRITE_ERROR – The existing data in the data buffer or the new file
entry information could not be written to the device.

• CE_BADCACHEREAD – The file entry information could not be cached

FSfread • CE_GOOD – No Error

• CE_WRITEONLY – The file was opened in a write-only mode.

• CE_WRITE_ERROR – The existing data in the data buffer could not be
written to the device.

• CE_BAD_SECTOR_READ – The data sector could not be read.

• CE_EOF – The end of the file was reached.

• CE_COULD_NOT_GET_CLUSTER – Additional clusters in the file could
not be loaded.

MDDFS Interface Library Help

42

6

FSfwrite • CE_GOOD – No Error

• CE_READONLY – The file was opened in a read-only mode.

• CE_WRITE_PROTECTED – The device write-protect check function
indicated that the device has been write-protected.

• CE_WRITE_ERROR – There was an error writing data to the device.

• CE_BADCACHEREAD – The data sector to be modified could not be read
from the device.

• CE_DISK_FULL – All data clusters on the device are in use.

FSfseek • CE_GOOD – No Error

• CE_WRITE_ERROR – The existing data in the data buffer could not be
written to the device.

• CE_INVALID_ARGUMENT – The specified offset exceeds the size of the
file.

• CE_BADCACHEREAD – The sector that contains the new current position
could not be loaded.

• CE_COULD_NOT_GET_CLUSTER – Additional clusters in the file could
not be loaded/allocated.

FSftell • CE_GOOD – No Error

FSattrib • CE_GOOD – No Error

• CE_INVALID_ARGUMENT – The attribute argument was invalid.

• CE_BADCACHEREAD – The existing file entry information could not be
loaded.

• CE_WRITE_ERROR – The file entry information could not be written to the
device.

FSrename • CE_GOOD – No Error

• CE_FILENOTOPENED – A null file pointer was passed into the function.

• CE_INVALID_FILENAME – The file name passed into the function was
invalid.

• CE_BADCACHEREAD – A read from the device failed.

• CE_FILENAME_EXISTS – A file with the specified name already exists.

• CE_WRITE_ERROR – The new file entry data could not be written to the
device.

FSfeof • CE_GOOD – No Error

MDDFS Interface Library Help

43

6

FSformat • CE_GOOD – No Error

• CE_INIT_ERROR – The device could not be initialized.

• CE_BADCACHEREAD – The master boot record or boot sector could not
be loaded successfully.

• CE_INVALID_ARGUMENT – The user selected to create their own boot
sector on a device that has no master boot record, or the mode argument
was invalid.

• CE_WRITE_ERROR – The updated MBR/Boot sector could not be written
to the device.

• CE_BAD_PARTITION – The calculated number of sectors per clusters
was invalid.

• CE_NONSUPPORTED_SIZE – The card has too many sectors to be
formatted as FAT12 or FAT16.

FSremove • CE_GOOD – No Error

• CE_WRITE_PROTECTED – The device write-protect check function
indicated that the device has been write-protected.

• CE_INVALID_FILENAME – The specified filename was invalid.

• CE_FILE_NOT_FOUND – The specified file could not be found.

• CE_ERASE_FAIL – The file could not be erased.

FSchdir • CE_GOOD – No Error

• CE_INVALID_ARGUMENT – The path string was mis-formed or the user
tried to change to a non-directory file.

• CE_BADCACHEREAD – A directory entry could not be cached.

• CE_DIR_NOT_FOUND – Could not find a directory in the path.

FSgetcwd • CE_GOOD – No Error

• CE_INVALID_ARGUMENT – The user passed a 0-length buffer into the
function.

• CE_BADCACHEREAD – A directory entry could not be cached.

• CE_BAD_SECTOR_READ – The function could not determine a previous
directory of the current working directory.

FSmkdir • CE_GOOD – No Error

• CE_WRITE_PROTECTED – The device write-protect check function
indicated that the device has been write-protected.

• CE_INVALID_ARGUMENT – The path string was mis-formed.

• CE_BADCACHEREAD – Could not successfully change to a recently
created directory to store its dir entry information, or could not cache
directory entry information.

• CE_INVALID_FILENAME – One or more of the directory names has an
invalid format.

• CE_WRITE_ERROR – The existing data in the data buffer could not be
written to the device or the dot/dotdot entries could not be written to a
newly created directory.

• CE_DIR_FULL – There are no available dir entries in the CWD.

• CE_DISK_FULL – There are no available clusters in the data region of the
device.

MDDFS Interface Library Help

44

6

FSrmdir • CE_GOOD – No Error

• CE_DIR_NOT_FOUND – The directory specified could not be found or the
function could not change to a subdirectory within the directory to be
deleted (when recursive delete is enabled).

• CE_INVALID_ARGUMENT – The user tried to remove the CWD or root
directory.

• CE_BADCACHEREAD – A directory entry could not be cached.

• CE_DIR_NOT_EMPTY – The directory to be deleted was not empty and
recursive subdirectory removal was disabled.

• CE_ERASE_FAIL – The directory or one of the directories or files within it
could not be deleted.

• CE_BAD_SECTOR_READ – The function could not determine a previous
directory of the CWD.

SetClockVars • CE_GOOD – No Error

• CE_INVALID_ARGUMENT – The time values passed into the function
were invalid.

FindFirst • CE_GOOD – No Error

• CE_INVALID_FILENAME – The specified filename was invalid.

• CE_FILE_NOT_FOUND – No file matching the specified criteria was found.

• CE_BADCACHEREAD – The file information for the file that was found
could not be cached.

FindNext • CE_GOOD – No Error

• CE_NOT_INIT – The SearchRec object was not initialized by a call to
FindFirst.

• CE_INVALID_ARGUMENT – The SearchRec object was initialized in a
different directory from the CWD.

• CE_INVALID_FILENAME – The filename is invalid.

• CE_FILE_NOT_FOUND – No file matching the specified criteria was found.

FSfprintf • CE_GOOD – No Error

• CE_WRITE_ERROR – Characters could not be written to the file.

Function

int FSerror (void)

6.1.1.22 FSattrib
Change the attributes of a file

File

FSIO.h

C

int FSattrib(
 FSFILE * file,
 unsigned char attributes
);

Side Effects

The FSerrno variable will be changed.

MDDFS Interface Library Help

45

6

Description

The FSattrib funciton will set the attributes of the specified file to the attributes passed in by the user. This function will load
the file entry, replace the attributes with the ones specified, and write the attributes back. If the specified file is a directory,
the directory attribute will be preserved.

Remarks

None

Preconditions

File opened

Parameters

Parameters Description

file Pointer to file structure

attributes The attributes to set for the file

• Attribute - Value - Indications

• ATTR_READ_ONLY - 0x01 - The read-only attribute

• ATTR_HIDDEN - 0x02 - The hidden attribute

• ATTR_SYSTEM - 0x04 - The system attribute

• ATTR_ARCHIVE - 0x20 - The archive attribute

Return Values

Return Values Description

0 Attribute change was successful

-1 Attribute change was unsuccessful

Function

int FSattrib (FSFILE * file, unsigned char attributes)

6.1.1.23 FSfprintf
Function to write formatted strings to a file

File

FSIO.h

C

int FSfprintf(
 FSFILE * fptr,
 const rom char * fmt,
 ...
);

Side Effects

The FSerrno variable will be changed.

Returns

The number of characters written to the file

Description

Writes a specially formatted string to a file.

Remarks

Consult AN1045 for a full description of how to use format specifiers.

MDDFS Interface Library Help

46

6

Preconditions

For PIC18, integer promotion must be enabled in the project build options menu. File opened in a write mode.

Parameters

Parameters Description

fptr A pointer to the file to write to.

fmt A string of characters and format specifiers to write to the file

... Additional arguments inserted in the string by format specifiers

Function

// PIC24/30/33/32

int FSfprintf (FSFILE * fptr, const char * fmt, ...)

// PIC18

int FSfpritnf (FSFILE * fptr, const rom char * fmt, ...)

6.1.1.24 FSrewind
Set the current position in a file to the beginning

File

FSIO.h

C

void FSrewind(
 FSFILE * fo
);

Side Effects

None.

Description

The FSrewind funciton will reset the position of the specified file to the beginning of the file. This functionality is faster than
using FSfseek to reset the position in the file.

Remarks

None.

Preconditions

File opened.

Parameters

Parameters Description

fo Pointer to file structure

Function

void FSrewind (FSFILE * fo)

6.1.1.25 FSformat
Formats a device

File

FSIO.h

MDDFS Interface Library Help

47

6

C

int FSformat(
 char mode,
 long int serialNumber,
 char * volumeID
);

Side Effects

The FSerrno variable will be changed.

