
MCHPFSUSB Library Help

Copyright (c) 2012 Microchip Technology, Inc. All rights reserved.

Table of Contents

Introduction 1

Software License Agreement 2

Release Notes 5
What's New 5

What's Next 6

Support 6

Online Reference and Resources 7

Demo Board Support and Limitations 8

Operating System Support and Limitations 9

Tool Information 11

Revision History 11

v2.9e 11

v2.9d 12

v2.9c 12

v2.9b 13

v2.9a 14

v2.9 14

v2.8 15

v2.7a 16

v2.7 16

Library Migration 18

From v2.9d to v2.9e 18

From v2.9c to v2.9d 18

From v2.9b to v2.9c 18

From v2.9a to v2.9b 18

From v2.9 to v2.9a 18

From v2.8 to v2.9 18

From v2.7a to v2.8 18

From v2.7 to v2.7a 19

From v2.6a to v2.7 19

From v2.6 to v2.6a 19

From v2.5 to v2.6 19

MCHPFSUSB Library Help

ii

Demos 21
Device - Audio Microphone Basic Demo 21

Supported Demo Boards 21

Configuring the Hardware 22

Running the Demo 23

Device - Audio MIDI Demo 25

Supported Demo Boards 25

Configuring the Hardware 26

Running the Demo 27

Garage Band '08 [Macintosh Computers] 29

Using Linux MultiMedia Studio (LMMS) [Linux and Windows Computers] 31

Device - Audio Speaker Demo 32

Supported Demo Boards 32

Configuring the Hardware 33

Running the Demo 34

Device - Boot Loader - HID 34

Supported Demo Boards 35

Configuring the Demo 35

Running the Demo 36

Implementation and Customization Details 38

Configuration Bits 39

Vendor ID (VID) and Product ID (PID) 40

Part Specific Details 41

PIC18F 42

PIC24F 43

Device - Boot Loader - MCHPUSB 43

Supported Demo Boards 43

Configuring the Demo 43

Running the Demo 43

Implementation and Customization Details 43

Device - CCID Smart Card Reader 44

Supported Demo Boards 45

Configuring the Hardware 45

Running the Demo 48

Device - CDC Basic Demo 51

Supported Demo Boards 51

Configuring the Hardware 52

Running the Demo 53

MCHPFSUSB Library Help

iii

Device - CDC - Serial Emulator 55

Supported Demo Boards 55

Configuring the Demo 56

Running the Demo 57

Device - Composite - HID + MSD Demo 58

Supported Demo Boards 58

Configuring the Demo 59

Running the Demo 60

Device - Composite - MSD + CDC Demo 61

Supported Demo Boards 61

Configuring the Demo 61

Running the Demo 63

Device - Composite - WinUSB + MSD Demo 63

Supported Demo Boards 63

Configuring the Demo 64

Running the Demo 65

Device - HID - Custom Demo 65

Supported Demo Boards 66

Configuring the Demo 66

Running the Demo 68

Device - HID - Digitizer Demos 71

Supported Demo Boards 71

Configuring the Hardware 72

Running the Demo 73

Device - HID - Joystick Demo 74

Supported Demo Boards 75

Configuring the Hardware 75

Running the Demo 77

Device - HID - Keyboard Demo 78

Supported Demo Boards 78

Configuring the Hardware 79

Running the Demo 80

Device - HID - Mouse Demo 81

Supported Demo Boards 81

Configuring the Demo 82

Running the Demo 83

Device - HID - Uninterruptible Power Supply 84

Supported Demo Boards 84

MCHPFSUSB Library Help

iv

Configuring the Demo 85

Running the Demo 86

Device - LibUSB Generic Driver Demo 87

Supported Demo Boards 87

Configuring the Demo 88

Running the Demo 90

Windows 91

Linux 93

Android 3.1+ 95

Device - Mass Storage - Internal Flash Demo 96

Supported Demo Boards 96

Configuring the Demo 97

Running the Demo 98

Troubleshooting 99

Device - Mass Storage - SD Card Data Logger 99

Supported Demo Boards 100

Configuring the Demo 100

Running the Demo 102

Device - Mass Storage - SD Card Reader 105

Supported Demo Boards 106

Configuring the Demo 106

Running the Demo 108

Device - MCHPUSB Generic Driver Demo 108

Supported Demo Boards 109

Configuring the Demo 109

Running the Demo 111

Installing Windows Drivers 112

PDFSUSB 114

MCHPUSB PnP Demo 116

Running the Demo (Android v3.1+) 117

Device - Personal Healthcare Device Class (PHDC) Demo 118

Supported Demo Boards 118

Configuring the Demo 119

Running the PHDC Blood Pressure Monitor Demo 120

Running the PHDC Glucose Meter Demo 124

Running the PHDC Themometer Demo 127

Running the PHDC Weigh Scale Demo 130

Performing the Continua Precertification Tests 133

Device - WinUSB Generic Driver Demo 136

MCHPFSUSB Library Help

v

Supported Demo Boards 136

Configuring the Demo 137

Running the Demo 138

Windows 140

Android v3.1+ 142

Device - WinUSB High Bandwidth Demo 143

Supported Demo Boards 143

Configuring the Demo 144

Running the Demo 145

Dual Role - MSD Host + HID Device 146

Supported Demo Boards 146

Configuring the Demo 147

Running the Demo 147

Host - Audio MIDI Demo 148

Supported Demo Boards 148

Configuring the Demo 148

Running the Demo 149

Host - Boot Loader - Thumb Drive Boot Loader 150

Supported Demo Boards 150

Configuring the Demo 150

Running the Demo 151

Creating a Hex File to Load 152

Customizing the Boot Loader and Target Application Linker Scripts for PIC32 devices 153

Host - CDC Serial Demo 154

Supported Demo Boards 154

Configuring the Demo 154

Running the Demo 155

Host - Charger - Simple Charger 155

Supported Demo Boards 155

Configuring the Demo 156

Running the Demo 157

Host - Composite - MSD+ CDC 157

Supported Demo Boards 157

Configuring the Demo 158

Running the Demo 158

Host - Composite - HID + MSD 159

Supported Demo Boards 159

Configuring the Demo 159

Running the Demo 160

MCHPFSUSB Library Help

vi

Host - HID - Keyboard Demo 160

Supported Demo Boards 160

Configuring the Demo 161

Running the Demo 161

Host - HID - Mouse Demo 162

Supported Demo Boards 162

Configuring the Demo 162

Running the Demo 163

Host - Mass Storage (MSD) - Simple Demo 163

Supported Demo Boards 163

Configuring the Demo 164

Running the Demo 165

Host - Mass Storage - Thumb Drive Data Logger 165

Supported Demo Boards 165

Configuring the Demo 166

Running the Demo 167

Host - MCHPUSB - Generic Driver Demo 167

Supported Demo Boards 168

Configuring the Demo 168

Running the Demo 169

Host - Printer - Print Screen Demo 169

Supported Demo Boards 169

Configuring the Demo 169

Running the Demo 170

Host - Printer - Simple Full Sheet 172

Supported Demo Boards 172

Configuring the Demo 173

Running the demo 174

Host - Printer - Simple Point of Sale (POS) 174

Supported Demo Boards 174

Configuring the Demo 175

Running the Demo 176

Loading a precompiled demo 176

MPLAB 8 176

PC - WM_DEVICECHANGE Demo 177

OTG - MCHPUSB Device/MCHPUSB Host Demo 179

Supported Demo Boards 179

Configuring the Demo 179

MCHPFSUSB Library Help

vii

Running the Demo 180

Demo Board Information 182
Low Pin Count USB Development Board 182

PICDEM FS USB Board 183

PIC18F46J50 Plug-In-Module (PIM) 184

PIC18F47J53 Plug-In-Module (PIM) 185

PIC18F87J50 Plug-In-Module (PIM) Demo Board 186

PIC18 Starter Kit 187

PIC24FJ64GB004 Plug-In-Module (PIM) 188

PIC24FJ64GB502 Microstick 189

PIC24FJ256GB110 Plug-In-Module (PIM) 190

PIC24FJ256GB210 Plug-In-Module (PIM) 190

PIC24FJ256DA210 Development Board 191

PIC24F Starter Kit 192

PIC24EP512GU810 Plug-In-Module (PIM) 192

dsPIC33EP512MU810 Plug-In-Module (PIM) 192

PIC32MX460F512L Plug-In-Module (PIM) 193

PIC32MX795F512L Plug-In-Module (PIM) 193

PIC32 USB Starter Kit 193

PIC32 USB Starter Kit II 194

USB PICTail Plus Daughter Board 194

Explorer 16 195

PC Tools and Example Code 197

Application Programming Interface (API) 199
Stack Configuration 199

Device/Peripheral 199

Device Stack 199

Configuration Options 200

usb_config.h 201

Ping Pong buffering (USB_PING_PONG_MODE) 202

MCHPFSUSB Library Help

viii

Endpoint 0 size (USB_EP0_BUFF_SIZE) 203

Endpoints Used (USB_MAX_EP_NUMBER) 204

Interface mode (USB_POLLING or USB_INTERRUPT) 205

Speed selection (USB_SPEED_OPTION) 206

D+/D- Internal Pull-ups (USB_PULLUP_OPTION) 207

Device Mode Enable (USB_SUPPORT_DEVICE) 208

Transceiver Option (USB_TRANSCEIVER_OPTION) 209

Number of Interfaces (USB_MAX_NUM_INT) 210

Status Stage Timout Enable (USB_ENABLE_STATUS_STAGE_TIMEOUTS and
USB_STATUS_STAGE_TIMEOUT)