Description

The FSformat function can be used to create a new boot sector on a device, based on the information in the master boot
record. This function will first initialize the I/O pins and the device, and then attempts to read the master boot record. If the
MBR cannot be loaded successfully, the function will fail. Next, if the 'mode' argument is specified as '0' the existing boot
sector information will be loaded. If the 'mode' argument is '1' an entirely new boot sector will be constructed using the disk
values from the master boot record. Once the boot sector has been successfully loaded/created, the locations of the FAT
and root will be loaded from it, and they will be completely erased. If the user has specified a volumeID parameter, a
VOLUME attribute entry will be created in the root directory to name the device.

FAT12, FAT16 and FAT32 formatting are supported.

Based on the number of sectors, the format function automatically compute the smallest possible value for the cluster size in
order to accommodate the physical size of the media. In this case, if a media with a big capacity is formatted, the format
function may take a very long time to write all the FAT tables.

Therefore, the FORMAT_SECTORS_PER_CLUSTER macro may be used to specify the exact cluster size (in multiples of
sector size). This macro can be defined in FSconfig.h

Remarks

Only devices with a sector size of 512 bytes are supported by the format function

Preconditions

The device must possess a valid master boot record.

Parameters

Parameters Description

mode • 0 - Just erase the FAT and root

• 1 - Create a new boot sector

serialNumber Serial number to write to the card

volumeID Name of the card

Return Values

Return Values Description

0 Format was successful

EOF Format was unsuccessful

Function

int FSformat (char mode, long int serialNumber, char * volumeID)

6.1.1.26 FSCreateMBR
Creates a master boot record

File

FSIO.h

MDDFS Interface Library Help

48

6

C

int FSCreateMBR(
 unsigned long firstSector,
 unsigned long numSectors
);

Side Effects

None

Description

This function can be used to create a master boot record for a device. Note that this function should not be used on a device
that is already formatted with a master boot record (i.e. most SD cards, CF cards, USB keys). This function will fill the global
data buffer with appropriate partition information for a FAT partition with a type determined by the number of sectors
available to the partition. It will then write the MBR information to the first sector on the device. This function should be
followed by a call to FSformat, which will create a boot sector, root dir, and FAT appropriate the the information contained in
the new master boot record. Note that FSformat only supports FAT12 and FAT16 formatting at this time, and so cannot be
used to format a device with more than 0x3FFD5F sectors.

Remarks

This function can damage the device being used, and should not be called unless the user is sure about the size of the
device and the first sector value.

Preconditions

The I/O pins for the device have been initialized by the InitIO function.

Parameters

Parameters Description

firstSector The first sector of the partition on the device (cannot be 0; that's the MBR)

numSectors The number of sectors available in memory (including the MBR)

Return Values

Return Values Description

0 MBR was created successfully

EOF MBR could not be created

Function

int FSCreateMBR (unsigned long firstSector, unsigned long numSectors)

6.1.1.27 FSGetDiskProperties
Allows user to get the disk properties (size of disk, free space, etc)

File

FSIO.h

C

void FSGetDiskProperties(
 FS_DISK_PROPERTIES* properties
);

Side Effects

Can cause errors if called when files are open. Close all files before calling this function.

Calling this function without setting the new_request member on the first call can result in undefined behavior and results.

Calling this function after a result is returned other than FS_GET_PROPERTIES_STILL_WORKING can result in undefined
behavior and results.

MDDFS Interface Library Help

49

6

Description

This function returns the information about the mounted drive. The results member of the properties object passed into the
function is populated with the information about the drive.

Before starting a new request, the new_request member of the properties input parameter should be set to TRUE. This will
initiate a new search request.

This function will return before the search is complete with partial results. All of the results except the free_clusters will be
correct after the first call. The free_clusters will contain the number of free clusters found up until that point, thus the
free_clusters result will continue to grow until the entire drive is searched. If an application only needs to know that a certain
number of bytes is available and doesn't need to know the total free size, then this function can be called until the required
free size is verified. To continue a search, pass a pointer to the same FS_DISK_PROPERTIES object that was passed in to
create the search.

A new search request sould be made once this function has returned a value other than
FS_GET_PROPERTIES_STILL_WORKING. Continuing a completed search can result in undefined behavior or results.

Typical Usage:

FS_DISK_PROPERTIES disk_properties;

disk_properties.new_request = TRUE;

do
{
 FSGetDiskProperties(&disk_properties);
} while (disk_properties.properties_status == FS_GET_PROPERTIES_STILL_WORKING);

results.disk_format - contains the format of the drive. Valid results are FAT12(1), FAT16(2), or FAT32(3).

results.sector_size - the sector size of the mounted drive. Valid values are 512, 1024, 2048, and 4096.

results.sectors_per_cluster - the number sectors per cluster.

results.total_clusters - the number of total clusters on the drive. This can be used to calculate the total disk size
(total_clusters * sectors_per_cluster * sector_size = total size of drive in bytes)

results.free_clusters - the number of free (unallocated) clusters on the drive. This can be used to calculate the total free disk
size (free_clusters * sectors_per_cluster * sector_size = total size of drive in bytes)

Remarks

PIC24F size estimates: Flash - 400 bytes (-Os setting)

PIC24F speed estimates: Search takes approximately 7 seconds per Gigabyte of drive space. Speed will vary based on the
number of sectors per cluster and the sector size.

Preconditions

1) ALLOW_GET_DISK_PROPERTIES must be defined in FSconfig.h 2) a FS_DISK_PROPERTIES object must be created
before the function is called 3) the new_request member of the FS_DISK_PROPERTIES object must be set before calling
the function for the first time. This will start a new search. 4) this function should not be called while there is a file open.
Close all files before calling this function.

Parameters

Parameters Description

properties a pointer to a FS_DISK_PROPERTIES object where the results should be
stored.

Return Values

Return Values Description

following possible values

FS_GET_PROPERTIES_NO_ERRORS operation completed without error. Results are in the properties object
passed into the function.

MDDFS Interface Library Help

50

6

FS_GET_PROPERTIES_DISK_NOT_MOUNTED there is no mounted disk. Results in properties object is not valid

FS_GET_PROPERTIES_CLUSTER_FAILURE there was a failure trying to read a cluster from the drive. The results in
the properties object is a partial result up until the point of the failure.

FS_GET_PROPERTIES_STILL_WORKING the search for free sectors is still in process. Continue calling this
function with the same properties pointer until either the function
completes or until the partial results meets the application needs. The
properties object contains the partial results of the search and can be
used by the application.

Function

void FSGetDiskProperties(FS_DISK_PROPERTIES* properties)

6.1.1.28 FSgetcwd
Get the current working directory path in Ascii format

File

FSIO.h

C

char * FSgetcwd(
 char * path,
 int numbchars
);

Side Effects

The FSerrno variable will be changed

Description

Get the current working directory path in Ascii format. The FSgetcwd function will get the name of the current working
directory and return it to the user. The name will be copied into the buffer pointed to by 'path,' starting at the root directory
and copying as many chars as possible before the end of the buffer. The buffer size is indicated by the 'numchars' argument.
The first thing this function will do is load the name of the current working directory, if it isn't already present. This could
occur if the user switched to the dotdot entry of a subdirectory immediately before calling this function. The function will then
copy the current working directory name into the buffer backwards, and insert a backslash character. Next, the function will
continuously switch to the previous directories and copy their names backwards into the buffer until it reaches the root. If the
buffer overflows, it will be treated as a circular buffer, and data will be copied over existing characters, starting at the
beginning. Once the root directory is reached, the text in the buffer will be swapped, so that the buffer contains as much of
the current working directory name as possible, starting at the root.

Remarks

None

Preconditions

None

Parameters

Parameters Description

path Pointer to the array to return the cwd name in

numchars Number of chars in the path

Return Values

Return Values Description

char * The cwd name string pointer (path or defaultArray)

NULL The current working directory name could not be loaded.

MDDFS Interface Library Help

51

6

Function

char * FSgetcwd (char * path, int numchars)

6.1.1.29 wFSgetcwd
Get the current working directory path in UTF16 format

File

FSIO.h

C

char * wFSgetcwd(
 unsigned short int * path,
 int numbchars
);

Side Effects

The FSerrno variable will be changed

Description

Get the current working directory path in UTF16 format. The FSgetcwd function will get the name of the current working
directory and return it to the user. The name will be copied into the buffer pointed to by 'path,' starting at the root directory
and copying as many chars as possible before the end of the buffer. The buffer size is indicated by the 'numchars' argument.
The first thing this function will do is load the name of the current working directory, if it isn't already present. This could
occur if the user switched to the dotdot entry of a subdirectory immediately before calling this function. The function will then
copy the current working directory name into the buffer backwards, and insert a backslash character. Next, the function will
continuously switch to the previous directories and copy their names backwards into the buffer until it reaches the root. If the
buffer overflows, it will be treated as a circular buffer, and data will be copied over existing characters, starting at the
beginning. Once the root directory is reached, the text in the buffer will be swapped, so that the buffer contains as much of
the current working directory name as possible, starting at the root.