211

String Descriptor Array size (USB_NUM_STRING_DESCRIPTORS) 212

Event Notifications 213

Disable DTS checking (USB_DEVICE_DISABLE_DTS_CHECKING) 214

Interface Routines 215

USB_APPLICATION_EVENT_HANDLER Function 218

USBCancelIO Function 219

USBCtrlEPAllowDataStage Function 220

USBCtrlEPAllowStatusStage Function 221

USBDeferINDataStage Function 222

USBDeferOUTDataStage Function 224

USBDeferStatusStage Function 226

USBDeviceAttach Function 227

USBDeviceDetach Function 228

USBDeviceInit Function 230

USBDeviceTasks Function 231

USBEnableEndpoint Function 233

USBEP0Receive Function 235

USBEP0SendRAMPtr Function 236

USBEP0SendROMPtr Function 237

USBEP0Transmit Function 238

USBGetDeviceState Function 239

USBGetNextHandle Function 240

USBGetRemoteWakeupStatus Function 242

USBGetSuspendState Function 243

USBHandleBusy Function 244

USBHandleGetAddr Function 245

USBHandleGetLength Function 246

USBINDataStageDeferred Function 247

USBIsBusSuspended Function 248

USBIsDeviceSuspended Function 249

USBRxOnePacket Function 250

USBSoftDetach Function 251

MCHPFSUSB Library Help

ix

USBOUTDataStageDeferred Function 252

USBStallEndpoint Function 253

USBTransferOnePacket Function 254

USBTxOnePacket Function 256

Data Types and Constants 257

USB_DEVICE_STATE Enumeration 258

USB_DEVICE_STACK_EVENTS Enumeration 259

USB_EP0_BUSY Macro 260

USB_EP0_INCLUDE_ZERO Macro 261

USB_EP0_NO_DATA Macro 262

USB_EP0_NO_OPTIONS Macro 263

USB_EP0_RAM Macro 264

USB_EP0_ROM Macro 265

USB_HANDLE Macro 266

Macros 267

DESC_CONFIG_BYTE Macro 268

DESC_CONFIG_DWORD Macro 269

DESC_CONFIG_WORD Macro 270

Audio Function Driver 270

Interface Routines 271

USBCheckAudioRequest Function 272

Data Types and Constants 273

CCID (Smart/Sim Card) Function Driver 273

Interface Routines 274

USBCCIDBulkInService Function 275

USBCCIDInitEP Function 276

USBCCIDSendDataToHost Function 277

USBCheckCCIDRequest Function 278

CDC Function Driver 278

Interface Routines 279

CDCInitEP Function 280

CDCTxService Function 281

getsUSBUSART Function 282

putrsUSBUSART Function 283

putsUSBUSART Function 284

putUSBUSART Function 285

USBCheckCDCRequest Function 286

CDCSetBaudRate Macro 287

CDCSetCharacterFormat Macro 288

CDCSetDataSize Macro 289

CDCSetLineCoding Macro 290

CDCSetParity Macro 291

MCHPFSUSB Library Help

x

USBUSARTIsTxTrfReady Macro 292

Data Types and Constants 293

NUM_STOP_BITS_1 Macro 294

NUM_STOP_BITS_1_5 Macro 295

NUM_STOP_BITS_2 Macro 296

PARITY_EVEN Macro 297

PARITY_MARK Macro 298

PARITY_NONE Macro 299

PARITY_ODD Macro 300

PARITY_SPACE Macro 301

HID Function Driver 301

Interface Routines 302

HIDRxHandleBusy Macro 303

HIDRxPacket Macro 304

HIDTxHandleBusy Macro 305

HIDTxPacket Macro 306

Data Types and Constants 307

BOOT_INTF_SUBCLASS Macro 308

BOOT_PROTOCOL Macro 309

HID_PROTOCOL_KEYBOARD Macro 310

HID_PROTOCOL_MOUSE Macro 311

HID_PROTOCOL_NONE Macro 312

MSD Function Driver 312

Interface Routines 313

MSDTasks Function 314

USBCheckMSDRequest Function 315

USBMSDInit Function 316

Data Types and Constants 317

LUN_FUNCTIONS Type 318

Personal Healthcare Device Class (PHDC) Function Driver 318

Interface Routines 319

PHDAppInit Function 320

PHDSendAppBufferPointer Function 321

PHDConnect Function 322

PHDDisConnect Function 323

PHDSendMeasuredData Function 324

PHDTimeoutHandler Function 325

USBDevicePHDCInit Function 326

USBDevicePHDCReceiveData Function 327

USBDevicePHDCSendData Function 328

USBDevicePHDCTxRXService Function 329

USBDevicePHDCCheckRequest Function 330

MCHPFSUSB Library Help

xi

USBDevicePHDCUpdateStatus Function 331

Vendor Class (Generic) Function Driver 331

Interface Routines 332

USBGenRead Macro 333

USBGenWrite Macro 334

Embedded Host API 334

Embedded Host Stack 335

Interface Routines 336

USB_HOST_APP_EVENT_HANDLER Function 337

USBHostClearEndpointErrors Function 338

USBHostDeviceSpecificClientDriver Function 339

USBHostDeviceStatus Function 340

USBHostGetCurrentConfigurationDescriptor Macro 341

USBHostGetDeviceDescriptor Macro 342

USBHostGetStringDescriptor Macro 343

USBHostInit Function 345

USBHostRead Function 346

USBHostResetDevice Function 348

USBHostResumeDevice Function 349

USBHostSetDeviceConfiguration Function 350

USBHostSetNAKTimeout Function 352

USBHostSuspendDevice Function 353

USBHostTerminateTransfer Function 354

USBHostTransferIsComplete Function 355

USBHostVbusEvent Function 357

USBHostWrite Function 358

Data Types and Constants 360

CLIENT_DRIVER_TABLE Structure 362

HOST_TRANSFER_DATA Structure 363

TRANSFER_ATTRIBUTES Union 364

USB_TPL Structure 365

USB_CLIENT_INIT Type 366

USB_CLIENT_EVENT_HANDLER Type 367

USB_NUM_BULK_NAKS Macro 368

USB_NUM_COMMAND_TRIES Macro 369

USB_NUM_CONTROL_NAKS Macro 370

USB_NUM_ENUMERATION_TRIES Macro 371

USB_NUM_INTERRUPT_NAKS Macro 372

TPL_SET_CONFIG Macro 373

TPL_CLASS_DRV Macro 374

TPL_ALLOW_HNP Macro 375

Macros 376

MCHPFSUSB Library Help

xii

INIT_CL_SC_P Macro 377

INIT_VID_PID Macro 378

Audio Client Driver 378

Interface Routines 379

USBHostAudioV1DataEventHandler Function 380

USBHostAudioV1EventHandler Function 381

USBHostAudioV1Initialize Function 382

USBHostAudioV1ReceiveAudioData Function 383

USBHostAudioV1SetInterfaceFullBandwidth Function 384

USBHostAudioV1SetInterfaceZeroBandwidth Function 385

USBHostAudioV1SetSamplingFrequency Function 386

USBHostAudioV1SupportedFrequencies Function 388

USBHostAudioV1TerminateTransfer Function 390

Data Types and Constants 391

EVENT_AUDIO_ATTACH Macro 392

EVENT_AUDIO_DETACH Macro 393

EVENT_AUDIO_FREQUENCY_SET Macro 394

EVENT_AUDIO_INTERFACE_SET Macro 395

EVENT_AUDIO_NONE Macro 396

EVENT_AUDIO_OFFSET Macro 397

EVENT_AUDIO_STREAM_RECEIVED Macro 398

Audio MIDI Client Driver 398

Interface Functions 399

USBHostMIDIDeviceDetached Macro 400

USBHostMIDIEndpointDirection Macro 401

USBHostMIDINumberOfEndpoints Macro 402

USBHostMIDIRead Function 403

USBHostMIDISizeOfEndpoint Macro 404

USBHostMIDITransferIsBusy Macro 405

USBHostMIDITransferIsComplete Function 406

USBHostMIDIWrite Function 407

Data Types and Constants 408

EVENT_MIDI_ATTACH Macro 409

EVENT_MIDI_DETACH Macro 410

EVENT_MIDI_OFFSET Macro 411

EVENT_MIDI_TRANSFER_DONE Macro 412

Android Accessory Client Driver 412

Interface Routines 413

AndroidAppIsReadComplete Function 414

AndroidAppIsWriteComplete Function 415

AndroidAppRead Function 416

AndroidAppStart Function 417

MCHPFSUSB Library Help

xiii

AndroidAppWrite Function 418

AndroidTasks Function 419

Data Type and Constants 420

ANDROID_ACCESSORY_INFORMATION Structure 421

Macros 422

ANDROID_BASE_OFFSET Macro 423

EVENT_ANDROID_ATTACH Macro 424

EVENT_ANDROID_DETACH Macro 425

NUM_ANDROID_DEVICES_SUPPORTED Macro 426

USB_ERROR_BUFFER_TOO_SMALL Macro 427

ANDROID_INIT_FLAG_BYPASS_PROTOCOL Macro 428

Internal Members 429

CDC Client Driver 429

Interface Routines 431

USBHostCDC_Api_ACM_Request Function 432

USBHostCDC_Api_Get_IN_Data Function 433

USBHostCDC_ApiTransferIsComplete Function 434

USBHostCDCDeviceStatus Function 435

USBHostCDCEventHandler Function 436

USBHostCDCInitAddress Function 437

USBHostCDCInitialize Function 438

USBHostCDCRead_DATA Macro 439

USBHostCDCResetDevice Function 440

USBHostCDCSend_DATA Macro 441

USBHostCDCTransfer Function 442

USBHostCDCTransferIsComplete Function 443

Data Types and Constants 444

COMM_INTERFACE_DETAILS Structure 447

DATA_INTERFACE_DETAILS Structure 448

USB_CDC_ACM_FN_DSC Structure 449

USB_CDC_CALL_MGT_FN_DSC Structure 450

USB_CDC_CONTROL_SIGNAL_BITMAP Union 451

USB_CDC_DEVICE_INFO Structure 452

USB_CDC_HEADER_FN_DSC Structure 454

USB_CDC_LINE_CODING Union 455

USB_CDC_UNION_FN_DSC Structure 456

DEVICE_CLASS_CDC Macro 457

EVENT_CDC_COMM_READ_DONE Macro 458

EVENT_CDC_COMM_WRITE_DONE Macro 459

EVENT_CDC_DATA_READ_DONE Macro 460

EVENT_CDC_DATA_WRITE_DONE Macro 461

EVENT_CDC_NAK_TIMEOUT Macro 462

MCHPFSUSB Library Help

xiv

EVENT_CDC_NONE Macro 463

EVENT_CDC_OFFSET Macro 464

EVENT_CDC_RESET Macro 465

USB_CDC_ABSTRACT_CONTROL_MODEL Macro 466

USB_CDC_ATM_NETWORKING_CONTROL_MODEL Macro 467

USB_CDC_CAPI_CONTROL_MODEL Macro 468

USB_CDC_CLASS_ERROR Macro 469

USB_CDC_COMM_INTF Macro 470

USB_CDC_COMMAND_FAILED Macro 471

USB_CDC_COMMAND_PASSED Macro 472

USB_CDC_CONTROL_LINE_LENGTH Macro 473

USB_CDC_CS_ENDPOINT Macro 474

USB_CDC_CS_INTERFACE Macro 475

USB_CDC_DATA_INTF Macro 476

USB_CDC_DEVICE_BUSY Macro 477

USB_CDC_DEVICE_DETACHED Macro 478

USB_CDC_DEVICE_HOLDING Macro 479

USB_CDC_DEVICE_MANAGEMENT Macro 480

USB_CDC_DEVICE_NOT_FOUND Macro 481

USB_CDC_DIRECT_LINE_CONTROL_MODEL Macro 482

USB_CDC_DSC_FN_ACM Macro 483

USB_CDC_DSC_FN_CALL_MGT Macro 484

USB_CDC_DSC_FN_COUNTRY_SELECTION Macro 485

USB_CDC_DSC_FN_DLM Macro 486

USB_CDC_DSC_FN_HEADER Macro 487

USB_CDC_DSC_FN_RPT_CAPABILITIES Macro 488

USB_CDC_DSC_FN_TEL_OP_MODES Macro 489

USB_CDC_DSC_FN_TELEPHONE_RINGER Macro 490

USB_CDC_DSC_FN_UNION Macro 491

USB_CDC_DSC_FN_USB_TERMINAL Macro 492

USB_CDC_ETHERNET_EMULATION_MODEL Macro 493

USB_CDC_ETHERNET_NETWORKING_CONTROL_MODEL Macro 494

USB_CDC_GET_COMM_FEATURE Macro 495

USB_CDC_GET_ENCAPSULATED_REQUEST Macro 496

USB_CDC_GET_LINE_CODING Macro 497

USB_CDC_ILLEGAL_REQUEST Macro 498

USB_CDC_INITIALIZING Macro 499

USB_CDC_INTERFACE_ERROR Macro 500

USB_CDC_LINE_CODING_LENGTH Macro 501

USB_CDC_MOBILE_DIRECT_LINE_MODEL Macro 502

USB_CDC_MULTI_CHANNEL_CONTROL_MODEL Macro 503

USB_CDC_NO_PROTOCOL Macro 504

MCHPFSUSB Library Help

xv

USB_CDC_NO_REPORT_DESCRIPTOR Macro 505

USB_CDC_NORMAL_RUNNING Macro 506

USB_CDC_OBEX Macro 507

USB_CDC_PHASE_ERROR Macro 508

USB_CDC_REPORT_DESCRIPTOR_BAD Macro 509

USB_CDC_RESET_ERROR Macro 510

USB_CDC_RESETTING_DEVICE Macro 511

USB_CDC_SEND_BREAK Macro 512

USB_CDC_SEND_ENCAPSULATED_COMMAND Macro 513

USB_CDC_SET_COMM_FEATURE Macro 514

USB_CDC_SET_CONTROL_LINE_STATE Macro 515

USB_CDC_SET_LINE_CODING Macro 516

USB_CDC_TELEPHONE_CONTROL_MODEL Macro 517

USB_CDC_V25TER Macro 518

USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL Macro 519

Charger Client Driver 519

Interface Routines 520

USBHostChargerDeviceDetached Function 521

USBHostChargerEventHandler Function 522

USBHostChargerGetDeviceAddress Function 523

Data Type and Constants 524

EVENT_CHARGER_ATTACH Macro 525

EVENT_CHARGER_DETACH Macro 526

EVENT_CHARGER_OFFSET Macro 527

USB_MAX_CHARGING_DEVICES Macro 528

Generic Client Driver 528

Interface Routines 529

USBHostGenericDeviceDetached Macro 530

USBHostGenericEventHandler Function 531

USBHostGenericGetDeviceAddress Function 532

USBHostGenericGetRxLength Macro 533

USBHostGenericInit Function 534

USBHostGenericRead Function 535

USBHostGenericRxIsBusy Macro 536

USBHostGenericRxIsComplete Function 537

USBHostGenericTxIsBusy Macro 538

USBHostGenericTxIsComplete Function 539

USBHostGenericWrite Function 540

Data Types and Constants 541

GENERIC_DEVICE Type 542

GENERIC_DEVICE_ID Type 543

EVENT_GENERIC_ATTACH Macro 544

MCHPFSUSB Library Help

xvi

EVENT_GENERIC_DETACH Macro 545

EVENT_GENERIC_OFFSET Macro 546

EVENT_GENERIC_RX_DONE Macro 547

EVENT_GENERIC_TX_DONE Macro 548

USB_GENERIC_EP Macro 549

HID Client Driver 549

Interface Routines 550

USBHostHID_ApiFindBit Function 552

USBHostHID_ApiFindValue Function 553

USBHostHID_ApiGetCurrentInterfaceNum Function 554

USBHostHID_ApiGetReport Macro 555

USBHostHID_ApiImportData Function 556

USBHostHID_ApiSendReport Macro 557

USBHostHID_ApiTransferIsComplete Macro 558

USBHostHID_GetCurrentReportInfo Macro 559

USBHostHID_GetItemListPointers Macro 560

USBHostHID_HasUsage Function 561

USBHostHIDDeviceDetect Function 562

USBHostHIDDeviceStatus Function 563

USBHostHIDEventHandler Function 564

USBHostHIDInitialize Function 565

USBHostHIDRead Macro 566

USBHostHIDResetDevice Function 567

USBHostHIDResetDeviceWithWait Function 568

USBHostHIDTasks Function 569

USBHostHIDTerminateTransfer Function 570

USBHostHIDTransfer Function 571

USBHostHIDTransferIsComplete Function 572

USBHostHIDWrite Macro 573

Data Types and Constants 574

DEVICE_CLASS_HID Macro 577

DSC_HID Macro 578

DSC_PHY Macro 579

DSC_RPT Macro 580

EVENT_HID_ATTACH Macro 581

EVENT_HID_BAD_REPORT_DESCRIPTOR Macro 582

EVENT_HID_DETACH Macro 583

EVENT_HID_NONE Macro 584

EVENT_HID_OFFSET Macro 585

EVENT_HID_READ_DONE Macro 586

EVENT_HID_RESET Macro 587

EVENT_HID_RESET_ERROR Macro 588

MCHPFSUSB Library Help

xvii

EVENT_HID_RPT_DESC_PARSED Macro 589

EVENT_HID_WRITE_DONE Macro 590

HID_COLLECTION Structure 591

HID_DATA_DETAILS Structure 592

HID_DESIGITEM Structure 593

HID_GLOBALS Structure 594

HID_ITEM_INFO Structure 595

HID_REPORT Structure 596

HID_REPORTITEM Structure 597

HID_STRINGITEM Structure 598

HID_TRANSFER_DATA Structure 599

HID_USAGEITEM Structure 600

HIDReportTypeEnum Enumeration 601

USB_HID_CLASS_ERROR Macro 602

USB_HID_COMMAND_FAILED Macro 603

USB_HID_COMMAND_PASSED Macro 604

USB_HID_DEVICE_BUSY Macro 605

USB_HID_DEVICE_DETACHED Macro 606

USB_HID_DEVICE_HOLDING Macro 607

USB_HID_DEVICE_ID Structure 608

USB_HID_DEVICE_NOT_FOUND Macro 609

USB_HID_DEVICE_RPT_INFO Structure 610

USB_HID_ILLEGAL_REQUEST Macro 612

USB_HID_INITIALIZING Macro 613

USB_HID_INTERFACE_ERROR Macro 614

USB_HID_ITEM_LIST Structure 615

USB_HID_NO_REPORT_DESCRIPTOR Macro 616

USB_HID_NORMAL_RUNNING Macro 617

USB_HID_PHASE_ERROR Macro 618

USB_HID_REPORT_DESCRIPTOR_BAD Macro 619

USB_HID_RESET_ERROR Macro 620

USB_HID_RESETTING_DEVICE Macro 621

USB_HID_RPT_DESC_ERROR Enumeration 622

USB_PROCESSING_REPORT_DESCRIPTOR Macro 623

Mass Storage Client Driver 623

Interface Routines 624

USBHostMSDDeviceStatus Function 625

USBHostMSDEventHandler Function 626

USBHostMSDInitialize Function 627

USBHostMSDRead Macro 628

USBHostMSDResetDevice Function 629

USBHostMSDSCSIEventHandler Function 630

MCHPFSUSB Library Help

xviii

USBHostMSDSCSIInitialize Function 631

USBHostMSDSCSISectorRead Function 632

USBHostMSDSCSISectorWrite Function 633

USBHostMSDTerminateTransfer Function 634

USBHostMSDTransfer Function 635

USBHostMSDTransferIsComplete Function 636

USBHostMSDWrite Macro 637

Data Types and Constants 638

DEVICE_CLASS_MASS_STORAGE Macro 639

DEVICE_INTERFACE_PROTOCOL_BULK_ONLY Macro 640

DEVICE_SUBCLASS_CD_DVD Macro 641

DEVICE_SUBCLASS_FLOPPY_INTERFACE Macro 642

DEVICE_SUBCLASS_RBC Macro 643

DEVICE_SUBCLASS_REMOVABLE Macro 644

DEVICE_SUBCLASS_SCSI Macro 645

DEVICE_SUBCLASS_TAPE_DRIVE Macro 646

EVENT_MSD_MAX_LUN Macro 647

EVENT_MSD_NONE Macro 648

EVENT_MSD_OFFSET Macro 649

EVENT_MSD_RESET Macro 650

EVENT_MSD_TRANSFER Macro 651

MSD_COMMAND_FAILED Macro 652

MSD_COMMAND_PASSED Macro 653

MSD_PHASE_ERROR Macro 654

USB_MSD_CBW_ERROR Macro 655

USB_MSD_COMMAND_FAILED Macro 656

USB_MSD_COMMAND_PASSED Macro 657

USB_MSD_CSW_ERROR Macro 658

USB_MSD_DEVICE_BUSY Macro 659

USB_MSD_DEVICE_DETACHED Macro 660

USB_MSD_DEVICE_NOT_FOUND Macro 661

USB_MSD_ERROR Macro 662

USB_MSD_ERROR_STATE Macro 663

USB_MSD_ILLEGAL_REQUEST Macro 664

USB_MSD_INITIALIZING Macro 665

USB_MSD_INVALID_LUN Macro 666

USB_MSD_MEDIA_INTERFACE_ERROR Macro 667

USB_MSD_NORMAL_RUNNING Macro 668

USB_MSD_OUT_OF_MEMORY Macro 669

USB_MSD_PHASE_ERROR Macro 670

USB_MSD_RESET_ERROR Macro 671

USB_MSD_RESETTING_DEVICE Macro 672

MCHPFSUSB Library Help

xix

Printer Client Driver 672

Interface Routines 676

PrintScreen Function 678

USBHostPrinterCommand Function 679

USBHostPrinterCommandReady Function 681

USBHostPrinterCommandWithReadyWait Macro 682

USBHostPrinterDeviceDetached Function 684

USBHostPrinterEventHandler Function 685

USBHostPrinterGetRxLength Function 686

USBHostPrinterGetStatus Function 687

USBHostPrinterInitialize Function 688

USBHostPrinterLanguageESCPOS Function 689

USBHostPrinterLanguageESCPOSIsSupported Function 691

USBHostPrinterLanguagePCL5 Function 692

USBHostPrinterLanguagePCL5IsSupported Function 694

USBHostPrinterLanguagePostScript Function 695

USBHostPrinterLanguagePostScriptIsSupported Function 697

USBHostPrinterPOSImageDataFormat Function 698

USBHostPrinterPosition Macro 700

USBHostPrinterPositionRelative Macro 701

USBHostPrinterRead Function 702

USBHostPrinterReset Function 703

USBHostPrinterRxIsBusy Function 704

USBHostPrinterWrite Function 705

USBHostPrinterWriteComplete Function 706

Data Types and Constants 707

_USB_HOST_PRINTER_PRIMITIVES_H Macro 715

BARCODE_CODE128_CODESET_A_CHAR Macro 716

BARCODE_CODE128_CODESET_A_STRING Macro 717

BARCODE_CODE128_CODESET_B_CHAR Macro 718

BARCODE_CODE128_CODESET_B_STRING Macro 719

BARCODE_CODE128_CODESET_C_CHAR Macro 720

BARCODE_CODE128_CODESET_C_STRING Macro 721

BARCODE_CODE128_CODESET_CHAR Macro 722

BARCODE_CODE128_CODESET_STRING Macro 723

BARCODE_TEXT_12x24 Macro 724

BARCODE_TEXT_18x36 Macro 725

BARCODE_TEXT_ABOVE Macro 726

BARCODE_TEXT_ABOVE_AND_BELOW Macro 727

BARCODE_TEXT_BELOW Macro 728

BARCODE_TEXT_OMIT Macro 729

EVENT_PRINTER_ATTACH Macro 730

MCHPFSUSB Library Help

xx

EVENT_PRINTER_DETACH Macro 731

EVENT_PRINTER_OFFSET Macro 732

EVENT_PRINTER_REQUEST_DONE Macro 733

EVENT_PRINTER_REQUEST_ERROR Macro 734

EVENT_PRINTER_RX_DONE Macro 735

EVENT_PRINTER_RX_ERROR Macro 736

EVENT_PRINTER_TX_DONE Macro 737

EVENT_PRINTER_TX_ERROR Macro 738

EVENT_PRINTER_UNSUPPORTED Macro 739

LANGUAGE_ID_STRING_ESCPOS Macro 740

LANGUAGE_ID_STRING_PCL Macro 741

LANGUAGE_ID_STRING_POSTSCRIPT Macro 742

LANGUAGE_SUPPORT_FLAGS_ESCPOS Macro 743

LANGUAGE_SUPPORT_FLAGS_PCL3 Macro 744

LANGUAGE_SUPPORT_FLAGS_PCL5 Macro 745

LANGUAGE_SUPPORT_FLAGS_POSTSCRIPT Macro 746

PRINTER_COLOR_BLACK Macro 747

PRINTER_COLOR_WHITE Macro 748

PRINTER_DEVICE_REQUEST_GET_DEVICE_ID Macro 749

PRINTER_DEVICE_REQUEST_GET_PORT_STATUS Macro 750