Remarks

None

Preconditions

None

Parameters

Parameters Description

path Pointer to the array to return the cwd name in

numchars Number of chars in the path

Return Values

Return Values Description

char * The cwd name string pointer (path or defaultArray)

NULL The current working directory name could not be loaded.

Function

char * wFSgetcwd (unsigned short int * path, int numchars)

6.1.1.30 FSmkdir
Creates a directory as per the ascii input path (PIC24/PIC32/dsPIC)

MDDFS Interface Library Help

52

6

File

FSIO.h

C

int FSmkdir(
 char * path
);

Side Effects

Will create all non-existent directories in the path. The FSerrno variable will be changed.

Description

Creates a directory as per the ascii input path (PIC24/PIC32/dsPIC). This function doesn't move the current working
directory setting.

Remarks

None

Preconditions

None

Parameters

Parameters Description

path The path of directories to create.

Return Values

Return Values Description

0 The specified directory was created successfully

EOF The specified directory could not be created

Function

int FSmkdir (char * path)

6.1.1.31 FSmkdirpgm
Creates a directory as per the path mentioned in the input string on PIC18 devices.

File

FSIO.h

C

int FSmkdirpgm(
 const rom char * path
);

Side Effects

Will create all non-existent directories in the path. The FSerrno variable will be changed.

Description

Creates a directory as per the path mentioned in the input string on PIC18 devices.'FSmkdirpgm' creates the directories as
per the input string path.This function doesn't move the current working directory setting.

Remarks

This function is for use with PIC18 when passing arugments in ROM

Preconditions

None

MDDFS Interface Library Help

53

6

Parameters

Parameters Description

path The path of directories to create (ROM)

Return Values

Return Values Description

0 The specified directory was created successfully

EOF The specified directory could not be created

Function

int FSmkdirpgm (const rom char * path)

6.1.1.32 wFSmkdir
Creates a directory as per the UTF16 input path (PIC24/PIC32/dsPIC)

File

FSIO.h

C

int wFSmkdir(
 unsigned short int * path
);

Side Effects

Will create all non-existent directories in the path. The FSerrno variable will be changed.

Description

Creates a directory as per the UTF16 input path (PIC24/PIC32/dsPIC). This function doesn't move the current working
directory setting.

Remarks

None

Preconditions

None

Parameters

Parameters Description

path The path of directories to create.

Return Values

Return Values Description

0 The specified directory was created successfully

EOF The specified directory could not be created

Function

int wFSmkdir (unsigned short int * path)

6.1.1.33 FSchdir
Changes the current working directory to the ascii input path(PIC24/PIC32/dsPIC)

MDDFS Interface Library Help

54

6

File

FSIO.h

C

int FSchdir(
 char * path
);

Side Effects

The current working directory may be changed. The FSerrno variable will be changed.

Description

Changes the current working directory to the ascii input path(PIC24/PIC32/dsPIC). The FSchdir function passes a RAM
pointer to the path to the chdirhelper function.

Remarks

None

Preconditions

None

Parameters

Parameters Description

path The path of the directory to change to.

Return Values

Return Values Description

0 The current working directory was changed successfully

EOF The current working directory could not be changed

Function

int FSchdir (char * path)

6.1.1.34 FSchdirpgm
Changes the CWD to the input path on PIC18

File

FSIO.h

C

int FSchdirpgm(
 const rom char * path
);

Side Effects

The current working directory may be changed. The FSerrno variable will be changed.

Description

Changes the CWD to the input path on PIC18.The FSchdirpgm function passes a PIC18 ROM path pointer to the
chdirhelper function.

Remarks

This function is for use with PIC18 when passing arguments in ROM

Preconditions

None

MDDFS Interface Library Help

55

6

Parameters

Parameters Description

path The path of the directory to change to (ROM)

Return Values

Return Values Description

0 The current working directory was changed successfully

EOF The current working directory could not be changed

Function

int FSchdirpgm (const rom char * path)

6.1.1.35 wFSchdir
Change the current working directory as per the path specified in UTF16 format (PIC24/PIC32/dsPIC)

File

FSIO.h

C

int wFSchdir(
 unsigned short int * path
);

Side Effects

The current working directory may be changed. The FSerrno variable will be changed.

Description

Change the current working directory as per the path specified in UTF16 format (PIC24/PIC32/dsPIC).The FSchdir function
passes a RAM pointer to the path to the chdirhelper function.

Remarks

None

Preconditions

None

Parameters

Parameters Description

path The path of the directory to change to.

Return Values

Return Values Description

0 The current working directory was changed successfully

EOF The current working directory could not be changed

Function

int wFSchdir (unsigned short int * path)

6.1.1.36 FSrmdir
Deletes the directory as per the ascii input path (PIC24/PIC32/dsPIC).

MDDFS Interface Library Help

56

6

File

FSIO.h

C

int FSrmdir(
 char * path,
 unsigned char rmsubdirs
);

Side Effects

The FSerrno variable will be changed.

Description

Deletes the directory as per the ascii input path (PIC24/PIC32/dsPIC). This function wont delete the current working directory.

Remarks

None.

Preconditions

None

Parameters

Parameters Description

path The path of the directory to remove

rmsubdirs • TRUE - All sub-dirs and files in the target dir will be removed

• FALSE - FSrmdir will not remove non-empty directories

Return Values

Return Values Description

0 The specified directory was deleted successfully

EOF The specified directory could not be deleted

Function

int FSrmdir (char * path)

6.1.1.37 FSrmdirpgm
Deletes the directory as per the ascii input path (PIC18).

File

FSIO.h

C

int FSrmdirpgm(
 const rom char * path,
 unsigned char rmsubdirs
);

Side Effects

The FSerrno variable will be changed.

Description

Deletes the directory as per the ascii input path (PIC18). This function deletes the directory as specified in the path. This
function wont delete the current working directory.

MDDFS Interface Library Help

57

6

Remarks

This function is for use with PIC18 when passing arguments in ROM.

Preconditions

None.

Parameters

Parameters Description

path The path of the directory to remove (ROM)

rmsubdirs • TRUE - All sub-dirs and files in the target dir will be removed

• FALSE - FSrmdir will not remove non-empty directories

Return Values

Return Values Description

0 The specified directory was deleted successfully

EOF The specified directory could not be deleted

Function

int FSrmdirpgm (const rom char * path)

6.1.1.38 wFSrmdir
Deletes the directory as per the UTF16 input path (PIC24/PIC32/dsPIC).

File

FSIO.h

C

int wFSrmdir(
 unsigned short int * path,
 unsigned char rmsubdirs
);

Side Effects

The FSerrno variable will be changed.

Description

Deletes the directory as per the UTF16 input path (PIC24/PIC32/dsPIC). This function wont delete the current working
directory.

Remarks

None.

Preconditions

None

Parameters

Parameters Description

path The path of the directory to remove

rmsubdirs • TRUE - All sub-dirs and files in the target dir will be removed

• FALSE - FSrmdir will not remove non-empty directories

MDDFS Interface Library Help

58

6

Return Values

Return Values Description

0 The specified directory was deleted successfully

EOF The specified directory could not be deleted

Function

int wFSrmdir (unsigned short int * path, unsigned char rmsubdirs)

6.1.1.39 intmax_t
A data type indicating the maximum integer size in an architecture

File

FSIO.h

C

#define intmax_t long long

Description

The intmax_t data type refers to the maximum-sized data type on any given architecture. This data type can be specified as
a format specifier size specification for the FSfprintf function.

6.1.2 Types

Enumerations

Name Description

CETYPE An enumeration used for various error codes.

_CETYPE An enumeration used for various error codes.

Structures

Name Description

FSFILE Contains file information and is used to indicate which file to access.

SearchRec A structure used for searching for files on a device.

Description

The following enum & structure API types are necessary to be known by the user application.