PRINTER_DEVICE_REQUEST_SOFT_RESET Macro 751

PRINTER_FILL_CROSS_HATCHED Macro 752

PRINTER_FILL_HATCHED Macro 753

PRINTER_FILL_SHADED Macro 754

PRINTER_FILL_SOLID Macro 755

PRINTER_LINE_END_BUTT Macro 756

PRINTER_LINE_END_ROUND Macro 757

PRINTER_LINE_END_SQUARE Macro 758

PRINTER_LINE_JOIN_BEVEL Macro 759

PRINTER_LINE_JOIN_MITER Macro 760

PRINTER_LINE_JOIN_ROUND Macro 761

PRINTER_LINE_TYPE_DASHED Macro 762

PRINTER_LINE_TYPE_DOTTED Macro 763

PRINTER_LINE_TYPE_SOLID Macro 764

PRINTER_LINE_WIDTH_NORMAL Macro 765

PRINTER_LINE_WIDTH_THICK Macro 766

PRINTER_PAGE_LANDSCAPE_HEIGHT Macro 767

PRINTER_PAGE_LANDSCAPE_WIDTH Macro 768

PRINTER_PAGE_PORTRAIT_HEIGHT Macro 769

PRINTER_PAGE_PORTRAIT_WIDTH Macro 770

PRINTER_POS_BOTTOM_TO_TOP Macro 771

PRINTER_POS_DENSITY_HORIZONTAL_DOUBLE Macro 772

MCHPFSUSB Library Help

xxi

PRINTER_POS_DENSITY_HORIZONTAL_SINGLE Macro 773

PRINTER_POS_DENSITY_VERTICAL_24 Macro 774

PRINTER_POS_DENSITY_VERTICAL_8 Macro 775

PRINTER_POS_LEFT_TO_RIGHT Macro 776

PRINTER_POS_RIGHT_TO_LEFT Macro 777

PRINTER_POS_TOP_TO_BOTTOM Macro 778

USB_DATA_POINTER Union 779

USB_DATA_POINTER_RAM Macro 780

USB_DATA_POINTER_ROM Macro 781

USB_MAX_PRINTER_DEVICES Macro 782

USB_NULL Macro 783

USB_PRINT_SCREEN_INFO Structure 784

USB_PRINTER_COMMAND Enumeration 785

USB_PRINTER_DEVICE_ID Structure 794

USB_PRINTER_ERRORS Enumeration 795

USB_PRINTER_FONTS Enumeration 796

USB_PRINTER_FONTS_POS Enumeration 797

USB_PRINTER_FUNCTION_SUPPORT Union 798

USB_PRINTER_FUNCTION_SUPPORT_POS Macro 799

USB_PRINTER_FUNCTION_SUPPORT_VECTOR_GRAPHICS Macro 800

USB_PRINTER_GRAPHICS_PARAMETERS Union 801

USB_PRINTER_IMAGE_INFO Structure 805

USB_PRINTER_INTERFACE Structure 807

USB_PRINTER_LANGUAGE_HANDLER Type 808

USB_PRINTER_LANGUAGE_SUPPORTED Type 809

USB_PRINTER_POS_BARCODE_FORMAT Enumeration 810

USB_PRINTER_SPECIFIC_INTERFACE Structure 812

USB_PRINTER_TRANSFER_COPY_DATA Macro 813

USB_PRINTER_TRANSFER_FROM_RAM Macro 814

USB_PRINTER_TRANSFER_FROM_ROM Macro 815

USB_PRINTER_TRANSFER_NOTIFY Macro 816

USB_PRINTER_TRANSFER_STATIC_DATA Macro 817

USBHOSTPRINTER_SETFLAG_COPY_DATA Macro 818

USBHOSTPRINTER_SETFLAG_NOTIFY Macro 819

USBHOSTPRINTER_SETFLAG_STATIC_DATA Macro 820

On-The-Go (OTG) 820

Interface Routines 821

USBOTGClearRoleSwitch Function 822

USBOTGCurrentRoleIs Function 823

USBOTGDefaultRoleIs Function 824

USBOTGInitialize Function 825

USBOTGRequestSession Function 826

MCHPFSUSB Library Help

xxii

USBOTGRoleSwitch Function 827

USBOTGSelectRole Function 828

USBOTGSession Function 829

Data Types and Constants 829

CABLE_A_SIDE Macro 831

CABLE_B_SIDE Macro 832

DELAY_TA_AIDL_BDIS Macro 833

DELAY_TA_BDIS_ACON Macro 834

DELAY_TA_BIDL_ADIS Macro 835

DELAY_TA_WAIT_BCON Macro 836

DELAY_TA_WAIT_VRISE Macro 837

DELAY_TB_AIDL_BDIS Macro 838

DELAY_TB_ASE0_BRST Macro 839

DELAY_TB_DATA_PLS Macro 840

DELAY_TB_SE0_SRP Macro 841

DELAY_TB_SRP_FAIL Macro 842

DELAY_VBUS_SETTLE Macro 843

END_SESSION Macro 844

OTG_EVENT_CONNECT Macro 845

OTG_EVENT_DISCONNECT Macro 846

OTG_EVENT_HNP_ABORT Macro 847

OTG_EVENT_HNP_FAILED Macro 848

OTG_EVENT_NONE Macro 849

OTG_EVENT_RESUME_SIGNALING Macro 850

OTG_EVENT_SRP_CONNECT Macro 851

OTG_EVENT_SRP_DPLUS_HIGH Macro 852

OTG_EVENT_SRP_DPLUS_LOW Macro 853

OTG_EVENT_SRP_FAILED Macro 854

OTG_EVENT_SRP_VBUS_HIGH Macro 855

OTG_EVENT_SRP_VBUS_LOW Macro 856

ROLE_DEVICE Macro 857

ROLE_HOST Macro 858

START_SESSION Macro 859

TOGGLE_SESSION Macro 860

USB_OTG_FW_DOT_VER Macro 861

USB_OTG_FW_MAJOR_VER Macro 862

USB_OTG_FW_MINOR_VER Macro 863

Appendix (Frequently Asked Questions, Important
Information, Reference Material, etc.)

864

Using breakpoints in USB host applications 864

MCHPFSUSB Library Help

xxiii

Bootloader Details 867

PIC24F Implementation Specific Details 867

Adding a boot loader to your project 868

Memory Map 869

Startup Sequence and Reset Remapping 871

Interrupt Remapping 872

Understanding and Customizing the Boot Loader Implementation 873

Memory Region Definitions 874

Special Region Creation 876

Changing the memory foot print of the boot loader 879

HID boot loader 880

MSD boot loader 882

Important Considerations 883

Configuration Bits 884

Boot Loader Entry 885

Interrupts 886

Notes on .inf Files 886

Vendor IDs (VID) and Product IDs (PID) 887

Using a diff tool 887

Beyond Compare 887

MPLAB X (NetBeans) 890

Trademark Information 893

Index a

MCHPFSUSB Library Help

xxiv

1 Introduction

MCHPFSUSB v2.9e

for Microchip PIC18/PIC24F/PIC32MX Microcontrollers

MCHPFSUSB is a distribution package containing a variety of USB related firmware projects, USB drivers and resources
intended for use on the PC. The MCHPFSUSB firmware examples include projects for USB peripheral/device, Embedded
Host, OTG, and Dual Role.

1 MCHPFSUSB Library Help

1

2 Software License Agreement

MICROCHIP IS WILLING TO LICENSE THE ACCOMPANYING SOFTWARE AND DOCUMENTATION TO YOU ONLY ON
THE CONDITION THAT YOU ACCEPT ALL OF THE FOLLOWING TERMS. TO ACCEPT THE TERMS OF THIS LICENSE,
CLICK "I ACCEPT" AND PROCEED WITH THE DOWNLOAD OR INSTALL. IF YOU DO NOT ACCEPT THESE LICENSE
TERMS, CLICK "I DO NOT ACCEPT," AND DO NOT DOWNLOAD OR INSTALL THIS SOFTWARE.

NON-EXCLUSIVE SOFTWARE LICENSE AGREEMENT

This Nonexclusive Software License Agreement ("Agreement") is a contract between you, your heirs, successors and
assigns ("Licensee") and Microchip Technology Incorporated, a Delaware corporation, with a principal place of business at
2355 W. Chandler Blvd., Chandler, AZ 85224-6199, and its subsidiary, Microchip Technology (Barbados) II Incorporated
(collectively, "Microchip") for the accompanying Microchip software including, but not limited to, Graphics Library Software,
IrDA Stack Software, MCHPFSUSB Stack Software, Memory Disk Drive File System Software, mTouch(TM) Capacitive
Library Software, Smart Card Library Software, TCP/IP Stack Software, MiWi(TM) DE Software, Security Package Software,
and/or any PC programs and any updates thereto (collectively, the "Software"), and accompanying documentation, including
images and any other graphic resources provided by Microchip ("Documentation").

1. Definitions. As used in this Agreement, the following capitalized terms will have the meanings defined below:

a. "Microchip Products" means Microchip microcontrollers and Microchip digital signal controllers.

b. "Licensee Products" means Licensee products that use or incorporate Microchip Products.

c. "Object Code" means the Software computer programming code that is in binary form (including related documentation, if
any), and error corrections, improvements, modifications, and updates.

d. "Source Code" means the Software computer programming code that may be printed out or displayed in human readable
form (including related programmer comments and documentation, if any), and error corrections, improvements,
modifications, and updates.

e. "Third Party" means Licensee’s agents, representatives, consultants, clients, customers, or contract manufacturers.

f. "Third Party Products" means Third Party products that use or incorporate Microchip Products.

2. Software License Grant. Microchip grants strictly to Licensee a non-exclusive, non-transferable, worldwide license to:

a. use the Software in connection with Licensee Products and/or Third Party Products;

b. if Source Code is provided, modify the Software; provided that Licensee clearly notifies Third Parties regarding the source
of such modifications;

c. distribute the Software to Third Parties for use in Third Party Products, so long as such Third Party agrees to be bound by
this Agreement (in writing or by "click to accept") and this Agreement accompanies such distribution;

d. sublicense to a Third Party to use the Software, so long as such Third Party agrees to be bound by this Agreement (in
writing or by "click to accept");

e. with respect to the TCP/IP Stack Software, Licensee may port the ENC28J60.c, ENC28J60.h, ENCX24J600.c, and
ENCX24J600.h driver source files to a non-Microchip Product used in conjunction with a Microchip ethernet controller;

f. with respect to the MiWi (TM) DE Software, Licensee may only exercise its rights when the Software is embedded on a
Microchip Product and used with a Microchip radio frequency transceiver or UBEC UZ2400 radio frequency transceiver
which are integrated into Licensee Products or Third Party Products.

For purposes of clarity, Licensee may NOT embed the Software on a non-Microchip Product, except as described in this

2 MCHPFSUSB Library Help

2

Section.

3. Documentation License Grant. Microchip grants strictly to Licensee a non-exclusive, non-transferable, worldwide license
to use the Documentation in support of Licensee's authorized use of the Software

4. Third Party Requirements. Licensee acknowledges that it is Licensee’s responsibility to comply with any third party license
terms or requirements applicable to the use of such third party software, specifications, systems, or tools. This includes, by
way of example but not as a limitation, any standards setting organizations requirements and, particularly with respect to the
Security Package Software, local encryption laws and requirements. Microchip is not responsible and will not be held
responsible in any manner for Licensee’s failure to comply with such applicable terms or requirements.

5. Open Source Components. Notwithstanding the license grant in Section 1 above, Licensee further acknowledges that
certain components of the Software may be covered by so-called "open source" software licenses ("Open Source
Components"). Open Source Components means any software licenses approved as open source licenses by the Open
Source Initiative or any substantially similar licenses, including without limitation any license that, as a condition of
distribution of the software licensed under such license, requires that the distributor make the software available in source
code format. To the extent required by the licenses covering Open Source Components, the terms of such license will apply
in lieu of the terms of this Agreement. To the extent the terms of the licenses applicable to Open Source Components
prohibit any of the restrictions in this Agreement with respect to such Open Source Components, such restrictions will not
apply to such Open Source Component.

6. Licensee Obligations. Licensee will not: (a) engage in unauthorized use, modification, disclosure or distribution of
Software or Documentation, or its derivatives; (b) use all or any portion of the Software, Documentation, or its derivatives
except in conjunction with Microchip Products, Licensee Products or Third Party Products; or (c) reverse engineer (by
disassembly, decompilation or otherwise) Software or any portion thereof. Licensee may not remove or alter any Microchip
copyright or other proprietary rights notice posted in any portion of the Software or Documentation. Licensee will defend,
indemnify and hold Microchip and its subsidiaries harmless from and against any and all claims, costs, damages, expenses
(including reasonable attorney's fees), liabilities, and losses, including without limitation: (x) any claims directly or indirectly
arising from or related to the use, modification, disclosure or distribution of the Software, Documentation, or any intellectual
property rights related thereto; (y) the use, sale and distribution of Licensee Products or Third Party Products; and (z) breach
of this Agreement.

7. Confidentiality. Licensee agrees that the Software (including but not limited to the Source Code, Object Code and library
files) and its derivatives, Documentation and underlying inventions, algorithms, know-how and ideas relating to the Software
and the Documentation are proprietary information belonging to Microchip and its licensors ("Proprietary Information").
Except as expressly and unambiguously allowed herein, Licensee will hold in confidence and not use or disclose any
Proprietary Information and will similarly bind its employees and Third Party(ies) in writing. Proprietary Information will not
include information that: (i) is in or enters the public domain without breach of this Agreement and through no fault of the
receiving party; (ii) the receiving party was legally in possession of prior to receiving it; (iii) the receiving party can
demonstrate was developed by the receiving party independently and without use of or reference to the disclosing party's
Proprietary Information; or (iv) the receiving party receives from a third party without restriction on disclosure. If Licensee is
required to disclose Proprietary Information by law, court order, or government agency, License will give Microchip prompt
notice of such requirement in order to allow Microchip to object or limit such disclosure. Licensee agrees that the provisions
of this Agreement regarding unauthorized use and nondisclosure of the Software, Documentation and related Proprietary
Rights are necessary to protect the legitimate business interests of Microchip and its licensors and that monetary damage
alone cannot adequately compensate Microchip or its licensors if such provisions are violated. Licensee, therefore, agrees
that if Microchip alleges that Licensee or Third Party has breached or violated such provision then Microchip will have the
right to injunctive relief, without the requirement for the posting of a bond, in addition to all other remedies at law or in equity.

8. Ownership of Proprietary Rights. Microchip and its licensors retain all right, title and interest in and to the Software and
Documentation including, but not limited to all patent, copyright, trade secret and other intellectual property rights in the
Software, Documentation, and underlying technology and all copies and derivative works thereof (by whomever produced).
Licensee and Third Party use of such modifications and derivatives is limited to the license rights described in this
Agreement.

9. Termination of Agreement. Without prejudice to any other rights, this Agreement terminates immediately, without notice by
Microchip, upon a failure by Licensee or Third Party to comply with any provision of this Agreement. Upon termination,
Licensee and Third Party will immediately stop using the Software, Documentation, and derivatives thereof, and immediately

2 MCHPFSUSB Library Help

3

destroy all such copies.

10. Warranty Disclaimers. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. MICROCHIP AND
ITS LICENSORS ASSUME NO RESPONSIBILITY FOR THE ACCURACY, RELIABILITY OR APPLICATION OF THE
SOFTWARE OR DOCUMENTATION. MICROCHIP AND ITS LICENSORS DO NOT WARRANT THAT THE SOFTWARE
WILL MEET REQUIREMENTS OF LICENSEE OR THIRD PARTY, BE UNINTERRUPTED OR ERROR-FREE. MICROCHIP
AND ITS LICENSORS HAVE NO OBLIGATION TO CORRECT ANY DEFECTS IN THE SOFTWARE.

11. Limited Liability. IN NO EVENT WILL MICROCHIP OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER ANY
LEGAL OR EQUITABLE THEORY FOR ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES INCLUDING BUT NOT
LIMITED TO INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR
LOST DATA, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY
THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS. The
aggregate and cumulative liability of Microchip and its licensors for damages hereunder will in no event exceed $1000 or the
amount Licensee paid Microchip for the Software and Documentation, whichever is greater. Licensee acknowledges that the
foregoing limitations are reasonable and an essential part of this Agreement.

12. General. THIS AGREEMENT WILL BE GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF
ARIZONA AND THE UNITED STATES WITHOUT REGARD TO CONFLICTS OF LAWS PROVISIONS. Licensee agrees
that any disputes arising out of or related to this Agreement, Software or Documentation will be brought exclusively in either
the U.S. District Court for the District of Arizona, Phoenix Division, or the Superior Court of Arizona located in Maricopa
County, Arizona. This Agreement will constitute the entire agreement between the parties with respect to the subject matter
hereof. It will not be modified except by a written agreement signed by an authorized representative of Microchip. If any
provision of this Agreement will be held by a court of competent jurisdiction to be illegal, invalid or unenforceable, that
provision will be limited or eliminated to the minimum extent necessary so that this Agreement will otherwise remain in full
force and effect and enforceable. No waiver of any breach of any provision of this Agreement will constitute a waiver of any
prior, concurrent or subsequent breach of the same or any other provisions hereof, and no waiver will be effective unless
made in writing and signed by an authorized representative of the waiving party. Licensee agrees to comply with all import
and export laws and restrictions and regulations of the Department of Commerce or other United States or foreign agency or
authority. The indemnities, obligations of confidentiality, and limitations on liability described herein, and any right of action
for breach of this Agreement prior to termination, will survive any termination of this Agreement. Any prohibited assignment
will be null and void. Use, duplication or disclosure by the United States Government is subject to restrictions set forth in
subparagraphs (a) through (d) of the Commercial Computer-Restricted Rights clause of FAR 52.227-19 when applicable, or
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, and in
similar clauses in the NASA FAR Supplement. Contractor/manufacturer is Microchip Technology Inc., 2355 W. Chandler
Blvd., Chandler, AZ 85224-6199.