6.1.2.1 CETYPE
An enumeration used for various error codes.

File

FSDefs.h

C

typedef enum _CETYPE {
 CE_GOOD = 0,
 CE_ERASE_FAIL,
 CE_NOT_PRESENT,
 CE_NOT_FORMATTED,
 CE_BAD_PARTITION,
 CE_UNSUPPORTED_FS,

MDDFS Interface Library Help

59

6

 CE_INIT_ERROR,
 CE_NOT_INIT,
 CE_BAD_SECTOR_READ,
 CE_WRITE_ERROR,
 CE_INVALID_CLUSTER,
 CE_FILE_NOT_FOUND,
 CE_DIR_NOT_FOUND,
 CE_BAD_FILE,
 CE_DONE,
 CE_COULD_NOT_GET_CLUSTER,
 CE_FILENAME_2_LONG,
 CE_FILENAME_EXISTS,
 CE_INVALID_FILENAME,
 CE_DELETE_DIR,
 CE_DIR_FULL,
 CE_DISK_FULL,
 CE_DIR_NOT_EMPTY,
 CE_NONSUPPORTED_SIZE,
 CE_WRITE_PROTECTED,
 CE_FILENOTOPENED,
 CE_SEEK_ERROR,
 CE_BADCACHEREAD,
 CE_CARDFAT32,
 CE_READONLY,
 CE_WRITEONLY,
 CE_INVALID_ARGUMENT,
 CE_TOO_MANY_FILES_OPEN,
 CE_UNSUPPORTED_SECTOR_SIZE
} CETYPE;

Members

Members Description

CE_GOOD = 0 No error

CE_ERASE_FAIL An erase failed

CE_NOT_PRESENT No device was present

CE_NOT_FORMATTED The disk is of an unsupported format

CE_BAD_PARTITION The boot record is bad

CE_UNSUPPORTED_FS The file system type is unsupported

CE_INIT_ERROR An initialization error has occured

CE_NOT_INIT An operation was performed on an uninitialized device

CE_BAD_SECTOR_READ A bad read of a sector occured

CE_WRITE_ERROR Could not write to a sector

CE_INVALID_CLUSTER Invalid cluster value > maxcls

CE_FILE_NOT_FOUND Could not find the file on the device

CE_DIR_NOT_FOUND Could not find the directory

CE_BAD_FILE File is corrupted

CE_DONE No more files in this directory

CE_COULD_NOT_GET_CLUSTER Could not load/allocate next cluster in file

CE_FILENAME_2_LONG A specified file name is too long to use

CE_FILENAME_EXISTS A specified filename already exists on the device

CE_INVALID_FILENAME Invalid file name

CE_DELETE_DIR The user tried to delete a directory with FSremove

CE_DIR_FULL All root dir entry are taken

CE_DISK_FULL All clusters in partition are taken

CE_DIR_NOT_EMPTY This directory is not empty yet, remove files before deleting

CE_NONSUPPORTED_SIZE The disk is too big to format as FAT16

CE_WRITE_PROTECTED Card is write protected

CE_FILENOTOPENED File not opened for the write

MDDFS Interface Library Help

60

6

CE_SEEK_ERROR File location could not be changed successfully

CE_BADCACHEREAD Bad cache read

CE_CARDFAT32 FAT 32 - card not supported

CE_READONLY The file is read-only

CE_WRITEONLY The file is write-only

CE_INVALID_ARGUMENT Invalid argument

CE_TOO_MANY_FILES_OPEN Too many files are already open

CE_UNSUPPORTED_SECTOR_SIZE Unsupported sector size

Description

The CETYPE enumeration is used to indicate different error conditions during device operation.

6.1.2.2 FSFILE
Contains file information and is used to indicate which file to access.

File

FSIO.h

C

typedef struct {
 DISK * dsk;
 DWORD cluster;
 DWORD ccls;
 WORD sec;
 WORD pos;
 DWORD seek;
 DWORD size;
 FILEFLAGS flags;
 WORD time;
 WORD date;
 char name[FILE_NAME_SIZE_8P3];
 BOOL AsciiEncodingType;
 unsigned short int * utf16LFNptr;
 unsigned short int utf16LFNlength;
 WORD entry;
 WORD chk;
 WORD attributes;
 DWORD dirclus;
 DWORD dirccls;
} FSFILE;

Members

Members Description

DISK * dsk; Pointer to a DISK structure

DWORD cluster; The first cluster of the file

DWORD ccls; The current cluster of the file

WORD sec; The current sector in the current cluster of the file

WORD pos; The position in the current sector

DWORD seek; The absolute position in the file

DWORD size; The size of the file

FILEFLAGS flags; A structure containing file flags

WORD time; The file's last update time

WORD date; The file's last update date

char name[FILE_NAME_SIZE_8P3]; The short name of the file

BOOL AsciiEncodingType; Ascii file name or Non-Ascii file name indicator

unsigned short int * utf16LFNptr; Pointer to long file name in UTF16 format

MDDFS Interface Library Help

61

6

unsigned short int utf16LFNlength; LFN length in terms of words including the NULL word at the last.

WORD entry; The position of the file's directory entry in it's directory

WORD chk; File structure checksum

WORD attributes; The file attributes

DWORD dirclus; The base cluster of the file's directory

DWORD dirccls; The current cluster of the file's directory

Description

The FSFILE structure is used to hold file information for an open file as it's being modified or accessed. A pointer to an open
file's FSFILE structure will be passeed to any library function that will modify that file.

6.1.2.3 SearchRec
A structure used for searching for files on a device.

File

FSIO.h

C

typedef struct {
 char filename[FILE_NAME_SIZE_8P3 + 2];
 unsigned char attributes;
 unsigned long filesize;
 unsigned long timestamp;
 BOOL AsciiEncodingType;
 unsigned short int * utf16LFNfound;
 unsigned short int utf16LFNfoundLength;
 unsigned int entry;
 char searchname[FILE_NAME_SIZE_8P3 + 2];
 unsigned char searchattr;
 unsigned long cwdclus;
 unsigned char initialized;
} SearchRec;

Members

Members Description

char filename[FILE_NAME_SIZE_8P3 +
2];

The name of the file that has been found

unsigned char attributes; The attributes of the file that has been found

unsigned long filesize; The size of the file that has been found

unsigned long timestamp; The last modified time of the file that has been found (create time for directories)

BOOL AsciiEncodingType; Ascii file name or Non-Ascii file name indicator

unsigned short int * utf16LFNfound; Pointer to long file name found in UTF16 format

unsigned short int utf16LFNfoundLength; LFN Found length in terms of words including the NULL word at the last.

unsigned int entry; The directory entry of the last file found that matches the specified attributes.
(Internal use only)

char searchname[FILE_NAME_SIZE_8P3
+ 2];

The 8.3 format name specified when the user began the search. (Internal use
only)

unsigned char searchattr; The attributes specified when the user began the search. (Internal use only)

unsigned long cwdclus; The directory that this search was performed in. (Internal use only)

unsigned char initialized; Check to determine if the structure was initialized by FindFirst (Internal use only)

Description

The SearchRec structure is used when searching for file on a device. It contains parameters that will be loaded with file
information when a file is found. It also contains the parameters that the user searched for, allowing further searches to be
perfomed in the same directory for additional files that meet the specified criteria.

MDDFS Interface Library Help

62

6

6.1.3 Macros

Macros

Name Description

MDD_InitIO Function pointer to the I/O Initialization Physical Layer function

MDD_MediaInitialize Function pointer to the Media Initialize Physical Layer function

MDD_ReadCapacity Function pointer to the Read Capacity Physical Layer function

MDD_ReadSectorSize Function pointer to the Read Sector Size Physical Layer Function

MDD_SectorRead Function pointer to the Sector Read Physical Layer function

MDD_SectorWrite Function pointer to the Sector Write Physical Layer function

MDD_ShutdownMedia Function pointer to the Media Shutdown Physical Layer function

MDD_WriteProtectState Function pointer to the Write Protect Check Physical Layer function

ALLOW_DIRS A macro to enable/disable directory operations.

ALLOW_FILESEARCH A macro to enable/disable file search functions.

ALLOW_FORMATS A macro to enable/disable format functionality

ALLOW_WRITES A macro to enable/disable write functionality

FAT12 A macro indicating the device is formatted with FAT12

FAT16 A macro indicating the device is formatted with FAT16

FAT32 A macro indicating the device is formatted with FAT32

FILE_NAME_SIZE_8P3 MAcro indicating the length of an 8.3 file name in a directory entry

FS_DYNAMIC_MEM A macro indicating that FSFILE objects will be allocated dynamically

FS_MAX_FILES_OPEN A macro indicating the maximum number of concurrently open files

MAX_FILE_NAME_LENGTH_LFN Macro indicating the max length of a LFN file name

MAX_HEAP_SIZE A macro used to define the heap size for PIC18

MEDIA_SECTOR_SIZE A macro defining the size of a sector

SEEK_SET Macro for the FSfseek SEEK_SET base location.

SEEK_CUR Macro for the FSfseek SEEK_CUR base location.

SEEK_END Macro for the FSfseek SEEK_END base location

SUPPORT_FAT32 A macro to enable/disable FAT32 support.

SUPPORT_LFN A macro indicating whether Long File Name is supported

USE_SD_INTERFACE_WITH_SPI Macro used to enable the SD-SPI physical layer (SD-SPI.c and .h)

USEREALTIMECLOCK A macro to enable RTCC based timestamp generation

Description

The following macros are available for the user application.