If Licensee has any questions about this Agreement, please write to Microchip Technology Inc., 2355 W. Chandler Blvd.,
Chandler, AZ 85224-6199 USA. ATTN: Marketing.

Copyright (c) 2012 Microchip Technology Inc. All rights reserved.

License Rev. No. 05-012412

2 MCHPFSUSB Library Help

4

3 Release Notes

3.1 What's New
Find out what is new for this stack release.

Description

New to v2.9e

• Host

• Bug fixes. See Revision History section v2.9e(page 11) for more details.

• Device

• Bug fixes. See Revision History section v2.9e(page 11) for more details.

New to v2.9d

• Adding PIC24FJ64GB502 support

• Host

• Bug fixes. See Revision History section v2.9d(page 12) for more details.

• Device

• Bug fixes. See Revision History section v2.9d(page 12) for more details.

• Added new PHDC demos

New to v2.9c

• PC

• Fixed HID boot loader executable issue on Windows systems

• Device

• Fixed issue with some dsPIC33E projects not building correctly

New to v2.9b

• Host

• Added MIDI host support

• Bug fixes to various demos and client drivers

• Device

• Addition of DTS support for CDC driver

• Bug fixes to various demos

• Added example showing how to connect to custom HID, LibUSB, WinUSB, and MCHPUSB demos from an Android
v3.1+ host.

New to v2.9a

• PC Utilities

• Bug fixes to cross-platform HID boot loader.

New to v2.9

3.1 What's New MCHPFSUSB Library Help

5

• Device

• Bug fixes and enhancements

• Addition of PHDC class

• Host/OTG/Dual Role

• Bug fixes and enhancements

• Addition of Android host mode accessory support for OpenAccessory framework

• PC Utilities

• Cross-platform custom HID application

• Cross-platform HID boot loader

For more information about changes in this revision please refer to the Revision History(page 11) section.

For potential migration questions, please refer to the Library Migration(page 18) section.

3.2 What's Next
Find out what the USB development team is working on and what will be out in the near future.

Description

The following are the projects that are being worked on. These may not be released in the next release but are in
development

• General improvements to the documentation and demos.

3.3 Support
Find out how to get help with your USB design, support questions, or USB training.

Description

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com. This web site is used as a means to make
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains
the following information:

• Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and
hardware support documents, latest software releases and archived software

• General Technical Support - Frequently Asked Questions (FAQs), technical support requests
(http://support.microchip.com), online discussion groups/forums (http://forum.microchip.com, or more specifically the USB
forum topic), Microchip consultant program member listing

• Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and
events, listings of Microchip sales offices, distributors and factory representatives

Development Systems Customer Change Notification Service

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive
e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or
development tool of interest.

3.3 Support MCHPFSUSB Library Help

6

http://support.microchip.com
http://forum.microchip.com

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the
registration instructions.

Additional Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices
are also available to help customers. A listing of sales offices and locations is available on our website.

Technical support is available through the web site at: http://support.microchip.com

Training

• Regional Training Centers: http://www.microchip.com/rtc

• MASTERs Conference: http://www.microchip.com/masters

• Webseminars: http://techtrain.microchip.com/webseminars/QuickList.aspx

3.4 Online Reference and Resources
This section includes useful links to online USB development resources.

Description

Note: Newer versions of the documents below may be available. Please check www.microchip.com for the latest version.

USB Design Center

http://www.microchip.com/usb

Application Notes

Microchip USB Device Firmware Framework User’s Guide

AN950 – Power Management for PIC18 USB Microcontrollers with nanoWatt Technology

AN956 – Migrating Applications to USB from RS-232 UART with Minimal Impact on PC Software

AN1140 – USB Embedded Host Stack

AN1141 – USB Embedded Host Stack Programmer’s Guide

AN1142 – USB Mass Storage Class on an Embedded Host

AN1143 – Generic Client Driver for a USB Embedded Host

AN1144 - USB Human Interface Device Class on an Embedded Host

AN1145 – Using a USB Flash Drive on an Embedded Host

AN1189 – Implementing a Mass Storage Device Using the Microchip

AN1212 – Using USB Keyboard with an Embedded Host

AN1233 – USB Printer Class on an Embedded Host

3.4 Online Reference and Resources MCHPFSUSB Library Help

7

http://support.microchip.com
http://www.microchip.com/rtc
http://www.microchip.com/masters
http://techtrain.microchip.com/webseminars/QuickList.aspx
http://www.microchip.com/usb
http://ww1.microchip.com/downloads/en/DeviceDoc/51679b.pdf
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en021627
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en021631
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en534221
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en534245
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en534220
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en539738
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en536561
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en534219
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en536602
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en536935
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en537372

USB Demonstration Videos

http://www.youtube.com/watch?v=ljF4KQ2mfD0

http://www.youtube.com/watch?v=cmtjKUv_yPs&feature=related

http://www.youtube.com/watch?v=BOosLeO7D58&feature=related

3.5 Demo Board Support and Limitations
This section shows which demos are supported on each of the USB demo boards.

Description

This section shows which demos are supported on each of the USB demo boards.

3.5 Demo Board Support and Limitations MCHPFSUSB Library Help

8

http://www.youtube.com/watch?v=ljF4KQ2mfD0
http://www.youtube.com/watch?v=cmtjKUv_yPs&feature=related
http://www.youtube.com/watch?v=BOosLeO7D58&feature=related

Limitations

1) "Neither compound nor composite devices are supported. Some keyboards are either compound or composite.

The “~” prints as an arrow character instead (“->”). This is an effect of the LCD screen on the Explorer 16. The ascii
character for “~” is remapped in the LCD controller.

The “\” prints as a “¥” character instead. This is an effect of the LCD screen on the Explorer 16. The ascii character for “\” is
remapped in the LCD controller.

Backspace and arrow keys may have issues on Explorer 16 boards with certain LCD modules"

2) The PIC24F starter kit does not have a physical push button. The board uses capacitive touch buttons instead. The cap
touch functionality has not been added to the demos yet so the functionality required by the demos is not currently available.

3) PIC32 USB Starter kit does not have a potentiometer, a temperature sensor, or a 4th LED on the board. Demos using
these features do not function in their full capacity.

4) Due to the size of this demo, optimizations must be enabled in the compiler in order for this demo to work on the specified
hardware platform. Optimizations are not available on all versions of the compilers.

5) The PIC32MX795F512L Family devices have a register bit named READ. This conflicts with a definition in the MDD
library. The MDD Library READ definition should not be used. Instead a 'r' should be used.

3.6 Operating System Support and Limitations
This section describes which operating systems support each of the provided demos.

Description

This section describes which operating systems support each of the provided demos.

3.6 Operating System Support and MCHPFSUSB Library Help

9

Limitations

1) These devices enumerate successfully by the OS but currently there is not an example program to interface these devices.

2) Devices that implement the LibUSB demo will enumerate successfully on Macintosh based operating systems (provided
the correct drivers are installed). Currently there is not an example program to communicate to these devices on these
operating systems in this installation.

3) Only single touch gestures are supported in Windows Vista. For the multi touch demo only the single touch gestures will
work as a gesture. The multi touch gestures in Vista will appears as two separate touch events that do not produce a usable
pattern.

4) When used with Windows XP SP2 or earlier, this demo requires a Microsoft hotfix in order to run properly. This hotfix is
linked from the demo folder. Windows XP SP3 works properly without needing any hotfix.

5) When adding a VID/PID string to the “%DESCRIPTION%=DriverInstall” and “%DESCRIPTION%=DriverInstall64” sections
in the mchpusb.inf file, remove one or more of the pre-existing VID/PID strings from the list. There is a limit to the maximum
number of VID/PID strings that can be supported simultaneously. If the list contains too many entries, the following error
message will occur when installing the driver under Vista: "The Data Area Passed to a System Call Is Too Small"

6) The CDC PC example code does not run as implemented on the 64-bit version of the Windows Vista operating system
with some versions of the .net framework. The .NET SerialPort object does not appear to receive data as implemented in
these examples in the early versions of the .net framework for Vista.

7) The HID keyboard example does not work as implemented on the Windows 2000 operating system or any earlier
revisions of the Windows operating systems.

3.6 Operating System Support and MCHPFSUSB Library Help

10

8) Firmware successfully enumerates but test machine was unable to verify functionality. This is either due to lack of support
in the OS for these types of devices or lack of an Application that uses these devices.

9) This demo uses the USB IAD specification. Some versions of Macintosh OSX do not support IAD.

3.7 Tool Information
Specifies the versions of the tools used to test this release.

Description

This release was tested with the following tools:

Compiler Version

MPLAB C18 3.40

MPLAB C30 3.31

MPLAB C32 2.02a

IDE Version

MPLAB 8.83

MPLAB X 1.00

Some demos in this release require the full versions of the above compilers (the boot loaders and a few of the demo
applications). For most demos, either the commercial version, or the evaluation version can be used to build the example
projects. Some The compilers may be obtained from http://www.microchip.com/c18, http://www.microchip.com/c30, and
http://www.microchip.com/c32.

3.8 Revision History
This section describes in more detail the changes made between versions of the MCHPFSUSB stack. This section generally
discusses only changes made to the core files (those found in the <install directory>\Microchip folder). This section generally
doesn't include changes to the demo projects unless those changes are important to know about. This section also doesn't
encompass minor changes to the stack files such as arrangement or locations of definitions or any other organizational
changes.

For more information about how to compare the actual source of two different revisions, please see the Appendix - Using a
diff(page 887) tool section of this document.

3.8.1 v2.9e

1. Read-modify-write race condition in the way the USB interrupt flag was getting cleared on the PIC32 devices.

• Stack files affected: usb_hal_pic32.h

2. Added option to disable NAK timeouts for CDC host transfers (USB_HOST_CDC_NAK_TIMEOUT)

• Stack files affected: usb_host_cdc.c

3.8 Revision History MCHPFSUSB Library Help v2.9e

11

3. The ALLOW_GLOBAL_VID_AND_PID option does not issue the EVENT_OVERRIDE_CLIENT_DRIVER_SELECTION
event.

• Stack files affected: usb_host.c

4. USB host isochronous writes did not function correctly

• Stack files affected: usb_host.c

5. USB host isochronous writes and reads could not occur during the same frame

• Stack files affected: usb_host.c

6. NULL pointer dereference could occur if a malloc() call failed during device enumeration in USB host stack while creating
the endpoint data structure.

• Stack files affected: usb_host.c

7. Optimazation settings other than -O0 for C30 could cause MSD internal flash demos not to work.

• Stack files affected: None (Files.c in user folder updated)

3.8.2 v2.9d

1. Data event handler of Android driver not passing events to protocol handler resulting in possible memory leak.

• Stack files affected: usb_host_android.c

2. Issues with mass storage demos on OS X 10.7 when SD-card is read-only.

• Stack files affected: usb_function_msd.c

3. Fixed compile warnings when -Wall option selected on C32

• Stack files affected: usb_host_msd.c

4. Fixed issue with call back redirection macro for EP0 request handler.

• Stack files affected: usb_device_local.h

5. Added configuration option to disable DTS checking in hardware

• Stack files affected: usb_device.c

6. Fixed a race condition between the 1msec interrupt and the detach interrupt. If the detach interrupt occurs just before the
1msec interrupt, the interrupt handler could cause the host stack state machine to go into an unknown state requiring a
reset of the system to recover. Typically only seen when rapidly attaching/detaching a device repeatedly.

• Stack files affected: usb_host.c

7. Added an error handing case to check for a size larger than 256.

• Stack files affected: usb_function_phdc.c

8. Write attempts to a drive that is write protected does not report the status correct.

• Stack files affected: usb_function_msd.c

9. Updated PHDC code to pass Continua testing

• Stack files affected: usb_function_phdc.c, usb_function_phdc.h, usb_function_phdc_com_model.c/.h added

3.8.3 v2.9c

1. Added example showing how to connect to custom HID, LibUSB, WinUSB, and MCHPUSB demos from an Android v3.1+
host.

3.8 Revision History MCHPFSUSB Library Help v2.9c

12

• Stack files affected: none

2. Updated libusb driver INF to be signed, so now it can be installed with Windows 7

• Stack files affected: none

3. Some dsPIC projects not building correctly

• Stack files affected: usb_hal_dspic33e.h, usb_hal_pic24e.h

3.8.4 v2.9b

1. UART RX functionality fixed on several demos using the PIC24FJ256DA210 development board.

• Stack files affected: none

2. Race condition fixed in Android OpenAccessory framework that could lead to the accessory not attaching periodically.

• Stack files affected: usb_host_android_protocol_v1.c

3. Added Android Accessory workaround for when Android device attaches in accessory mode without first attaching as the
manufacturer's mode (happens when accessory is reset but not detached from bus).

• Stack files affected: usb_host_android_protocol_v1.c, usb_host_android.c, usb_host_android.h

4. Fixed issue where non-supported Android protocol versions would try to enumerate.

• Stack files affected: usb_host_android.c

5. PIC18F Starter Kit MSD SD card reader demo not working correctly.

• Stack files affected: none

6. Null pointer dereference on Android OpenAccessory detach event.

• Stack files affected: usb_host_android_protocol_v1.c

7. Removed the restriction of MSD drives with the VID = 0x0930 and PID = 0x6545 for the USB MSD host data logging
demo. These drives now show no issues with recent robustness enhancements in the past several releases.

• Stack files affected: none

8. Link issues on Linux and Macintosh machines for PIC18 demos. The latest versions of the C18 compiler for Linux and
Macintosh change the linker and library file capitalization scheme resulting in link errors when using older linker files.
Linker files updated to use latest capitalization scheme.

• Stack files affected: none

9. Cleaned up the configuration bits sections for several processors in several demos.

• Stack files affected: none

10. CCID demo descriptors updated to enable operation on Macintosh machines.

• Stack files affected: none

11. Update the precompiled MSD library to support .elf files.

• Stack files affected: none

12. PCL5 printer host would send out a 0-length packet if an empty string was passed to it. This results in some PCL5
printers to lock up. The updated driver will not send out a text string to a printer if it is empty.

• Stack files affected: none

13. USB_HID_FEATURE_REPORT was assigned the incorrect value.

• Stack files affected: usb_host_hid.c

14. Some CDC device demos had incorrect USB_MAX_NUM_INT definition.

• Stack files affected: none

15. Added examples showing how to connect to various USB demos with the Android USB host API.

3.8 Revision History MCHPFSUSB Library Help v2.9b

13

• Stack files affected: none

16. Optional support for DTS signalling added

• Stack files affected: usb_function_cdc.c, usb_function_cdc.h

17. Added MIDI host support

• Stack files affected: usb_host_midi.c, usb_host_midi.h

18. Added Android OpenAccessory boot loader example

• Stack files affected: none

19. Fixed issues with PIC32 support with the MSD host boot loader. Now supports C32 versions 2.x and later.

• Stack files affected: none

3.8.5 v2.9a

1. Fixes issues in the cross-platform HID boot loader that caused certain hex files not to work if the various sections in the
hex file were not order in increasing address in the .hex file.

• Stack files affected: none

2. Added UART output support for PIC24FJ256DA210 Development Board in Host – Printer Full sheet demo.

• Stack files affected: none

3.8.6 v2.9

1. Adds PHDC peripheral support.

2. Adds Android accessory support for host mode accessories.

3. Added MPLAB X project files for most demo projects.

4. Added code to allow subclass 0x05 (SFF-8070i devices) to enumerate to the MSD host. Support limited to devices that
use SCSI command set only.

• Stack files affected: usb_host_msd.c

5. Added additional logic to MSD SCSI host code to improve support for various MSD devices by trying to reset various error
conditions that may occur.

• Stack files affected: usb_host_msd_scsi.c

6. Fixed issue with CDC host where SET_CONTROL_LINE_STATE command response was formatted incorrectly.

• Stack files affected: usb_host_cdc.c

7. Added support for both input and output functionality in the Audio host driver.

• Stack files affected: usb_host_audio.c

8. Added support for SOF, 1 millisecond timer, and data transfer event notifications to USB host drivers.

• Stack files affected: usb_host.c

9. Added mechanism for a host client driver to override or reject the stacks selection for the class driver associated with an
attached device.

• Stack files affected: usb_host.c, usb_common.h

10. Fixed an issue with STALL handling behavior on non-EP0 endpoints for PIC24 and PIC32 devices.

• Stack files affected: usb_device.c

3.8 Revision History MCHPFSUSB Library Help v2.9

14

11. Fixed an issue where some variables/flags were not getting re-initialized correctly after a set configuration event leading
to communication issues when ping-pong is enabled and multiple set configuration commands are received.

• Stack files affected: usb_device.c

12. Added mechanism to get the handle for the next available ping-pong transfer.

• Stack files affected: usb_device.h

13. Fixed incorrect value for USB_CDC_CONTROL_LINE_LENGTH(page 473) Stack files affected: usb_host_cdc.h

14. Updated MSD device driver to pass command verifier tests.

• Stack files affected: usb_device_msd.c, usb_device_msd.h

15. Change to CDC device driver to allow handling of terminated transfers.

• Stack files affected: usb_device_cdc.c

3.8.7 v2.8

1. Fixed issue with SetFeature(ENDPOINT_HALT) handling in the device stack. Error could cause one packet of data to get
lost per endpoint after clearing a ENDPOINT_HALT event on an endpoint. Issue could also cause the user to lose control
of endpoints that may not have been enabled before the SetFeature(ENDPOINT_HALT) was received. Parts of the issue
described in the following forum thread: http://www.microchip.com/forums/tm.aspx?m=503200.

• Stack files affected: usb_device.c

2. Fixed stability issue in device stack when interrupts enabled related to the improper enabling of the interrupt control bits in
an interrupt context.

• Stack files affected: usb_device.c

3. Fixed issue STALLs were not handled correctly when event transfers are enabled. This could result in the attached device
remaining in a non-responsive state where their endpoints are STALLed.

• Stack files affected: usb_host_msd.c

4. Fixed issue where MSD function driver could not always reinitialize itself to a known state.

• Stack files affected: usb_function_msd.c

5. Added USBCtrlEPAllowStatusStage(page 221)(), USBDeferStatusStage(page 226)(), USBCtrlEPAllowDataStage(
page 220)(), USBDeferOUTDataStage(page 224)(), USBOUTDataStageDeffered(), USBDeferInDataStage(), and
USBINDataStageDeferred(page 247)() functions. These functions allow users to defer the handling of control transfers
received in interrupt context until a later point of time.

• Stack files affected: usb_device.c, usb_device.h

6. Fixed issue in PIC18F starter kit SD-card bootloader issue. Bootloader could have errors loading hex files if there was an
hex entry starting at an odd address with an even number of bytes in the payload.

• Stack files affected: none

7. Reorganization of many of the definitions and data types.

• Stack files affected: usb_hal_pic18.h, usb_hal_pic24.h, usb_hal_pic32.h, usb_device_local.h, usb_device.c,
usb_device.h

8. Changed the behavior of the PIC24F HID bootloader linker scripts. The remapping.s file is no longer required. Interrupt
vector remapping is now handled by the provided linker scripts (no customization required). Applications should be able to
run with the bootloader linker script when either programmed or loaded through the bootloader allowing for more easy
development and debugging. Interrupt latency should also be the same when using the bootloader or the debugger. For
more information about usage, please refer to the HID bootloader documentation.

9. Changed the behavior of the PIC32 HID bootloader linker scripts. The dual-linker script requirement has been replaced by
a single required linker script that should be attached to the application project. Applications should be able to run with the
bootloader linker script when either programmed or loaded through the bootloader allowing for more easy development
and debugging. Interrupt latency should also be the same when using the bootloader or the debugger. For more
information about usage, please refer to the HID bootloader documentation.

3.8 Revision History MCHPFSUSB Library Help v2.8

15

10. Added files for the PIC18F starter kit contest winners. Located in “<INSTALL_DIRECTORY>/PIC18F Starter Kit
1/Demos/Customer Submissions/Contest 1”

11. Added initial support for the PIC24FJ256DA210 development board(page 191).

12. Added initial support for the PIC24FJ256GB210 Plug-in module(page 190).

3.8.8 v2.7a

1. Fixed USBSetBDTAddress() macro, so that it correctly loads the entire U1BDTPx register set, enabling the BDT to be
anywhere in RAM. Previous implementation wouldn't work on a large RAM device if the linker decided to place the BDT[]
array at an address > 64kB.

• Stack files affected: usb_hal_pic32.h

2. Fixed initialization issue where HID parse result information wasn't cleared before loading with new parse result data.

• Stack files affected: usb_host_hid_parser.c

3. Update to support the PIC18F47J53 A1 and later revision devices.

• Stack files affected: usb_device.c

4. Fixed an error on 16-bit and 32-bit processors where a word access could be performed on a byte pointer resulting in
possible address errors with odd aligned pointers.

• Stack files affected: usb_device.c

5. Fixed issue where the USBSleepOnSuspend() function would cause the USB communication to fail after being called
when _IPL is equal to 0.

• Stack files affected: usb_hal_pic24.c

6. Fixed issue where placing the micro in idle mode would cause the host stack to stop sending out SOF packets.

• Stack files affected: usb_host.c

7. Fixed several issues in the USBConfig.exe

8. Made changes to the starting address of the HID bootloader for PIC32. Reduced the size used by the bootloader. Also
added application linker scripts for each processor.

9. Added a three point touch digitizer example

10. Updated some of the PC examples to build and run properly in the 2010 .net Express versions.

11. Added information and batch file showing how to enter a special mode of device manager that allows
removal/uninstallation of devices that are not currently attached to the system.

3.8.9 v2.7

1. Fixed error where USBHandleGetAddr(page 245)() didn't convert the return address from a physical address to a virtual
address for PIC32.

• Stack files affected: usb_device.h

2. Added macro versions of USBDeviceAttach(page 227)() and USBDeviceDetach(page 228)() so they will compile
without error when using polling mode.

• Stack files affected: usb_device.h

3. Fixes issue in dual role example where a device in polling mode can still have interrupts enabled from the host mode
causing an incorrect vectoring to the host interrupt controller while in device mode.

• Stack files affected: usb_hal_pic18.h, usb_hal_pic24.h, usb_hal-pic32.h, usb_device.c

3.8 Revision History MCHPFSUSB Library Help v2.7

16

4. Modified the SetConfigurationOptions() function for PIC32 to explicitly reconfigure the pull-up/pull-down settings for the
D+/D- pins in case the host code leaves the pull-downs enabled when running in a dual role configuration.

• Stack files affected: usb_hal_pic32.h

5. Fixed error where the USB error interrupt flag was not getting cleared properly for PIC32 resulting in extra error interrupts
(http://www.microchip.com/forums/tm.aspx?m=479085).

• Stack files affected: usb_device.c

6. Updated the device stack to move to the configuration state only after the user event completes.

• Stack files affected: usb_device.c

7. Fixed error in the part support list of the variables section where the address of the CDC variables are defined. The
PIC18F2553 was incorrectly named PIC18F2453 and the PIC18F4558 was incorrectly named PIC18F4458
(http://www.microchip.com/forums/fb.aspx?m=487397).

• Stack files affected: usb_function_cdc.c

8. Fixed an error where the USBHostClearEndpointErrors(page 338)() function didn't properly return USB_SUCCESS if
the errors were successfully cleared (http://www.microchip.com/forums/fb.aspx?m=490651).

• Stack files affected: usb_host.c

9. Fixed issue where deviceInfoHID[i].rptDescriptor was incorrectly freed twice. The second free results in possible issues in
future malloc() calls in the C32 compiler.

• Stack files affected: usb_host_hid.c

10. Fixed an issue where the MSD client driver would issue a transfer events to an incorrect/invalid client driver number
when transfer events are enabled.

• Stack files affected: usb_host_msd.c

11. Fixed issue where a device that is already connected to the embedded host when the system is initialized may not
enumerate.

• Stack files affected: usb_host.c

12. Fixed issue where the embedded host or OTG device did not properly check bmRequestType when it thinks that a
HALT_ENDPOINT request was sent to the device. This resulted in the DTS bits for the attached device getting reset
causing possible communication issues.

• Stack files affected: usb_host.c

13. Changed how the bus sensing works. In previous revisions it was impossible to use the USBDeviceDetach(page 228)
to detach from the bus if the bus voltage was still present. This is now possible. It was also possible to move the device to
the ATTACHED state in interrupt mode even if the bus voltage wasn't available. This is now prohibited unless VBUS is
present.

• Stack files affected: usb_device.c

14. Added USBSleepOnSuspend() function. This function shows how to put the PIC24F to sleep while the USB module is in
suspend and have the USB module wake up the device on activity on the bus.

• Stack files affected: usb_hal_pic24.h, usb_hal_pic24.c

15. Modified the code to allow connection of USB-RS232 dongles that do not fully comply with CDC specifications.

• Stack files affected: usb_host_cdc.h, usb_host_cdc.c, usb_host_cdc_interface.c, usb_host_interface.h

16. Modified API USBHostCDC_Api_Send_OUT_Data to allow data transfers more than 256 bytes.

• Stack files affected: usb_host_cdc.h, usb_host_cdc.c, usb_host_cdc_interface.c, usb_host_interface.h

17. Improved error case handling when the host sends more OUT bytes in a control transfer than the firmware was
expecting to receive (based on the size parameter when calling USBEP0Receive(page 235)()).

• Stack files affected: usb_device.c

18. Added CCID (Circuit Cards Interface Device) class device/function support.

• Stack Files affected: usb_function_ccid.h, usb_function_ccid.c

19. Added Audio v1 class embedded host support.

• Stack files affected: usb_host_audio_v1.h, usb_host_audio_v1.c

3.9 Library Migration MCHPFSUSB Library Help

17

3.9 Library Migration

3.9.1 From v2.9d to v2.9e

No changes required

3.9.2 From v2.9c to v2.9d

No changes required.

3.9.3 From v2.9b to v2.9c

No changes required.

3.9.4 From v2.9a to v2.9b

No changes required.

3.9.5 From v2.9 to v2.9a

No changes required.

3.9.6 From v2.8 to v2.9

No changes required.

3.9.7 From v2.7a to v2.8

1. HID Bootloader for PIC32 devices

• An error was fixed in PIC32 bootloader. The previous implementations placed the interrupt vector table on a 1K-page
aligned boundary. This table should be on a such a boundary. The user reset vector and the interrupt vector section
addresses were switched to meet this requirement. Applications/bootloaders using the old reset vector will not work

3.9 Library Migration MCHPFSUSB Library Help From v2.7a to v2.8

18

with applications/bootloaders using the new bootloader linker files.

3.9.8 From v2.7 to v2.7a

1. HID Bootloader for PIC32 devices

• The PIC32 bootloader was changed in this revision. The memory region used by the HID bootloader was reduced. This
could result in issues loading application projects built with the new linker scripts on a system with the old bootloader. It
could also result in issues loading an old application with the new bootloader.

3.9.9 From v2.6a to v2.7

No changes required.

3.9.10 From v2.6 to v2.6a

1. HID Bootloader for PIC24F devices

• The HID Bootloader for PIC24F has been reworked for the v2.6a release. The change involve how interrupt remapping
is handled and how applications relocate their code to make room for the bootloader. Applications built with the v2.6 or
earlier PIC24F compiler should continue using the v2.6 bootloader and support files. It is recommended for new
projects that new bootloader and support files should be used.

• In previous revisions of the stack there was a “PIC24F HID Bootloader Remapping.s” file that was added to any
PIC24F project to relocate the application code out of the bootloader space. These files have been deprecated and
should not be used with the new revision of the bootloader. Instead there is a custom linker script
(boot_hid_p24fjxxxGBxxx.gld) file in the HID bootloader folder specifically designed for the application. These are
located in the “Application Files” folder in each of the respective bootloader folders. Copy this file from this folder into
the application folder and add it to the target project. All of the possible interrupts should already be remapped. To use
an interrupt, merely define the interrupt handler as you normally would if you weren’t using a bootloader.

• The bootloader for PIC18 and PIC32 devices were not modified.

3.9.11 From v2.5 to v2.6

1. Include Files

• The files that must be included into a project has changed from v2.5 to v2.6.

• Version v2.5 of the MCHPFSUSB stack required multiple include files in order to work properly in device mode. The
usb_device.h, usb.h, usb_config.h, and class specific files (i.e. - “./usb/usb_function_msd.h”) had to be included in all
of the application files that accessed the USB stack as well as other common include files like the GenericTypeDefs.h
and Compiler.h files.

• In MHCPFSUSB v2.6, only the usb.h file and the class specific files (i.e. - “./usb/usb_function_msd.h”) must be
included in the project. The usb_device.h and usb_config.h files should no longer be included in the application specific
files.

3.9 Library Migration MCHPFSUSB Library Help From v2.5 to v2.6

19

2. Include Search Paths and Build Directory Policy

• The preferred include path list has changed since the initial v2.x release. MPLAB now support compiling projects with
respect to the project file instead of the source file. This is now the preferred method. With this modification the
required include paths are the following:

• .

• ../Microchip/Include

• If your project file located in a different format than the example projects, please add or remove the appropriate path
modifiers such that the include path indirectly points to the /Microchip/Include folder.

• To change the build directory policy and set the include paths, go to the “Project->Build Options->Project” menu. On
the directories tab, select the include directories from the show directories drop down box.

3. Disabling Interrupt Handlers

• In MCHPFSUSB v2.6, the interrupt handler routines are disabled through the usb_config.h file using the following
definitions:

• USB_DISABLE_SET_CONFIGURATION_HANDLER

• USB_DISABLE_SUSPEND_HANDLER

• USB_DISABLE_WAKEUP_FROM_SUSPEND_HANDLER

• USB_DISABLE_SOF_HANDLER

• USB_DISABLE_ERROR_HANDLER

• USB_DISABLE_NONSTANDARD_EP0_REQUEST_HANDLER

• USB_DISABLE_SET_DESCRIPTOR_HANDLER

• USB_DISABLE_TRANSFER_COMPLETE_HANDLER

• Defining any of these definitions in the usb_config.h file will disable the callback from the stack during these events.
Please note that some of these events are required to be USB compliant. For example all USB devices must go into
suspend mode when requested. The suspend handler is how the stack notifies the user that the bus has requested the
device to go into suspend mode.

• Also note that some device classes or demos may require certain handlers to be available in order to operate properly.
For example, the audio class demo uses the start of frames provided by the SOF handler to properly synchronize the
audio data playback.

3.9 Library Migration MCHPFSUSB Library Help From v2.5 to v2.6

20

4 Demos

4.1 Device - Audio Microphone Basic Demo
This demo shows how to implement a simple USB microphone. This demo uses a pre-recorded sound file in flash and plays
that file when a pushbutton is pressed.

Description

4.1.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.1 Device - Audio Microphone Basic MCHPFSUSB Library Help Configuring the Hardware

21

4.1.2 Configuring the Hardware

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

4.1 Device - Audio Microphone Basic MCHPFSUSB Library Help Configuring the Hardware

22

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24F64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.1.3 Running the Demo

This demo uses the selected hardware platform as a USB Microphone Device. The demo emulates a PCM, 16 bits/Sample,
8000 Samples/ second, mono Microphone. Connect the device to the computer. Open a sound recording software package.
Each sound recording software interface is different so the following instructions may not apply the to software package you
are using. Please refer to the user’s manual for the software package you are using for more details of how to configure that
tool for Sound recording.

Using Sound Recorder [Windows Computers]

Open Sound Recorder from Start->Programs->Accessories->Entertainement->Sound Recorder. Click on File-> Properties.

Now the ‘Properties for Sound’ Window gets opened as shown below. Click on ‘Convert Now’ button.

4.1 Device - Audio Microphone Basic MCHPFSUSB Library Help Running the Demo

23

This opens up the ‘Sound Selection’ window as shown below.

Change the ‘Attributes’ to “8.00kHz, 16 Bit, Mono 15kb/sec” in the ‘Sound Selection’ Window.

Click on OK button on the ‘Sound Selection’ Window. Click OK button on the ‘Properties for Sound’ Window.

Click on the Record Button on the Sound Recorder.

At this point you can press the pushbutton on the demo board and it will record a voice that is stored in the USB device.
Once you finish with the recording click on the ‘Play’ button to play the recorded voice which can be heard through your
computer Speaker.

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

4.1 Device - Audio Microphone Basic MCHPFSUSB Library Help Running the Demo

24

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189) S1

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.2 Device - Audio MIDI Demo
This demo shows how to implement a simple bi-directional USB MIDI device.

4.2.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

4.2 Device - Audio MIDI Demo MCHPFSUSB Library Help Supported Demo Boards

25

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.2.2 Configuring the Hardware

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

4.2 Device - Audio MIDI Demo MCHPFSUSB Library Help Configuring the Hardware

26

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24F64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.2.3 Running the Demo

This demo uses the selected hardware platform as a USB MIDI device. Connect the device to the computer. Open a MIDI
recording software package. Each MIDI recording software interface is different so the following instructions may not apply
the to software package you are using. Please refer to the user’s manual for the software package you are using for more
details of how to configure that tool for a USB MIDI input.

In this demo each time you press the button on the board, it will cycle through a series of notes.

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

4.2 Device - Audio MIDI Demo MCHPFSUSB Library Help Running the Demo

27

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189) S1

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.2 Device - Audio MIDI Demo MCHPFSUSB Library Help Running the Demo

28

4.2.3.1 Garage Band '08 [Macintosh Computers]
Open Garage Band. If you haven’t opened Garage Band before you will see an opening window. Select “Create New Music
Project”

The next window will prompt you for information about the song. Change any of the information is desired. Click “Create”
when done.

The Garage Band main window will open. In this window there should be a single default track if the USB device is already
attached. At this point you can press the pushbutton(page 27) on the demo board and it will cycle through a series of
notes and play these notes through the computer speakers.

4.2 Device - Audio MIDI Demo MCHPFSUSB Library Help Running the Demo

29

4.2 Device - Audio MIDI Demo MCHPFSUSB Library Help Running the Demo

30

4.2.3.2 Using Linux MultiMedia Studio (LMMS) [Linux and
Windows Computers]

In this example we will be using Linux MultiMedia Studio (LMMS) available at http://sourceforge.net/projects/lmms/. Install
LMMS. Attach the demo board to the computer. Make sure to attach the USB Audio MIDI example board to the computer
before opening LMMS as LMMS polls for USB MIDI devices upon opening but may not find the devices attached after the
program is opened.

Click on the instrument plug-in button and click and drag the desired instrument plug in to the song editor window.

Once the new instrument is available in the song editor window, “click on the actions” for this track button. Select the “MIDI >
Input > USB Audio Device” option.