6.1.3.1 MDD_InitIO
File

FSconfig.h

C

#define MDD_InitIO ;

Description

Function pointer to the I/O Initialization Physical Layer function

MDDFS Interface Library Help

63

6

6.1.3.2 MDD_MediaInitialize
File

FSconfig.h

C

#define MDD_MediaInitialize USBHostMSDSCSIMediaInitialize

Description

Function pointer to the Media Initialize Physical Layer function

6.1.3.3 MDD_ReadCapacity
File

FSconfig.h

C

#define MDD_ReadCapacity MDD_SDSPI_ReadCapacity

Description

Function pointer to the Read Capacity Physical Layer function

6.1.3.4 MDD_ReadSectorSize
File

FSconfig.h

C

#define MDD_ReadSectorSize MDD_SDSPI_ReadSectorSize

Description

Function pointer to the Read Sector Size Physical Layer Function

6.1.3.5 MDD_SectorRead
File

FSconfig.h

C

#define MDD_SectorRead USBHostMSDSCSISectorRead

Description

Function pointer to the Sector Read Physical Layer function

6.1.3.6 MDD_SectorWrite
File

FSconfig.h

MDDFS Interface Library Help

64

6

C

#define MDD_SectorWrite USBHostMSDSCSISectorWrite

Description

Function pointer to the Sector Write Physical Layer function

6.1.3.7 MDD_ShutdownMedia
File

FSconfig.h

C

#define MDD_ShutdownMedia USBHostMSDSCSIMediaReset

Description

Function pointer to the Media Shutdown Physical Layer function

6.1.3.8 MDD_WriteProtectState
File

FSconfig.h

C

#define MDD_WriteProtectState USBHostMSDSCSIWriteProtectState

Description

Function pointer to the Write Protect Check Physical Layer function

6.1.3.9 ALLOW_DIRS
A macro to enable/disable directory operations.

File

FSconfig.h

C

#define ALLOW_DIRS

Description

The ALLOW_DIRS definition can be commented out to disable all directory functionality. This will reduce code size. If
directories are enabled, write operations must also be enabled by uncommenting ALLOW_WRITES in order to use the
FSmkdir or FSrmdir functions.

6.1.3.10 ALLOW_FILESEARCH
A macro to enable/disable file search functions.

File

FSconfig.h

C

#define ALLOW_FILESEARCH

MDDFS Interface Library Help

65

6

Description

The ALLOW_FILESEARCH definition can be commented out to disable file search functions in the library. This will prevent
the use of the FindFirst and FindNext functions and reduce code size.

6.1.3.11 ALLOW_FORMATS
A macro to enable/disable format functionality

File

FSconfig.h

C

#define ALLOW_FORMATS

Description

The ALLOW_FORMATS definition can be commented out to disable formatting functionality. This will prevent the use of the
FSformat function. If formats are enabled, write operations must also be enabled by uncommenting ALLOW_WRITES.

6.1.3.12 ALLOW_WRITES
A macro to enable/disable write functionality

File

FSconfig.h

C

#define ALLOW_WRITES

Description

The ALLOW_WRITES definition can be commented out to disable all operations that write to the device. This will greatly
reduce code size.

6.1.3.13 FAT12
A macro indicating the device is formatted with FAT12

File

FSDefs.h

C

#define FAT12 1

Description

The FAT12 macro is used to indicate that the file system on the device being accessed is a FAT12 file system.

6.1.3.14 FAT16
A macro indicating the device is formatted with FAT16

File

FSDefs.h

MDDFS Interface Library Help

66

6

C

#define FAT16 2

Description

The FAT16 macro is used to indicate that the file system on the device being accessed is a FAT16 file system.

6.1.3.15 FAT32
A macro indicating the device is formatted with FAT32

File

FSDefs.h

C

#define FAT32 3

Description

The FAT32 macro is used to indicate that the file system on the device being accessed is a FAT32 file system.

6.1.3.16 FILE_NAME_SIZE_8P3
MAcro indicating the length of an 8.3 file name in a directory entry

File

FSIO.h

C

#define FILE_NAME_SIZE_8P3 11

Description

The FILE_NAME_SIZE_8P3 macro indicates the number of characters that an 8.3 file name will take up when packed in a
directory entry. This value includes 8 characters for the name and 3 for the extension. Note that the radix is not stored in the
directory entry.

6.1.3.17 FS_DYNAMIC_MEM
A macro indicating that FSFILE objects will be allocated dynamically

File

FSconfig.h

C

#define FS_DYNAMIC_MEM

Description

The FS_DYNAMIC_MEM macro will cause FSFILE objects to be allocated from a dynamic heap. If it is undefined, the file
objects will be allocated using a static array.

6.1.3.18 FS_MAX_FILES_OPEN
A macro indicating the maximum number of concurrently open files

MDDFS Interface Library Help

67

6

File

FSconfig.h

C

#define FS_MAX_FILES_OPEN 3

Description

The FS_MAX_FILES_OPEN #define is only applicable when dynamic memory allocation is not used (FS_DYNAMIC_MEM
is not defined). This macro defines the maximum number of open files at any given time. The amount of RAM used by
FSFILE objects will be equal to the size of an FSFILE object multipled by this macro value. This value should be kept as
small as possible as dictated by the application. This will reduce memory usage.

6.1.3.19 MAX_FILE_NAME_LENGTH_LFN
Macro indicating the max length of a LFN file name

File

FSIO.h

C

#define MAX_FILE_NAME_LENGTH_LFN 256

Description

The MAX_FILE_NAME_LENGTH_LFN macro indicates the maximum number of characters in an LFN file name.

6.1.3.20 MAX_HEAP_SIZE
A macro used to define the heap size for PIC18

File

salloc.c

C

#define MAX_HEAP_SIZE 0x100

Description

When using dynamic FSFILE object allocation with PIC18, the MAX_HEAP_SIZE will allow the user to specify the size of the
dynamic heap to use

6.1.3.21 MEDIA_SECTOR_SIZE
A macro defining the size of a sector

File

FSconfig.h

C

#define MEDIA_SECTOR_SIZE 512

Description

The MEDIA_SECTOR_SIZE macro will define the size of a sector on the FAT file system. This value must equal 512 bytes,
1024 bytes, 2048 bytes, or 4096 bytes. The value of a sector will usually be 512 bytes.

MDDFS Interface Library Help

68

6

6.1.3.22 SEEK_SET
Macro for the FSfseek SEEK_SET base location.

File

FSIO.h

C

#define SEEK_SET 0

Description

Functions as an input for FSfseek that specifies that the position in the file will be changed relative to the beginning of the file.

6.1.3.23 SEEK_CUR
Macro for the FSfseek SEEK_CUR base location.

File

FSIO.h

C

#define SEEK_CUR 1

Description

Functions as an input for FSfseek that specifies that the position in the file will be changed relative to the current location of
the file

6.1.3.24 SEEK_END
Macro for the FSfseek SEEK_END base location

File

FSIO.h

C

#define SEEK_END 2

Description

Functions as an input for FSfseek that specifies that the position in the file will be changed relative to the end of the file. For
this macro, the offset value will be subtracted from the end location of the file by default.

6.1.3.25 SUPPORT_FAT32
A macro to enable/disable FAT32 support.

File

FSconfig.h

C

#define SUPPORT_FAT32

Description

The SUPPORT_FAT32 definition can be commented out to disable support for FAT32 functionality. This will save a small
amount of code space.

MDDFS Interface Library Help

69

6

6.1.3.26 SUPPORT_LFN
A macro indicating whether Long File Name is supported

File

FSconfig.h

C

#define SUPPORT_LFN

Description

If this macro is disabled then only 8.3 format file name is enabled. If this macro is enabled then long file names upto 256
characters are supported.

6.1.3.27 USE_SD_INTERFACE_WITH_SPI
File

HardwareProfile.h

C

#define USE_SD_INTERFACE_WITH_SPI

Description

Macro used to enable the SD-SPI physical layer (SD-SPI.c and .h)

6.1.3.28 USEREALTIMECLOCK
A macro to enable RTCC based timestamp generation

File

FSconfig.h

C

#define USEREALTIMECLOCK

Description

The USEREALTIMECLOCK macro will configure the code to automatically generate timestamp information for files from the
RTCC module. The user must enable and configure the RTCC module before creating or modifying files.

6.2 SD-SPI Physical Layer
The SD-SPI physical layer offers the ability to interface SD cards using the SPI protocol.

MDDFS Interface Library Help

70

6

6.2.1 Functions

Functions

Name Description

MDD_SDSPI_MediaDetect Determines whether an SD card is present

MDD_SDSPI_InitIO Initializes the I/O lines connected to the card

MDD_SDSPI_MediaInitialize Initializes the SD card.

MDD_SDSPI_SectorRead Reads a sector of data from an SD card.

MDD_SDSPI_SectorWrite Writes a sector of data to an SD card.

MDD_SDSPI_ReadSectorSize Determines the current sector size on the SD card

MDD_SDSPI_ReadCapacity Determines the current capacity of the SD card

MDD_SDSPI_ShutdownMedia Disables the SD card

Description

The following driver functions are API's for FSIO layer.

6.2.1.1 MDD_SDSPI_MediaDetect
Determines whether an SD card is present

File

SD-SPI.h

C

BYTE MDD_SDSPI_MediaDetect();

Side Effects

None.