4.2 Device - Audio MIDI Demo MCHPFSUSB Library Help Running the Demo

31

http://sourceforge.net/projects/lmms

If you open this option again you should see a green check mark indicating that the device is selected as the input.

At this point you can press the pushbutton on the demo board(page 27) and it will cycle through a series of notes and play
these notes through the computer speakers.

4.3 Device - Audio Speaker Demo

4.3.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PICDEM FS USB(page 183) 1

PIC18F46J50 Plug-In-Module (PIM)(page 184) 1, 2

PIC18F47J53 Plug-In-Module (PIM)(page 185) 1, 2

PIC18F87J50 Plug-In-Module (PIM)(page 186) 1, 2

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1, 3

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1, 3

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1, 3

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1, 3

4.3 Device - Audio Speaker Demo MCHPFSUSB Library Help Supported Demo Boards

32

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1, 3

PIC32 USB Plug-In-Module (PIM)(page 193) 1, 3

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1, 3

Notes:

1. These boards require the Speech Playback PICTail/PICTail+ daughter board in order to run this demo.

2. This board can not be used by itself. It requires a PIC18 Explorer board in order to operate with this demo.

3. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.3.2 Configuring the Hardware

PICDEM FS USB:

1. If header J6 is not populated on the board, you will need to populate it with a female header

2. Connect the Speech Playback Board.

PIC18 Explorer Based Demos

For all of the PIC18 Explorer based demo boards, please follow the following instructions:

1. Set switch S4 to the "ICE" position

2. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

• PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

• PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

1. Set switch S1 to the "PGX1" setting

2. Short J1 pin 1 (marked "POT") to the center pin

3. Short J2 pin 1 (marked "Temp") to the center pin

4.3 Device - Audio Speaker Demo MCHPFSUSB Library Help Configuring the Hardware

33

4. Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

1. Short JP1 "U" option to the center pin

2. Short JP2 "U" option to the center pin

3. Short JP3 "U" option to the center pin

4. Short JP4

• PIC24EP512GU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

1. Open J10

2. Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.3.3 Running the Demo

This demo functions as a speaker when plugged into a computer. Using any feature on the computer that normal produces
sound on the speaker will work with this demo.

Please note that some applications lock into a sound source when they open or close (such as some web browsers or
plug-ins), so that if you plug in the speaker with the webpage or video already playing, the sound might not get redirected to
the USB based speakers until you close and reopen the browser.

The audio device created in this demo has the following characteristics:

• Sampling rate of 48 KHz

• 1 Channel (Mono)

• PCM Format - 16 bits per Sample

• Asynchronous Audio Endpoint

And the following audio topology:

The feature unit only supports the Mute control.

4.4 Device - Boot Loader - HID
In many types of applications, it is often desirable to be able to field update the firmware used on the flash microcontroller,
such as to perform bug fixes, or to provide new features. Microchip’s flash memory based USB microcontrollers have self
programming capability, and are therefore able to perform self updates of application firmware. This can be achieved by

4.4 Device - Boot Loader - HID MCHPFSUSB Library Help

34

downloading a new firmware image (.hex file) through the USB port, and using the microcontroller’s self programming ability
to update the flash memory.

As of this release the “HID Bootloader” is intended to be used with all PIC18 and PIC24F released Microchip USB flash
microcontrollers.

The bootloader comes with full firmware and PC software source code, and is intended to be easily modified to support
future Microchip USB microcontrollers. The PC software is designed to be independent of the microcontroller device being
used, so only one PC application is needed to update any of the microcontroller devices.

4.4.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.4.2 Configuring the Demo

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

4.4 Device - Boot Loader - HID MCHPFSUSB Library Help Configuring the Demo

35

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

PIC24FJ64GB502 Microstick:

• No hardware related configuration or jumper setting changes are necessary.

4.4.3 Running the Demo

All variants of the HID Bootloader firmware are intended to interface with the “HIDBootLoader.exe” PC application.

Before you can run the HIDBootLoader.exe executable, you will need to have the Microsoft® .NET Framework Version 2.0
Redistributable Package (later versions probably okay, but not tested) installed on your computer. Programs which were built
in the Visual Studio® .NET languages require the .NET redistributable package in order to run. The redistributable package
can be freely downloaded from Microsoft’s website. Users of Windows Vista® and Windows 7 operating systems will not
need to install the .NET framework, as it comes pre-installed as part of the operating system.

The source code for the HIDBootLoader.exe file was created in Microsoft Visual C++® 2005 Express Edition. The source
code can be found in the “<Install Directory>\USB USB Device - Bootloaders\HID - Bootloader\HID Bootloader - PC
Software” directory. Microsoft currently distributes Visual C++ 2005 Express Edition for free, and can be downloaded from
Microsoft’s website. When downloading Microsoft Visual C++ 2005 Express Edition, also make sure to download and install
the Platform SDK, and follow Microsoft’s instructions for integrating it with the development environment.

It is not necessary to install either Microsoft Visual C++ 2005 or the Platform SDK in order to use the HID Bootloader. These
are only required in order to modify or recompile the PC software source code.

To run the application, simply double click on the executable, which can be found in the following directory: “<Install
Directory>\USB USB Device - Bootloaders\HID – Bootloader”. Upon launching the application, a window like that shown
below should appear:

4.4 Device - Boot Loader - HID MCHPFSUSB Library Help Running the Demo

36

If the application fails to launch, but instead causes a non-descript error message pop up box to appear, it is likely that the
.NET framework redistributable has not been installed. Please install the .NET framework and try again.

Upon launch, the HIDBootLoader.exe program will do a search, looking for HID class devices with VID = 0x04D8, and PID =
0x003C. This is the same VID/PID that is used in the HID Bootloader firmware projects, which is found in the following
directory: “<Install Directory>\USB Device - Bootloaders\HID - Bootloader\HID Bootloader - Firmware for (microcontroller
family name)”. When commercializing a product that will be using this bootloader, it is important to change the VID/PID in
both the firmware and the PC application source code.

In order to use the bootloader, you will need to program a device with the bootloader firmware. If using a Microchip demo
board, such as the PIC18F46J50 FS USB Demo Board (also known as “PIC18F46J50 PIM”(page 184)), precompiled
demo .hex files can be used (without any modifications). These pre-compiled .hex files are located in the “<Install
Directory>\USB Precompiled Demos” folder. After the HID bootloader firmware (ex: the .hex file named “USB Device - HID -
HID Bootloader - C18 – PIC(device name).hex” has been programmed, continuously hold down the relevant pushbutton on
the demo board, and then tap and release the MCLR pushbutton. After exiting from MCLR reset, the bootloader firmware will
make a quick check of the pushbutton I/O pin state. If the pushbutton is pressed, it will stay in the bootloader.

By default, the I/O pin that gets checked after exiting from reset will be:

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189) S1

PIC24FJ256DA210 Development Board(page 191) S1

Notes:

1) This is the button number on the Explorer 16.

Assuming that the device is connected correctly, and in bootload mode, the HIDBootLoader.exe application should
automatically detect the device. The application uses WM_DEVICECHANGE messages in order to make for a smooth plug
and play experience. Once the application detects the device, some of the buttons in the application should automatically
become enabled.

4.4 Device - Boot Loader - HID MCHPFSUSB Library Help Running the Demo

37

At this point, “main application” firmware images can be loaded and programmed using the bootloader. The main application
should not try to put code in addresses 0x00-0xFFF, because the bootloader will not attempt to program these locations
(which is where the bootloader firmware resides). Therefore, when building the main application hex files, a modified linker
script should be used. The “rm18f87j50.lkr” file included in the various USB device projects (such as in the “HID Mouse”
project) shows an example of how this can be done.

By default, most of the pre-compiled demo .hex files are pre-configured to be useable with the HID Bootloader. Therefore,
the pre-compiled demo firmware files, such as the “USB Device - HID - Mouse - C18 - PIC18F87J50 PIM.hex” can be
directly programmed with the bootloader.

After an appropriate hex file has been programmed, simply reset the microcontroller (without holding down the bootloader
entry pushbutton) to exit the bootloader and begin running the main application code. The main application firmware should
begin running.

NOTE: The “USB Device - Mass Storage - SD Card reader” and “USB Device - Mass Storage - SD Card data logger”
demos make use of the SD Card PICtail™ Daughter Board (Microchip Direct: AC164122). This PICtail uses the RB4 I/O
pin for the card detect (CD) signal when used with the PIC18F87J50 FS USB Demo Board (PIM), and is actively driven by
the PICtail. The active drive overpowers the pull up resistor on the RB4 pushbutton (on the PIC18F87J50 FS USB Demo
Board). As a result, if the PIC18F87J50 is programmed with the HID bootloader, and an SD Card is installed in the socket
when the microcontroller comes out of reset, the firmware will immediately enter the bootloader (irrespective of the RB4
pushbutton state). To exit the bootloader firmware, remove the SD Card from the SD Card socket, and tap the MCLR
button. When the SD Card is not plugged in, the PICtail will drive the card detect signal (which is connected to RB4) logic
high, which will enable the bootloader to exit to the main application after coming out of reset. Once the main application
firmware is operating, the SD Card can be plugged in. The SD Card is “hot-swappable” and should be recognized by the
host upon insertion. To avoid this inconvenience when using the bootloader with the PICtail, it is suggested to modify the
bootloader firmware to use some other I/O pin for bootloader entry, such as RB0 (which has a pushbutton on it on the HPC
Explorer board).

4.4.4 Implementation and Customization Details

4.4 Device - Boot Loader - HID MCHPFSUSB Library Help Implementation and Customization Details

38

4.4.4.1 Configuration Bits
Typically, when downloading new firmware images into the microcontroller, the configuration bit settings do not need to be
modified. In some applications, it is sometimes desirable to be able to program new configuration bit settings into the
microcontroller. Doing so entails a small amount of risk however, since it is potentially possible to program a new .hex file
containing configuration bit settings that would be incompatible with USB operation (for example, if the oscillator settings are
completely wrong). It is therefore generally recommended not to check the “Allow Configuration Word Programming” check
box, unless strictly necessary. Special considerations should be kept in mind regarding the “Allow Configuration Word
Programming” check box:

On currently supported PIC18xxJxx devices, the configuration words are stored in flash memory at the end of the
implemented program memory space. However, the minimum erase page size is currently fixed at 1024 bytes for the
currently supported microcontrollers. Therefore, if the “Allow Configuration Word Programming” box is left unchecked, then
the last page of program memory will not get erase and will not get updated by the bootloader. If the main application
firmware .hex file contains program code on the last page of implemented flash memory, it will not get updated. This can
however be worked around, simply by checking the “Allow Configuration Word Programming” check box. The bootloader
firmware will then erase and reprogram the last 1024 byte page of flash memory (which contains the configuration words).

4.4 Device - Boot Loader - HID MCHPFSUSB Library Help Implementation and Customization Details

39

4.4.4.2 Vendor ID (VID) and Product ID (PID)
When commercializing a product that will be using a USB bootloader, always make sure to use a unique VID and PID
combination. Do not use the default VID/PID combination (from the bootloader firmware and PC application) in your
commercialized product. If a PC has two devices, both containing the same bootloader with VID/PID = 0x04D8/0x003C, one
made by manufacturer A (ex: a keyboard), and another device made by manufacturer B (ex: a CDC serial emulation device),
then it is not certain which device the HID Bootloader PC application will connect to. The HID Bootloader PC application will
search the system for any devices attached with matching VID/PID, but if there is more than one simultaneously attached, it
will connect to the first one it finds. This could potentially lead to inadvertent flash updating of the wrong product, leading to
unexpected and undesired consequences. By using a unique VID/PID for each product line of a given type, this ensures that
the HID bootloader PC application will only find the correct device. To change the VID and PID in the bootloader firmware,
simply change the USB device descriptor and rebuild the firmware. To change the HID Bootloader PC application, change
the “MY_DEVICE_ID” string at the top of Form1.h, so that the VID/PID matches the firmware and then rebuild the project.
The PC application is built in Microsoft Visual C++ 2005 .NET express edition. Microsoft currently distributes the express
editions of Visual Studio languages for free download on their website.

4.4 Device - Boot Loader - HID MCHPFSUSB Library Help Implementation and Customization Details

40

4.4.4.3 Part Specific Details

4.4 Device - Boot Loader - HID MCHPFSUSB Library Help Implementation and Customization Details

41

4.4.4.3.1 PIC18F
Software entry to boot loader from application:

In the MCHPFSUSB v2.4 release, the PIC18F87J50 family and PIC18F46J50 family versions of the HID bootloader firmware
also contains an alternative software only entry method into the bootloader. If executing the main application
(non-bootloader) software, the main application may enter the bootloader by:

1. Clearing the global interrupt enable bit (INTCON<GIEH>

2. Execute the instruction: “_asm goto 0x001C _endasm”

It is not necessary to have the I/O pin in the logic low state when using this software entry method.

Memory Map Overview:

As configured by default, the HID bootloader firmware uses the below memory mapping. The memory map can readily be
modified by editing the HID bootloader firmware project. It should not be necessary to modify the PC application source code
to change the memory map.

0x000-0xFFF - Occupied by the HID bootloader firmware

• 0x08 (high priority interrupt vector) contains a “goto 0x1008” instruction

• 0x18 (low priority interrupt vector) contains a “goto 0x1018” instruction

• 0x1C is a main application firmware software only entry point into the bootloader (this entry point is currently implemented
on the PIC18F87J50 family and PIC18F46J50 family versions of the firmware)

• 0x1000-(end of device flash memory) – Available for use by the main application firmware

• If programming in C18, normally should place a “goto _startup” instruction at address 0x1000, to allow the C initializer to
run

Vector Remapping:

As currently configured, the bootloader occupies the address range 0x00-0xFFF (on PIC18), which means it occupies the
PIC18 reset, high priority, and low priority interrupt vector locations. The bootloader firmware itself does not enable or use
interrupts. In order to make interrupts available for use by the main application firmware, the interrupt vectors are effectively
“remapped” by placing goto instructions at the actual vector locations. In other words:

Address 0x08 (high priority interrupt vector), contains a “goto 0x1008”.

Address 0x18 (low priority interrupt vector), contains a “goto 0x1018”.

For example, if a high priority interrupt is enabled and used in the main application firmware, the following will occur:

1. Main application enables the interrupt source.

2. Sometime later, the interrupt event occurs.

3. Microcontroller PC jumps to 0x08.

4. Microcontroller executes a “goto 0x1008”.

5. Microcontroller executes the main application interrupt handler routine, which has an entry point at address 0x1008. (Note:
The interrupt handler routine itself is not required to be at address 0x1008, instead another bra/goto may optionally be
located at 0x1008 to get to the real handler routine)

4.4 Device - Boot Loader - HID MCHPFSUSB Library Help Implementation and Customization Details

42

4.4.4.3.2 PIC24F
Please refer to the PIC24F Boot Loader Implementation Specific Details(page 867) appendix(page 864) section for
more information about how the boot loader works and fits in a PIC24F specifically.

4.5 Device - Boot Loader - MCHPUSB
The “MCHPUSB Bootloader” is a custom device class (requires driver installation) bootloader. The HID Bootloader is
superior in a number of ways, and if developing a new application, it is recommended to consider developing with the HID
bootloader instead. The MCHPUSB bootloader only supports the following microcontrollers: PIC18F4550, PIC18F4455,
PIC18F2550, PIC18F2455, PIC18F4553, PIC18F4458, PIC18F2553, PIC18F2458, PIC18F4450, PIC18F2450.

4.5.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PICDEM FS USB(page 183)

4.5.2 Configuring the Demo

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

4.5.3 Running the Demo

The MCHPUSB bootloader uses the PICDEM FS USB Demo Tool (pdfsusb.exe) for downloading/programming new
firmware images from the PC. This program can be found in the following directory: “<install directory>\USB Tools\Pdfsusb”.
Documentation describing how to use this tool is found in chapter 3 of the PICDEM FS USB Demo Board User’s Guide
(DS51526). This document can be found in the following directory, “<install directory>\Microchip\USB\Documentation\Board
Information\51526b.pdf”. (Note: A newer version of this document may exist, please check the Microchip website. The
51526b.pdf version of the document is written with the assumption that the user is working with MCHPFSUSB v1.x, which
uses a somewhat different directory structure compared to that of MCHPFSUSB v2.2)

4.5.4 Implementation and Customization Details

Two USB Stacks Approach:

The bootloader firmware contains all of the code needed for self programming, as well as all of the necessary code to
enumerate as a custom (vendor) class USB device (which uses the mchpusb.sys custom driver).

The MCHPUSB bootloader firmware is an entirely stand alone MPLAB IDE based project. The “main application” firmware
should be a separate MPLAB IDE based project altogether. The main application firmware is intended to be entirely

4.5 Device - Boot Loader - MCHPUSB MCHPFSUSB Library Help Implementation and Customization Details

43

independent of the bootloader. This requires that the main application should also contain a fully functional and complete
USB stack. However, only one of the USB stacks is used at any given time.

With this approach, the main application firmware need not be a custom class device (nor does it need to be a “composite”
device). In order to switch between the main application and the USB bootloader, the device “functionally detaches” itself
from the USB bus (by temporarily turning off the pull up resistor), and then re-enumerates as the other firmware project.

Bootloader Entry Method:

As currently configured, the bootloader firmware resides in program memory in address range 0x00-0x7FF. Almost
immediately after coming out of reset, the bootloader firmware checks I/O pin RB4 (which happens to have a pushbutton
attached to it on the PICDEM™ FS USB Demo Board). If the pushbutton is not pressed, the bootloader will immediately exit
the bootloader and go to the main application firmware “reset vector”.

In other words, the bootloader effectively does this:

//Device powers up, and comes out of POR

if(RB4 pushbutton is not pressed) --> goto 0x800 //main application “reset vector”

if(RB4 pushbutton is pressed) --> goto/stay in main bootloader project.

Effectively, the “reset” vector for the main application firmware is at address 0x800. In the main application firmware project,
the user should place a “goto _startup” at address 0x800. This will allow the C initializer code to execute, which will initialize
things like the software stack pointers and any user “idata” variables. For an example, see one of the USB device firmware
projects, such as the “HID - Mouse” project. The PICDEM FSUSB version of this project is already configured to allow the
generated .hex file to function along with the USB bootloader project.

Vector Remapping:

As currently configured, the bootloader occupies the address range 0x00-0x7FF, which means it occupies the PIC18 reset,
high priority, and low priority interrupt vector locations. The bootloader firmware itself does not enable or use interrupts. In
order to make interrupts available for use by the main application firmware, the interrupt vectors are effectively “remapped”
by placing goto instructions at the actual vector locations. In other words:

Address 0x08 (high priority interrupt vector), contains a “goto 0x808”.

Address 0x18 (low priority interrupt vector), contains a “goto 0x818”.

For example, if a high priority interrupt is enabled and used in the main application firmware, the following will occur:

1. Main application enables the interrupt source.

2. Sometime later, the interrupt event occurs.

3. Microcontroller PC jumps to 0x08.

4. Microcontroller executes a “goto 0x808”.

5. Microcontroller executes the main application interrupt handler routine, which has an entry point at address 0x808. (Note:
The interrupt handler routine itself might not be at address 0x808, but another bra/goto may be located at 0x808 to get to the
real routine)

4.6 Device - CCID Smart Card Reader

4.6 Device - CCID Smart Card Reader MCHPFSUSB Library Help Supported Demo Boards

44

4.6.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182) 1

PICDEM FS USB(page 183) 1

PIC18F46J50 Plug-In-Module (PIM)(page 184) 1, 2

PIC18F47J53 Plug-In-Module (PIM)(page 185) 1, 2

PIC18F87J50 Plug-In-Module (PIM)(page 186) 1, 2

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1, 3

Notes:

1. These boards require the Smart/Sim Card PICTail/PICTail+ daughter board in order to run this demo.

2. This board can not be used by itself. It requires a PIC18 Explorer board in order to operate with this demo.

3. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.6.2 Configuring the Hardware

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

3. One side of J4 port pins of the SC (Smart/Sim Card) PICTail Board match with the J11 port of LPC board. Insert the
matching side of J4 port of SC PICTail board into the J11 port of LPC board. Make sure that the Smart Card Connector is
facing towards the LPC board. Insert the Smart Card in SC PICTail board.

4. Short Tx & Rx line of the UART at J13 port using a wire and connect it to I/O pin of SC PICTail board.

5. Connect RB6 (of J13 port) to “Card Present” signal pin of SC PICTail board.

4.6 Device - CCID Smart Card Reader MCHPFSUSB Library Help Configuring the Hardware

45

PICDEM FS USB:

1. If header J6 is not populated on the board, you will need to populate it with a female header

2. Connect the Speech Playback Board.

3. The Jumper JP11 needs to be open in this board. In some revision of the board it may necessary to cut the PCB track
that is shorting the jumper.

4. Insert the J2 port of SC (Smart/Sim Card) PICTail card into J3 port of PICDEM FSUSB board as per the pin configuration.
Insert the Smart Card in SC PICTail board.

PIC18 Explorer Based Demos

For all of the PIC18 Explorer based demo boards, please follow the following instructions:

1. Set switch S4 to the "ICE" position

2. Insert the J4 port of SC (Smart/Sim Card) PICTail Board to the J3 port of HPC Explorer board. Make sure that the Smart
Card Connector is facing towards the HPC Explorer board. Insert the Smart Card in SC PICTail Board.

4.6 Device - CCID Smart Card Reader MCHPFSUSB Library Help Configuring the Hardware

46

3. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

• PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

• PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

4.6 Device - CCID Smart Card Reader MCHPFSUSB Library Help Configuring the Hardware

47

3. Short JP5. This enabled the LED operation on the board.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Insert the Smart/Sim Card daughter board into the first PICTail+ connector of the Explorer 16 (J5)

4.6.3 Running the Demo

This demo allows the selected hardware platform as a USB CCID Smart Card Reader to the host. In order to run this demo
first compile and program the target device. Attach the device to the host. If the host is a Windows PC and this is the first
time you have plugged this device into the computer then you may be prompted with “New hardware found” wizard.

Click on Next to continue.

4.6 Device - CCID Smart Card Reader MCHPFSUSB Library Help Running the Demo

48

Select “Install the Software automatically” and click on next.

Click on Next to continue.

Click on Finish to complete the installation.

Note: Microsoft states that Usbccid.sys is compliant with Microsoft Windows 2000, Windows XP, and Microsoft Windows
Server 2003 operating systems, and is available on Windows Update
(http://www.microsoft.com/whdc/device/input/smartcard/usb_ccid.mspx). You might need to do a ‘Windows update’ if you
windows computer does not have usbccid driver (or software required to install a usbccid driver) currently.

Using jSmartCardExplorer

Download SmartCardExplorer from http://www.primianotucci.com/default.php?view=112. Attach the demo board to the
Computer. Ensure that the Smart Card is inserted on the SC Pictail Card. Launch the jSmartCardExplorer Application.

4.6 Device - CCID Smart Card Reader MCHPFSUSB Library Help Running the Demo

49

http://www.primianotucci.com/default.php?view=112

Select Protocol T=0 or T=1 based on the type of Smart card you insert and click on Connect Button. If the Smart Card is
inserted on the SC Pictail Card, the ‘Status’ field turns green and the ATR of the Smart Card is displayed on the ‘Card ATR’
field.

The APDU can be send to the Smart Card by clicking on the ‘Send’ Button in the Send APDU section. The Command and

4.6 Device - CCID Smart Card Reader MCHPFSUSB Library Help Running the Demo

50

Data fields need to be filled before sending an APDU to the Smart Card. Please refer the Smart Card reference manual from
the manufacturer of the Card for the Command list supported by the Card. The Response from the Smart Card is displayed
in the APDU History Section.

A few sample commands for the ACS ACOS3 card is listed below.

Command CLA INS P1 P2 LC DATA LE Description

Select File 80 A4 00 00 02 FF00 00 Selects file FF00

Read Record 80 B2 00 00 00 -- 08 Reads 8 bytes from record number 0 of FF00 file

4.7 Device - CDC Basic Demo
This example shows how to create a basic CDC demo. CDC devices appear like COM ports on the host computer and be
communicated with via regular terminal software.

4.7.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.7 Device - CDC Basic Demo MCHPFSUSB Library Help Configuring the Hardware

51

4.7.2 Configuring the Hardware

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

4.7 Device - CDC Basic Demo MCHPFSUSB Library Help Configuring the Hardware

52

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.7.3 Running the Demo

This demo allows the device to appear like a serial (COM) port to the host. In order to run this demo first compile and
program the target device. Attach the device to the host. If the host is a PC and this is the first time you have plugged this
device into the computer then you may be asked for a .inf file.

Select the “Install from a list or specific location (Advanced)” option. Point to the “<Install Directory>\USB Device - CDC –
Basic Demo\inf\win2k_winxp” directory.

4.7 Device - CDC Basic Demo MCHPFSUSB Library Help Running the Demo

53

Once the device is successfully installed, open up a terminal program, such as hyperterminal. Select the appropriate COM
port. On most machines this will be COM5 or higher.

Once connected to the device, there are two ways to run this example project. Typing a key in the terminal window will result
in the device echoing that key plus one. So if the user presses “a”, the device will echo “b”. If the pushbutton is pressed the
device will echo “ – Button Pressed – “ to the terminal window.

Note: Some terminal programs, like hyperterminal, require users to click the disconnect button before removing the device
from the computer. Failing to do so may result in having to close and open the program again in order to reconnect to the
device.

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189) S1

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

4.7 Device - CDC Basic Demo MCHPFSUSB Library Help Running the Demo

54

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.8 Device - CDC - Serial Emulator
This demo shows how to use the CDC class to create a USB to UART bridge device. For a more simple starting point in
using CDC based solutions, please consider using the Device - CDC Basic Demo(page 51) as a starting point instead of
this demo.

4.8.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183) 1

PIC18F46J50 Plug-In-Module (PIM)(page 184) 1, 2

PIC18F47J53 Plug-In-Module (PIM)(page 185) 1, 2

PIC18F87J50 Plug-In-Module (PIM)(page 186) 1, 2

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1, 3

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1, 3

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1, 3

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1, 3

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1, 3

PIC32 USB Plug-In-Module (PIM)(page 193) 1, 3

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1, 3

Notes:

1. These boards require the Speech Playback PICTail/PICTail+ daughter board in order to run this demo.

2. This board can not be used by itself. It requires a PIC18 Explorer board in order to operate with this demo.

3. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.8 Device - CDC - Serial Emulator MCHPFSUSB Library Help Configuring the Demo

55

4.8.2 Configuring the Demo

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No board specific settings are required

PIC18 Explorer Based Demos

For all of the PIC18 Explorer based demo boards, please follow the following instructions:

1. Set switch S4 to the "ICE" position

2. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

• PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

• PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

1. Set switch S1 to the "PGX1" setting

2. Short J1 pin 1 (marked "POT") to the center pin

3. Short J2 pin 1 (marked "Temp") to the center pin

4. Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

1. Short JP1 "U" option to the center pin

2. Short JP2 "U" option to the center pin

3. Short JP3 "U" option to the center pin

4. Short JP4

• PIC24EP512GU810 PIM

4.8 Device - CDC - Serial Emulator MCHPFSUSB Library Help Configuring the Demo

56

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

1. Open J10

2. Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.8.3 Running the Demo

This demo allows the device to appear like a serial (COM) port to the host. This demo will take data sent over the USB CDC
interface and send it on the UART of the microcontroller.

In order to run this demo first compile and program the target device. Attach the device to the host with the USB cable. Also
connect the RS232 port of the demo board to a computer. This computer and be the same computer as the USB connection
or it can be a different computer. If the host is a PC and this is the first time you have plugged this device into the computer
then you may be asked for a .inf file.

Select the “Install from a list or specific location (Advanced)” option. Point to the “<Install Directory>\USB Device - CDC –
Serial Emulator\inf\” directory

4.8 Device - CDC - Serial Emulator MCHPFSUSB Library Help Running the Demo

57

Once the device is successfully installed, open up a terminal program, such as hyperterminal. Select the appropriate COM
port for the USB virtual COM port. On most machines this will be COM5 or higher. On the computer where the RS232 cable
it attached, open a second terminal program. Select the hardware COM port associated with that computer. Please insure
that the baud rate for both terminal windows is the same.

Once everything is configured correctly, typing a key in one terminal window will result in the same data to show up in the
second terminal window.

Note: Some terminal programs, like hyperterminal, require users to click the disconnect button before removing
the device from the computer. Failing to do so may result in having to close and open the program again in order
to reconnect to the device.

4.9 Device - Composite - HID + MSD Demo
This document describes how to run the Composite HID + MSD demo. Composite devices allow a single USB peripheral to
appear like two different devices/function on the computer.

4.9.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

4.9 Device - Composite - HID + MSD MCHPFSUSB Library Help Supported Demo Boards

58

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.9.2 Configuring the Demo

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

4.9 Device - Composite - HID + MSD MCHPFSUSB Library Help Configuring the Demo

59

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.9.3 Running the Demo

This demo uses the selected hardware platform as both a flash drive using the internal flash as storage and a custom HID
device. It will appear to the computer as if two USB devices were attached.

For details how to run the demo for each of the functions please see the respective getting started documents: “USB Device
– Mass Storage – Internal Flash”(page 96) and “USB Device – HID – Simple Custom Demo”(page 65).

NOTE: the “USB Device – HID – Simple Custom Demo” application is expecting a PID of 0x003F. Because these
two different applications can’t have the same PID, this demo uses PID 0x0054. The PC application that
corresponds to this application is only looking for devices with PID 0x003F so the PC application will not be able
connect to this demo without modification. Modify the MY_DEVICE_ID field to "Vid_04d8&Pid_0054" and
recompile. The MY_DEVICE_ID field is located in the "<install path>\USB\Device - HID - Custom Demos\Simple
Demo - Windows Software\Microsoft Visual C++ 2005 Express\Form1.h" file.

NOTE: that for the PIC24F Starter Kit 1 the pushbutton functionality is not implemented.

4.10 Device - Composite - MSD + CDC MCHPFSUSB Library Help

60

4.10 Device - Composite - MSD + CDC Demo
This demo shows how to create a mass storage device (MSD) and communication device class (CDC) composite device.

4.10.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.10.2 Configuring the Demo

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

4.10 Device - Composite - MSD + CDC MCHPFSUSB Library Help Configuring the Demo

61

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

4.10 Device - Composite - MSD + CDC MCHPFSUSB Library Help Configuring the Demo

62

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.10.3 Running the Demo

This demo creates a mass storage (MSD) and communication device class (CDC) composite device.

The MSD portion of the demo runs like the Device - Mass Storage - Internal Flash Demo(page 96). When the device is
plugged in, a drive will appear on the computer. The internal flash of the device is used as the storage for this small drive.

The CDC portion of this demo runs like the Device - CDC - Basic Demo(page 51). When the device is plugged in a COM
port will appear on the computer. Any key presses sent to the terminal will be responded to by its ASCII value + 1 (for
example if 'B' is pressed, 'C' is returned since 'B'=0x42 and 'C'=0x43). Pressing a button on the demo board will cause
"Button Pressed" to be transmitted to the terminal as well.

4.11 Device - Composite - WinUSB + MSD Demo
This document describes how to run the Composite WinUSB + MSD demo. Composite devices allow a single USB
peripheral to appear like two different devices/function on the computer.

4.11.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

4.11 Device - Composite - WinUSB + MCHPFSUSB Library Help Supported Demo Boards

63

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.11.2 Configuring the Demo

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

4.11 Device - Composite - WinUSB + MCHPFSUSB Library Help Configuring the Demo

64

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.11.3 Running the Demo

This demo uses the selected hardware platform as both a flash drive using the internal flash as storage and WinUSB class
USB device. It will appear to the computer as if two USB devices were attached.

For details how to run the demo for each of the functions please see the respective getting started documents: “USB Device
– Mass Storage – Internal Flash”(page 96) and “USB Device – WinUSB – Generic Driver Demo”(page 136).

For PIC24F Starter Kit 1, “Get pushbutton State” functionality is not implemented.

For PIC18F Starter Kit 1, “Toggle LED” functionality is not implemented.

4.12 Device - HID - Custom Demo

4.12 Device - HID - Custom Demo MCHPFSUSB Library Help Supported Demo Boards

65

4.12.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.12.2 Configuring the Demo

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

4.12 Device - HID - Custom Demo MCHPFSUSB Library Help Configuring the Demo

66

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

4.12 Device - HID - Custom Demo MCHPFSUSB Library Help Configuring the Demo

67

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.12.3 Running the Demo

This demo uses the selected hardware platform as a HID class USB device, but uses the HID class for general purpose I/O
operations. Typically, the HID class is used to implement human interface products, such as mice and keyboards. The HID
protocol is however quite flexible, and can be adapted and used to send/receive general purpose data to/from a USB device.
Using the HID class for general purpose I/O operations is quite advantageous, in that it does not require any kind of custom
driver installation process. HID class drivers are already provided by and are distributed with common operating systems.
Therefore, upon plugging in a HID class device into a typical computer system, no user installation of drivers is required, the
installation is fully automatic.

HID devices primarily communicate through one interrupt IN endpoint and one interrupt OUT endpoint. In most applications,
this effectively limits the maximum achievable bandwidth for full speed HID devices to 64kBytes/s of IN traffic, and
64kBytes/s of OUT traffic (64kB/s, but effectively “full duplex”).

The GenericHIDSimpleDemo.exe program, and the associated firmware demonstrate how to use the HID protocol for basic
general purpose USB data transfer. To make the PC source code as easy to understand as possible, the demo has
deliberately been made simple, and only sends/receives small amounts of data.

Before you can run the GenericHIDSimpleDemo.exe executable, you will need to have the Microsoft® .NET Framework
Version 2.0 Redistributable Package (later versions probably okay, but not tested) installed on your computer. Programs
which were built in the Visual Studio® .NET languages require the .NET redistributable package in order to run. The
redistributable package can be freely downloaded from Microsoft’s website. Users of Windows Vista® operating systems will
not need to install the .NET framework, as it comes pre-installed as part of the operating system.

The source code for GenericHIDSimpleDemo.exe file was created in Microsoft Visual C++® 2005 Express Edition. The
source code can be found in the “<Install Directory>\ USB Device - HID - Custom Demos\Generic HID - Simple Demo - PC
Software” directory. Microsoft currently distributes Visual C++ 2005 Express Edition for free, and can be downloaded from
Microsoft’s website. When downloading Microsoft Visual C++ 2005 Express Edition, also make sure to download and install
the Platform SDK, and follow Microsoft’s instructions for integrating it with the development environment.

It is not necessary to install either Microsoft Visual C++ 2005, or the Platform SDK in order to begin using the
GenericHIDSimpleDemo.exe program. These are only required if the source code will be modified or compiled.