Description

The MDD_SDSPI_MediaDetect function determine if an SD card is connected to the microcontroller. If the
MEDIA_SOFT_DETECT is not defined, the detection is done by polling the SD card detect pin. The MicroSD connector does
not have a card detect pin, and therefore a software mechanism must be used. To do this, the SEND_STATUS command is
sent to the card. If the card is not answering with 0x00, the card is either not present, not configured, or in an error state. If
this is the case, we try to reconfigure the card. If the configuration fails, we consider the card not present (it still may be
present, but malfunctioning). In order to use the software card detect mechanism, the MEDIA_SOFT_DETECT macro must
be defined.

Remarks

None

Preconditions

The MDD_MediaDetect function pointer must be configured to point to this function in FSconfig.h

Return Values

Return Values Description

TRUE Card detected

FALSE No card detected

Function

BYTE MDD_SDSPI_MediaDetect

MDDFS Interface Library Help

71

6

6.2.1.2 MDD_SDSPI_InitIO
Initializes the I/O lines connected to the card

File

SD-SPI.h

C

void MDD_SDSPI_InitIO();

Side Effects

None.

Returns

None

Description

The MDD_SDSPI_InitIO function initializes the I/O pins connected to the SD card.

Remarks

None

Preconditions

MDD_MediaInitialize() is complete. The MDD_InitIO function pointer is pointing to this function.

Function

WORD MDD_SDSPI_InitIO (void)

6.2.1.3 MDD_SDSPI_MediaInitialize
Initializes the SD card.

File

SD-SPI.c

C

MEDIA_INFORMATION * MDD_SDSPI_MediaInitialize();

Side Effects

None.

Description

This function will send initialization commands to and SD card.

Remarks

Psuedo code flow for the media initialization process is as follows:

SD Card SPI Initialization Sequence (for physical layer v1.x or v2.0 device) is as follows:

0. Power up tasks a. Initialize microcontroller SPI module to no more than 400kbps rate so as to support MMC devices. b.
Add delay for SD card power up, prior to sending it any commands. It wants the longer of: 1ms, the Vdd ramp time (time
from 2.7V to Vdd stable), and 74+ clock pulses.

MDDFS Interface Library Help

72

6

1. Send CMD0 (GO_IDLE_STATE) with CS = 0. This puts the media in SPI mode and software resets the SD/MMC card.

2. Send CMD8 (SEND_IF_COND). This requests what voltage the card wants to run at.

Some cards will not support this command. a. If illegal command response is received, this implies either a v1.x physical
spec device, or not an SD card (ex: MMC). b. If normal response is received, then it must be a v2.0 or later SD memory
card.

If v1.x device:

3. Send CMD1 repeatedly, until initialization complete (indicated by R1 response byte/idle bit == 0)

4. Basic initialization is complete. May now switch to higher SPI frequencies.

5. Send CMD9 to read the CSD structure. This will tell us the total flash size and other info which will be useful later.

6. Parse CSD structure bits (based on v1.x structure format) and extract useful information about the media.

7. The card is now ready to perform application data transfers.

If v2.0+ device:

3. Verify the voltage range is feasible. If not, unusable card, should notify user that the card is incompatible with this host.

4. Send CMD58 (Read OCR).

5. Send CMD55, then ACMD41 (SD_SEND_OP_COND, with HCS = 1). a. Loop CMD55/ACMD41 until R1 response byte
== 0x00 (indicating the card is no longer busy/no longer in idle state).

6. Send CMD58 (Get CCS). a. If CCS = 1 --> SDHC card. b. If CCS = 0 --> Standard capacity SD card (which is v2.0+).

7. Basic initialization is complete. May now switch to higher SPI frequencies.

8. Send CMD9 to read the CSD structure. This will tell us the total flash size and other info which will be useful later.

9. Parse CSD structure bits (based on v2.0 structure format) and extract useful information about the media.

10. The card is now ready to perform application data transfers.

Preconditions

The MDD_MediaInitialize function pointer must be pointing to this function.

Return Values

Return Values Description

errorCode member may contain the
following values

• MEDIA_NO_ERROR - The media initialized successfully

• MEDIA_CANNOT_INITIALIZE - Cannot initialize the media.

Function

MEDIA_INFORMATION * MDD_SDSPI_MediaInitialize (void)

6.2.1.4 MDD_SDSPI_SectorRead
Reads a sector of data from an SD card.

File

SD-SPI.h

C

BYTE MDD_SDSPI_SectorRead(
 DWORD sector_addr,
 BYTE* buffer
);

MDDFS Interface Library Help

73

6

Side Effects

None

Description

The MDD_SDSPI_SectorRead function reads a sector of data bytes (512 bytes) of data from the SD card starting at the
sector address and stores them in the location pointed to by 'buffer.'

Remarks

The card expects the address field in the command packet to be a byte address. The sector_addr value is converted to a
byte address by shifting it left nine times (multiplying by 512).

This function performs a synchronous read operation. In other words, this function is a blocking function, and will not return
until either the data has fully been read, or, a timeout or other error occurred.

Preconditions

The MDD_SectorRead function pointer must be pointing towards this function.

Parameters

Parameters Description

sector_addr The address of the sector on the card.

buffer The buffer where the retrieved data will be stored. If buffer is NULL, do not
store the data anywhere.

Return Values

Return Values Description

TRUE The sector was read successfully

FALSE The sector could not be read

Function

BYTE MDD_SDSPI_SectorRead (DWORD sector_addr, BYTE * buffer)

6.2.1.5 MDD_SDSPI_SectorWrite
Writes a sector of data to an SD card.

File

SD-SPI.h

C

BYTE MDD_SDSPI_SectorWrite(
 DWORD sector_addr,
 BYTE* buffer,
 BYTE allowWriteToZero
);

Side Effects

None.

Description

The MDD_SDSPI_SectorWrite function writes one sector of data (512 bytes) of data from the location pointed to by 'buffer'
to the specified sector of the SD card.

Remarks

The card expects the address field in the command packet to be a byte address. The sector_addr value is ocnverted to a
byte address by shifting it left nine times (multiplying by 512).

MDDFS Interface Library Help

74

6

Preconditions

The MDD_SectorWrite function pointer must be pointing to this function.

Parameters

Parameters Description

sector_addr The address of the sector on the card.

buffer The buffer with the data to write.

allowWriteToZero • TRUE - Writes to the 0 sector (MBR) are allowed

• FALSE - Any write to the 0 sector will fail.

Return Values

Return Values Description

TRUE The sector was written successfully.

FALSE The sector could not be written.

Function

BYTE MDD_SDSPI_SectorWrite (DWORD sector_addr, BYTE * buffer, BYTE allowWriteToZero)

6.2.1.6 MDD_SDSPI_ReadSectorSize
Determines the current sector size on the SD card

File

SD-SPI.h

C

WORD MDD_SDSPI_ReadSectorSize();

Side Effects

None.

Returns

The size of the sectors for the physical media

Description

The MDD_SDSPI_ReadSectorSize function is used by the USB mass storage class to return the card's sector size to the PC
on request.

Remarks

None

Preconditions

MDD_MediaInitialize() is complete

Function

WORD MDD_SDSPI_ReadSectorSize (void)

6.2.1.7 MDD_SDSPI_ReadCapacity
Determines the current capacity of the SD card

File

SD-SPI.h

MDDFS Interface Library Help

75

6

C

DWORD MDD_SDSPI_ReadCapacity();

Side Effects

None.

Returns

The capacity of the device

Description

The MDD_SDSPI_ReadCapacity function is used by the USB mass storage class to return the total number of sectors on
the card.

Remarks

None

Preconditions

MDD_MediaInitialize() is complete

Function

DWORD MDD_SDSPI_ReadCapacity (void)

6.2.1.8 MDD_SDSPI_ShutdownMedia
Disables the SD card

File

SD-SPI.h

C

BYTE MDD_SDSPI_ShutdownMedia();

Side Effects

None.

Returns

None

Description

This function will disable the SPI port and deselect the SD card.

Remarks

None

Preconditions

The MDD_ShutdownMedia function pointer is pointing towards this function.

Function

BYTE MDD_SDSPI_ShutdownMedia (void)

6.3 CF Physical Layer
The CF physical layer files offer two methods to interface the CF cards.

MDDFS Interface Library Help

76

6

• The manual interface method bit-bangs the parallel interface protocol to the CF cards.

• The CF-PMP files interface the cards using the parallel master port on 16-bit PIC devices.

6.3.1 Functions

Functions

Name Description

MDD_CFBT_MediaDetect Determines if a card is inserted

MDD_CFBT_InitIO None

MDD_CFBT_MediaInitialize Return a MEDIA_INFORMATION structure to FSIO.c

MDD_CFBT_SectorRead SectorRead reads 512 bytes of data from the card starting at the sector
address specified by sector_addr and stores them in the location pointed to
by 'buffer'.

MDD_CFBT_SectorWrite SectorWrite sends 512 bytes of data from the location pointed to by 'buffer'
to the card starting at the sector address specified by sector_addr.

MDD_CFBT_WriteProtectState Added for compatibility- no write protect feature

MDD_CFBT_CFwait Wait until the card is ready

MDD_CFPMP_MediaDetect Determines if a card is inserted

MDD_CFPMP_InitIO None

MDD_CFPMP_MediaInitialize Return a MEDIA_INFORMATION structure to FSIO.c

MDD_CFPMP_SectorRead SectorRead reads 512 bytes of data from the card starting at the sector
address specified by sector_addr and stores them in the location pointed to
by 'buffer'.

MDD_CFPMP_SectorWrite SectorWrite sends 512 bytes of data from the location pointed to by 'buffer'
to the card starting at the sector address specified by sector_addr.

MDD_CFPMP_WriteProtectState Added for compatibility- no write protect feature

MDD_CFPMP_CFwait Wait until the card and PMP are ready

Description

The following driver functions are API's for FSIO layer.

6.3.1.1 MDD_CFBT_MediaDetect
File

CF- Bit transaction.h

C

BYTE MDD_CFBT_MediaDetect();

Side Effects

None

Returns

TRUE - Card present FALSE - Card absent

Description

Determines if a card is inserted

Remarks

None

MDDFS Interface Library Help

77

6

Preconditions

None

Function

BYTE MDD_CFBT_MediaDetect(void)

6.3.1.2 MDD_CFBT_InitIO
File

CF- Bit transaction.h

C

void MDD_CFBT_InitIO();

Side Effects

None

Returns

void

Description

None

Remarks

None

Preconditions

None

Function

void MDD_CFBT_InitIO(void)

6.3.1.3 MDD_CFBT_MediaInitialize
File

CF- Bit transaction.h

C

MEDIA_INFORMATION * MDD_CFBT_MediaInitialize();

Side Effects

None

Returns

MEDIA_NO_ERROR - The media initialized successfully

Description

Return a MEDIA_INFORMATION structure to FSIO.c

Remarks

None

Preconditions

None

MDDFS Interface Library Help

78

6

Function

BYTE MDD_CFBT_MediaInitialize(void)

6.3.1.4 MDD_CFBT_SectorRead
File

CF- Bit transaction.h

C

BYTE MDD_CFBT_SectorRead(
 DWORD lda,
 BYTE * buf
);

Side Effects

None

Returns

TRUE - Sector read FALSE - Sector could not be read

Description

SectorRead reads 512 bytes of data from the card starting at the sector address specified by sector_addr and stores them in
the location pointed to by 'buffer'.

Remarks

None

Preconditions

None

Parameters

Parameters Description

sector_addr Sector address, each sector contains 512-byte

buffer Buffer where data will be stored, see 'ram_acs.h' for 'block' definition. 'Block' is
dependent on whether internal or external memory is used

Function

BYTE MDD_CFBT_SectorRead(DWORD sector_addr, BYTE *buffer)

6.3.1.5 MDD_CFBT_SectorWrite
File

CF- Bit transaction.h

C

BYTE MDD_CFBT_SectorWrite(
 DWORD lda,
 BYTE * buf,
 BYTE allowWriteToZero
);

Side Effects

None

Returns

TRUE - Sector written FALSE - Sector could not be written

MDDFS Interface Library Help

79

6

Description

SectorWrite sends 512 bytes of data from the location pointed to by 'buffer' to the card starting at the sector address
specified by sector_addr.

Remarks

None

Preconditions

None

Parameters

Parameters Description

sector_addr Sector address, each sector contains 512 bytes

buffer Buffer where data will be read from

allowWriteToZero allows write to the MBR sector

Function

BYTE MDD_CFBT_SectorWrite(DWORD sector_addr, BYTE *buffer, BYTE allowWriteToZero)

6.3.1.6 MDD_CFBT_WriteProtectState
File

CF- Bit transaction.h

C

BYTE MDD_CFBT_WriteProtectState();

Side Effects

None

Returns

0

Description

Added for compatibility- no write protect feature

Remarks

None

Preconditions

None

Function

BYTE MDD_CFBT_WriteProtectState(void)

6.3.1.7 MDD_CFBT_CFwait
File

CF- Bit transaction.h

C

void MDD_CFBT_CFwait();

MDDFS Interface Library Help

80

6

Side Effects

None

Returns

None

Description

Wait until the card is ready

Remarks

None

Preconditions

None

Function

BYTE MDD_CFBT_CFwait(void)

6.3.1.8 MDD_CFPMP_MediaDetect
File

CF-PMP.h

C

BYTE MDD_CFPMP_MediaDetect();

Side Effects

None

Returns

TRUE - Card present FALSE - Card absent

Description

Determines if a card is inserted

Remarks

None

Preconditions

None

Function

BYTE MDD_CFPMP_MediaDetect(void)

6.3.1.9 MDD_CFPMP_InitIO
File

CF-PMP.h

C

void MDD_CFPMP_InitIO();

Side Effects

None

MDDFS Interface Library Help

81

6

Returns

TRUE - Card initialized FALSE - Card not initialized

Description

None

Remarks

None

Preconditions

None

Function

BYTE MDD_CFPMP_InitIO(void)

6.3.1.10 MDD_CFPMP_MediaInitialize
File

CF-PMP.h

C

MEDIA_INFORMATION * MDD_CFPMP_MediaInitialize();

Side Effects

None

Returns

MEDIA_NO_ERROR - The media initialized successfully

Description

Return a MEDIA_INFORMATION structure to FSIO.c

Remarks

None

Preconditions

None

Function

BYTE MDD_CFPMP_MediaInitialize(void)

6.3.1.11 MDD_CFPMP_SectorRead
File

CF-PMP.h

C

BYTE MDD_CFPMP_SectorRead(
 DWORD lda,
 BYTE * buf
);

Side Effects

None

MDDFS Interface Library Help

82

6

Returns

TRUE - Sector read FALSE - Sector could not be read

Description

SectorRead reads 512 bytes of data from the card starting at the sector address specified by sector_addr and stores them in
the location pointed to by 'buffer'.

Remarks

None

Preconditions

None

Parameters

Parameters Description

sector_addr Sector address, each sector contains 512-byte

buffer Buffer where data will be stored

Function

BYTE MDD_CFPMP_SectorRead(DWORD sector_addr, BYTE *buffer)

6.3.1.12 MDD_CFPMP_SectorWrite
File

CF-PMP.h

C

BYTE MDD_CFPMP_SectorWrite(
 DWORD lda,
 BYTE * buf,
 BYTE allowWriteToZero
);

Side Effects

None

Returns

TRUE - Sector written FALSE - Sector could not be written

Description

SectorWrite sends 512 bytes of data from the location pointed to by 'buffer' to the card starting at the sector address
specified by sector_addr.

Remarks

None

Preconditions

None

Parameters

Parameters Description

sector_addr Sector address, each sector contains 512 bytes

buffer Buffer where data will be read from

allowWriteToZero allows write to the MBR sector

MDDFS Interface Library Help

83

6

Function

BYTE MDD_CFPMP_SectorWrite(DWORD sector_addr, BYTE *buffer, BYTE allowWriteToZero)

6.3.1.13 MDD_CFPMP_WriteProtectState
File

CF-PMP.h

C

BYTE MDD_CFPMP_WriteProtectState();

Side Effects

None

Returns

0

Description

Added for compatibility- no write protect feature

Remarks

None

Preconditions

None

Function

BYTE MDD_CFPMP_WriteProtectState(void)

6.3.1.14 MDD_CFPMP_CFwait
File

CF-PMP.h

C

void MDD_CFPMP_CFwait();

Side Effects

None

Returns

None

Description

Wait until the card and PMP are ready

Remarks

None

Preconditions

None

Function

void MDD_CFPMP_CFwait(void)

MDDFS Interface Library Help

84

6

Index

_
_CETYPE enumeration 59

A
ALLOW_DIRS macro 65

ALLOW_FILESEARCH macro 65

ALLOW_FORMATS macro 66

ALLOW_WRITES macro 66

APIs 24

B
Boot sector 11

C
CE_BAD_FILE enumeration member 59

CE_BAD_PARTITION enumeration member 59

CE_BAD_SECTOR_READ enumeration member 59

CE_BADCACHEREAD enumeration member 59

CE_CARDFAT32 enumeration member 59

CE_COULD_NOT_GET_CLUSTER enumeration member 59

CE_DELETE_DIR enumeration member 59

CE_DIR_FULL enumeration member 59

CE_DIR_NOT_EMPTY enumeration member 59

CE_DIR_NOT_FOUND enumeration member 59

CE_DISK_FULL enumeration member 59

CE_DONE enumeration member 59

CE_ERASE_FAIL enumeration member 59

CE_FILE_NOT_FOUND enumeration member 59

CE_FILENAME_2_LONG enumeration member 59

CE_FILENAME_EXISTS enumeration member 59

CE_FILENOTOPENED enumeration member 59

CE_GOOD enumeration member 59

CE_INIT_ERROR enumeration member 59

CE_INVALID_ARGUMENT enumeration member 59

CE_INVALID_CLUSTER enumeration member 59

CE_INVALID_FILENAME enumeration member 59

CE_NONSUPPORTED_SIZE enumeration member 59

CE_NOT_FORMATTED enumeration member 59

CE_NOT_INIT enumeration member 59

CE_NOT_PRESENT enumeration member 59

CE_READONLY enumeration member 59

CE_SEEK_ERROR enumeration member 59

CE_TOO_MANY_FILES_OPEN enumeration member 59

CE_UNSUPPORTED_FS enumeration member 59

CE_UNSUPPORTED_SECTOR_SIZE enumeration member
59

CE_WRITE_ERROR enumeration member 59

CE_WRITE_PROTECTED enumeration member 59

CE_WRITEONLY enumeration member 59

CETYPE enumeration 59

CF Physical Layer 76

Cluster 11

Configuration 1: PIC18 Explorer Board 12

Configuration 2: Explorer 16 Board 12

Configuration 3: PIC24FJ256DA210 Development Board 13

Configuration using Explorer 16 Board 14

Configuration using PIC18 Explorer Board 13

Configuration using PIC24FJ256DA210 Development Board
15

Configuring Hardware 13

Configuring the library 22

Current Working Directory 11

D
Directory 11

E
Example Code 19

F
FAT 11

FAT12 macro 66

FAT16 macro 66

FAT32 macro 67

File Manipulation Layer (FSIO) 24

FILE_NAME_SIZE_8P3 macro 67

FindFirst function 33

FindFirstpgm function 34

FindNext function 36

Firmware 17

Firmware Directory Structure 16

MDDFS Interface Library Help

a

FS_DYNAMIC_MEM macro 67

FS_MAX_FILES_OPEN macro 67

FSattrib function 45

FSchdir function 54

FSchdirpgm function 55

FSCreateMBR function 48

FSerror function 41

FSfclose function 40

FSfeof function 40

FSFILE structure 61

FSfopen function 26

FSfopenpgm function 27

FSformat function 47

FSfprintf function 46

FSfread function 37

FSfseek function 38

FSftell function 39

FSfwrite function 36

FSgetcwd function 51

FSGetDiskProperties function 49

FSInit function 25

FSmkdir function 52

FSmkdirpgm function 53

FSremove function 30

FSremovepgm function 31

FSrename function 28

FSrenamepgm function 29

FSrewind function 47

FSrmdir function 56

FSrmdirpgm function 57

Functions 24, 71, 77

G
Getting Started 11

I
intmax_t macro 59

L
LFN 12

M
Macros 63

Master Boot Record 12

MAX_FILE_NAME_LENGTH_LFN macro 68

MAX_HEAP_SIZE macro 68

MDD_CFBT_CFwait function 80

MDD_CFBT_InitIO function 78

MDD_CFBT_MediaDetect function 77

MDD_CFBT_MediaInitialize function 78

MDD_CFBT_SectorRead function 79

MDD_CFBT_SectorWrite function 79

MDD_CFBT_WriteProtectState function 80

MDD_CFPMP_CFwait function 84

MDD_CFPMP_InitIO function 81

MDD_CFPMP_MediaDetect function 81

MDD_CFPMP_MediaInitialize function 82

MDD_CFPMP_SectorRead function 82

MDD_CFPMP_SectorWrite function 83

MDD_CFPMP_WriteProtectState function 84

MDD_InitIO macro 63

MDD_MediaInitialize macro 64

MDD_ReadCapacity macro 64

MDD_ReadSectorSize macro 64

MDD_SDSPI_InitIO function 72

MDD_SDSPI_MediaDetect function 71

MDD_SDSPI_MediaInitialize function 72

MDD_SDSPI_ReadCapacity function 75

MDD_SDSPI_ReadSectorSize function 75

MDD_SDSPI_SectorRead function 73

MDD_SDSPI_SectorWrite function 74

MDD_SDSPI_ShutdownMedia function 76

MDD_SectorRead macro 64

MDD_SectorWrite macro 64

MDD_ShutdownMedia macro 65

MDD_WriteProtectState macro 65

MEDIA_SECTOR_SIZE macro 68

Microchip MDD File System Interface Library 1

R
Release Notes 5

Required Hardware 12

MDDFS Interface Library Help

b

Root directory 12

Running the SD Card Demo 17

S
SD-SPI Physical Layer 70

SearchRec structure 62

Sector 12

SEEK_CUR macro 69

SEEK_END macro 69

SEEK_SET macro 69

SUPPORT_FAT32 macro 69

SUPPORT_LFN macro 70

SW License Agreement 2

T
Terminology 11

Types 59

U
USE_SD_INTERFACE_WITH_SPI macro 70

USEREALTIMECLOCK macro 70

W
wFindFirst function 34

wFSchdir function 56

wFSfopen function 27

wFSgetcwd function 52

wFSmkdir function 54

wFSremove function 32

wFSrename function 30

wFSrmdir function 58

MDDFS Interface Library Help

c

	MDDFS Interface Library Help
	Table of Contents
	Microchip MDD File System Interface Library
	SW License Agreement
	Release Notes
	Getting Started
	Terminology
	Boot sector
	Cluster
	Current Working Directory
	Directory
	FAT
	Master Boot Record
	Root directory
	Sector
	LFN

	Required Hardware
	Configuration 1: PIC18 Explorer Board
	Configuration 2: Explorer 16 Board
	Configuration 3: PIC24FJ256DA210 Development Board

	Configuring Hardware
	Configuration using PIC18 Explorer Board
	Configuration using Explorer 16 Board
	Configuration using PIC24FJ256DA210 Development Board

	Firmware Directory Structure
	Firmware
	Running the SD Card Demo
	Example Code

	Configuring the library
	APIs
	File Manipulation Layer (FSIO)
	Functions
	FSInit
	FSfopen
	FSfopenpgm
	wFSfopen
	FSrename
	FSrenamepgm
	wFSrename
	FSremove
	FSremovepgm
	wFSremove
	FindFirst
	FindFirstpgm
	wFindFirst
	FindNext
	FSfwrite
	FSfread
	FSfseek
	FSftell
	FSfclose
	FSfeof
	FSerror
	FSattrib
	FSfprintf
	FSrewind
	FSformat
	FSCreateMBR
	FSGetDiskProperties
	FSgetcwd
	wFSgetcwd
	FSmkdir
	FSmkdirpgm
	wFSmkdir
	FSchdir
	FSchdirpgm
	wFSchdir
	FSrmdir
	FSrmdirpgm
	wFSrmdir
	intmax_t

	Types
	CETYPE
	FSFILE
	SearchRec

	Macros
	MDD_InitIO
	MDD_MediaInitialize
	MDD_ReadCapacity
	MDD_ReadSectorSize
	MDD_SectorRead
	MDD_SectorWrite
	MDD_ShutdownMedia
	MDD_WriteProtectState
	ALLOW_DIRS
	ALLOW_FILESEARCH
	ALLOW_FORMATS
	ALLOW_WRITES
	FAT12
	FAT16
	FAT32
	FILE_NAME_SIZE_8P3
	FS_DYNAMIC_MEM
	FS_MAX_FILES_OPEN
	MAX_FILE_NAME_LENGTH_LFN
	MAX_HEAP_SIZE
	MEDIA_SECTOR_SIZE
	SEEK_SET
	SEEK_CUR
	SEEK_END
	SUPPORT_FAT32
	SUPPORT_LFN
	USE_SD_INTERFACE_WITH_SPI
	USEREALTIMECLOCK

	SD-SPI Physical Layer
	Functions
	MDD_SDSPI_MediaDetect
	MDD_SDSPI_InitIO
	MDD_SDSPI_MediaInitialize
	MDD_SDSPI_SectorRead
	MDD_SDSPI_SectorWrite
	MDD_SDSPI_ReadSectorSize
	MDD_SDSPI_ReadCapacity
	MDD_SDSPI_ShutdownMedia

	CF Physical Layer
	Functions
	MDD_CFBT_MediaDetect
	MDD_CFBT_InitIO
	MDD_CFBT_MediaInitialize
	MDD_CFBT_SectorRead
	MDD_CFBT_SectorWrite
	MDD_CFBT_WriteProtectState
	MDD_CFBT_CFwait
	MDD_CFPMP_MediaDetect
	MDD_CFPMP_MediaInitialize
	MDD_CFPMP_SectorRead
	MDD_CFPMP_SectorWrite
	MDD_CFPMP_WriteProtectState
	MDD_CFPMP_CFwait

	Index