To launch the application, simply double click on the executable “GenericHIDSimpleDemo.exe” in the “<Install
Directory>\USB Device - HID - Custom Demos” directory. A window like that shown below should appear:

If instead of this window, an error message pops up while trying to launch the application, it is likely the Microsoft .NET
Framework Version 2.0 Redistributable Package has not yet been installed. Please install it and try again.

In order to begin sending/receiving packets to the device, you must first find and “connect” to the device. As configured by
default, the application is looking for HID class USB devices with VID = 0x04D8 and PID = 0x003F. The device descriptor in
the firmware project meant to be used with this demo uses the same VID/PID. If you plug in a USB device programmed with
the correct precompiled .hex file, and hit the “Connect” button, the other pushbuttons should become enabled. If hitting the
connect button has no effect, it is likely the USB device is either not connected, or has not been programmed with the correct
firmware.

4.12 Device - HID - Custom Demo MCHPFSUSB Library Help Running the Demo

68

Hitting the Toggle LED(s) should send a single packet of general purpose generic data to the HID class USB peripheral
device. The data will arrive on the interrupt OUT endpoint. The firmware has been configured to receive this generic data
packet, parse the packet looking for the “Toggle LED(s)” command, and should respond appropriately by controlling the
LED(s) on the demo board.

The “Get Pushbutton State” button will send one packet of data over the USB to the peripheral device (to the interrupt OUT
endpoint) requesting the current pushbutton state. The firmware will process the received Get Pushbutton State command,
and will prepare an appropriate response packet depending upon the pushbutton state.

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189) S1

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

The PC then requests a packet of data from the device (which will be taken from the interrupt IN endpoint). Once the PC
application receives the response packet, it will update the pushbutton state label.

Try experimenting with the application by holding down the appropriate pushbutton on the demo board, and then
simultaneously clicking on the “Get Pushbutton State” button. Then try to repeat the process, but this time without holding
down the pushbutton on the demo board.

To make for a more fluid and gratifying end user experience, a real USB application would probably want to launch a
separate thread to periodically poll the pushbutton state, so as to get updates regularly. This is not done in this simple demo,
so as to avoid cluttering the PC application project with source code that is not related to USB communication.

Running the demo on an Android v3.1+ device

There are two main ways to get the example application on to the target Android device: the Android Market and by
compiling the source code.

4.12 Device - HID - Custom Demo MCHPFSUSB Library Help Running the Demo

69

1. The demo application can be downloaded from Microchip’s Android Marketplace page:
https://market.android.com/developer?pub=Microchip+Technology+Inc

2. The source code for this demo is also provided in the demo project folder. For more information about how to build and
load Android applications, please refer to the following pages:

• http://developer.android.com/index.html

• http://developer.android.com/sdk/index.html

• http://developer.android.com/sdk/installing.html

While there are no devices attached, the Android application will indicate that no devices are attached.

When the device is attached, the an alternative screen will allow various control/status features with the hardware on the
board.

4.12 Device - HID - Custom Demo MCHPFSUSB Library Help Running the Demo

70

http://developer.android.com/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing.html

4.13 Device - HID - Digitizer Demos
These are examples of HID digitizers. There are single, and various multi-point touch examples.

4.13.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

4.13 Device - HID - Digitizer Demos MCHPFSUSB Library Help Supported Demo Boards

71

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.13.2 Configuring the Hardware

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

4.13 Device - HID - Digitizer Demos MCHPFSUSB Library Help Configuring the Hardware

72

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.13.3 Running the Demo

These demos use the selected hardware platform as a USB HID class digitizer device. The Single-Touch demo is a HID
class pen digitizer demo, which emulates a pen digitizer touch screen capable of sensing a single contact point. The
Multi-Touch demo emulates a touch sensitive touch screen, capable of sensing two simultaneous contact points. The
multi-touch demo can potentially be expanded to support additional simultaneous contacts (by modifying the HID report
descriptor), however, the standard built in gestures that are recognized by the Microsoft Windows 7 platform only use one or
two contacts.

To use the Single-Touch pen digitizer demo, plug the demo board into a free USB port on a Windows Vista or Windows 7
machine. The device should automatically enumerate as a HID class pen digitizer device, and certain additional functions
and capabilities built into the operating system will become activated. No manual USB driver installation is necessary, as the
built in HID class drivers are used for this device.

To use the Multi-Touch digitizer demo, plug the demo board into a free USB port on a Windows 7 machine. Windows 7 has
significantly more “Windows Touch” capabilities than Vista. Although the device will enumerate and provide limited
functionality on Windows Vista, multi-touch gestures will not be recognized unless run on Windows 7.

Since the standard demo boards that these demos are meant to be run on do not have an actual touch sensitive contact
area, the firmware demos emulate the data that would be generated by a real touch screen. Both demo projects use a single
user pushbutton. By pressing the button, the firmware will send a flurry of USB packets to the host, which contain contact
position data that is meant to mimic an actual “gesture” of various types. Each subsequent press of the pushbutton will
advance the internal state machine, and cause the firmware to send a gesture to the PC.

To use the demos, it is best to have Microsoft Internet Explorer installed on the machine (although some demo functions can
be observed using the pen flick practice area available from the control panel). The latest versions of Internet Explorer (when
run on the proper OS: preferably Windows 7, but some function on Windows Vista) supports recognition and use of certain

4.13 Device - HID - Digitizer Demos MCHPFSUSB Library Help Running the Demo

73

basic gestures, such as “back”, “forward”, as well as certain scroll and zoom operations. To see a full detailed description of
how best to use Internet Explorer or the pen flick practice area, see the detailed comments at the top of SingleTouch.c file
(for the Single Touch pen digitizer demo: “<Install Directory>\USB Device - HID - Digitizers\Single Touch – Firmware”). For
details on how best to use and what to expect with the multi-touch demo, see the detailed comments at the top of the
MultiTouch.c file (<Install Directory>\ “USB Device - HID - Digitizers\Multi Touch – Firmware”).

Other Info: Windows 7 adds support for Windows messages such as “WM_GESTURE” and “WM_TOUCH”. These
messages can be used to help build customized “touch enabled” PC applications. Documentation for these messages can
be found in MSDN.

The following Microsoft developer blog contains useful additional information relating to Windows Touch:

http://blogs.msdn.com/e7/archive/2009/03/25/touching-windows-7.aspx

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189) S1

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.14 Device - HID - Joystick Demo
This demo shows how to create a USB joystick

4.14 Device - HID - Joystick Demo MCHPFSUSB Library Help Supported Demo Boards

74

http://blogs.msdn.com/e7/archive/2009/03/25/touching-windows-7.aspx

4.14.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.14.2 Configuring the Hardware

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

4.14 Device - HID - Joystick Demo MCHPFSUSB Library Help Configuring the Hardware

75

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

4.14 Device - HID - Joystick Demo MCHPFSUSB Library Help Configuring the Hardware

76

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.14.3 Running the Demo

This demo uses the selected hardware platform as a USB Joystick. To test the joystick feature, go to the “<Install
Directory\USB Device – HID - Joystick” directory and open the JoystickTester.exe:

Pressing the button will cause the device to:

• Indicate that the “x” button is pressed, but none others;

• Move the hat switch to the "east" position;

• Move the X and Y coordinates to the their extreme values;

4.14 Device - HID - Joystick Demo MCHPFSUSB Library Help Running the Demo

77

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189) S1

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.15 Device - HID - Keyboard Demo
This example shows how to create a USB keyboard and how to send data to the host.

4.15.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

4.15 Device - HID - Keyboard Demo MCHPFSUSB Library Help Supported Demo Boards

78

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.15.2 Configuring the Hardware

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

4.15 Device - HID - Keyboard Demo MCHPFSUSB Library Help Configuring the Hardware

79

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.15.3 Running the Demo

This demo uses the selected hardware platform as a USB keyboard. Before pressing the button, select a window in which it
is safe to type text freely. Pressing the button will cause the device to print a character on the screen.

4.15 Device - HID - Keyboard Demo MCHPFSUSB Library Help Running the Demo

80

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189) S1

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.16 Device - HID - Mouse Demo
This demo is a simple mouse demo that causes the mouse to move in a circle on the screen.

4.16.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

4.16 Device - HID - Mouse Demo MCHPFSUSB Library Help Supported Demo Boards

81

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.16.2 Configuring the Demo

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

4.16 Device - HID - Mouse Demo MCHPFSUSB Library Help Configuring the Demo

82

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.16.3 Running the Demo

This demo uses the selected hardware platform as a USB mouse. Before connecting the board to the computer through the
USB cable please be aware that the device will start moving the mouse cursor around on the computer. There are two ways
to stop the device from making the cursor to continue to move. The first way is to disconnect the device from the computer.
The second is to press the correct button on the hardware platform. Pressing the button again will cause the mouse cursor to
start moving in a circle again.

4.16 Device - HID - Mouse Demo MCHPFSUSB Library Help Running the Demo

83

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189) S1

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.17 Device - HID - Uninterruptible Power
Supply

4.17.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

4.17 Device - HID - Uninterruptible Power MCHPFSUSB Library Help Supported Demo Boards

84

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.17.2 Configuring the Demo

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

4.17 Device - HID - Uninterruptible Power MCHPFSUSB Library Help Configuring the Demo

85

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.17.3 Running the Demo

This demo uses the selected hardware platform as a HID class USB Uninterruptible power supply (UPS). When the device is
plugged into a computer, the computer should have an indicator showing that it is connected to a UPS and it should show a
charge percentage of the battery of the UPS. This demo uses a fixed time derived from the USB start of frame (SOF)

4.17 Device - HID - Uninterruptible Power MCHPFSUSB Library Help Running the Demo

86

packets to emulate the battery charging by sending updates about the battery status to the computer.

Holding the specified button on the demo board puts the UPS in a emulated discharge state, as if the main power has been
removed/failed. As time progresses the board sends updated information about the charge left on the battery. As the battery
approaches the minimum threshold, the UPS will send a command to shut down the computer. Release the button at any
point of time to simulate a reconnection of the main power supply and to emulate the UPS returning to a charging state.

Below is a table that specifies the button used for each of the demo boards.

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.18 Device - LibUSB Generic Driver Demo

4.18.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

4.18 Device - LibUSB Generic Driver MCHPFSUSB Library Help Supported Demo Boards

87

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.18.2 Configuring the Demo

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

4.18 Device - LibUSB Generic Driver MCHPFSUSB Library Help Configuring the Demo

88

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.18 Device - LibUSB Generic Driver MCHPFSUSB Library Help Running the Demo

89

4.18.3 Running the Demo

When running this demo, the following push buttons are used. Please refer to each of the following sections for a description
of how to run the demo on various operating systems:

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189) S1

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.18 Device - LibUSB Generic Driver MCHPFSUSB Library Help Running the Demo

90

4.18.3.1 Windows
This demo uses the selected hardware platform as a Libusb class USB device. Libusb-Win32 is a USB Library for the
Windows operating systems. The library allows user space applications to access any USB device on Windows in a generic
way without writing any line of kernel driver code. This driver allows users to have access to interrupt, bulk, and control
transfers directly.

The SimpleLibUSBDemo.exe program and the associated firmware demonstrate how to use the Libusb device drivers for
basic general purpose USB data transfer. To make the PC source code as easy to understand as possible, the demo has
deliberately been made simple, and only sends/receives small amounts of data.

Before you can run the SimpleLibUSBDemo.exe executable, you will need to have the Microsoft® .NET Framework Version
3.5 Redistributable Package (later versions probably okay, but not tested) installed on your computer. Programs which were
built in the Visual Studio® .NET languages require the .NET redistributable package in order to run. The redistributable
package can be freely downloaded from Microsoft’s website. Users of Windows Vista® operating systems will not need to
install the .NET framework, as it comes pre-installed as part of the operating system.

The source code for SimpleLibUSBDemo.exe file was created in Microsoft Visual C++® 2008 Express Edition. The source
code can be found in the “<Install Directory>\ USB Device - Libusb - Generic Driver Demo\ Libusb Simple Demo - Windows
Application\Libusb Simple Demo - PC Application - MS VC++ 2008 Express” directory. Microsoft currently distributes Visual
C++ 2008 Express Edition for free, and can be downloaded from Microsoft’s website.

To launch the application, simply double click on the executable “SimpleLIbusbDemo.exe” in the “<Install Directory>\USB
Device - Libusb - Generic Driver Demo\Windows Application” directory. A window like that shown below should appear:

If instead of this window, an error message pops up while trying to launch the application, it is likely the Microsoft .NET
Framework Version 3.5 Redistributable Package has not yet been installed. Please install it and try again.

In order to begin sending/receiving packets to the device, you must first find and “connect” to the device. As configured by
default, the application is looking for USB devices with VID = 0x04D8 and PID = 0x0204. The device descriptor in the
firmware project meant to be used with this demo uses the same VID/PID. To run the demo program the USB device with
the correct precompiled .hex file. If you are connecting the device for the first time, Windows pops up a window asking you to
install the driver for the device. When asked for the driver point it to the inf file provided along with the demo. Windows takes
while to install the driver for the USB device that is just plugged in. Open the Device manager and ensure that the USB
device is listed under the ‘Libusb Demo Devices’. Once the driver is installed hit the “Connect” button, the other pushbuttons
should become enabled. If hitting the connect button has no effect, it is likely the USB device is either not connected, or has
not been programmed with the correct firmware.

If a different VID/PID combination from the default is desired, then the descriptors in the firmware must be changed as well
as the inf file. The easiest way to change the inf file is to use the utility provided with the LibUSB download for windows on
the LibUSB website. This utility can create a new inf file based on a connected device. So make sure to change the VID/PID
combination first in the firmware, connect the device, and then run the inf file creator utility. After completing the utility, a new
signed driver with inf file is created.

Once the driver is installed hit the “Connect” button, the other pushbuttons should become enabled. If hitting the connect
button has no effect, it is likely the USB device is either not connected, or has not been programmed with the correct
firmware.

Hitting the Toggle LED(s) should send a single packet of general purpose generic data to the Custom class USB peripheral
device. The data will arrive on the Bulk OUT endpoint. The firmware has been configured to receive this generic data packet,
parse the packet looking for the “Toggle LED(s)” command, and should respond appropriately by controlling the LED(s) on
the demo board.

4.18 Device - LibUSB Generic Driver MCHPFSUSB Library Help Running the Demo

91

http://www.libusb.org/wiki/libusb-win32

The “Get Pushbutton State” button will send one packet of data over the USB to the peripheral device (to the Bulk OUT
endpoint) requesting the current pushbutton state. The firmware will process the received Get Pushbutton State command,
and will prepare an appropriate response packet depending upon the pushbutton state.

The PC then requests a packet of data from the device (which will be taken from the Bulk IN endpoint). Once the PC
application receives the response packet, it will update the pushbutton state label.

Try experimenting with the application by holding down the appropriate pushbutton on the demo board, and then
simultaneously clicking on the “Get Pushbutton State” button. Then try to repeat the process, but this time without holding
down the pushbutton on the demo board.

To make for a more fluid and gratifying end user experience, a real USB application would probably want to launch a
separate thread to periodically poll the pushbutton state, so as to get updates regularly. This is not done in this simple demo,
so as to avoid cluttering the PC application project with source code that is not related to USB communication.

In order to build the application, copy the file <libusb-win32 unzipped folder>\
libusb-win32-device-bin-0.1.12.1\lib\msvc\libusb.lib and paste to ‘lib’ folder of the VC++. Also copy the file

<libusb-win32 unzipped folder>\ libusb-win32-device-bin-0.1.12.1\ include\usb.h and paste to the “<Install Directory>\USB
Device - Libusb - Generic Driver Demo\Windows Application\Microsoft VC++ 2008 Express\SimpleLibusbDemo’ folder.

4.18 Device - LibUSB Generic Driver MCHPFSUSB Library Help Running the Demo

92

4.18.3.2 Linux
The SimpleLibUSBDemo program and the associated firmware demonstrate how to use the Libusb device drivers for basic
general purpose USB data transfer. To make the PC source code as easy to understand as possible, the demo has
deliberately been made simple, and only sends/receives small amounts of data.

Before you can run the SimpleLibUSBDemo executable, you will need to have the libusb 0.1 driver installed on your
computer. The libusb can be downloaded from sourceforge.net.

The source code for SimpleLibUSBDemo.exe file was created using QT3 Designer. The source code can be found in the
“<Install Directory>\ USB Device - Libusb - Generic Driver Demo\Libusb Simple Demo - Linux Application\ Libusb Simple
Demo - Linux Application -QT3” directory.

To launch the application, open the Terminal and navigate to the “<Install Directory>\USB Device - LibUSB - Generic Driver
Demo\Linux Application” directory and execute the following commands

1. chmod a+x SimpleLibusbDemo_Linux (This command gives executable right to the file on this Linux computer

2. sudo ./SimpleLibusbDemo_Linux.

Enter the Super user password when requested. A window like that shown below should appear:

In order to begin sending/receiving packets to the device, you must first find and “connect” to the device. As configured by
default, the application is looking for USB devices with VID = 0x04D8 and PID = 0x0204. The device descriptor in the
firmware project meant to be used with this demo uses the same VID/PID. To run the demo program the USB device with
the correct precompiled .hex file. If you are connecting the device for the first time, Windows pops up a window asking you to
install the driver for the device. When asked for the driver point it to the inf file provided along with the demo. Windows takes
while to install the driver for the USB device that is just plugged in. Open the Device manager and ensure that the USB
device is listed under the ‘Libusb Demo Devices’. Once the driver is installed hit the “Connect” button, the other pushbuttons
should become enabled. If hitting the connect button has no effect, it is likely the USB device is either not connected, or has
not been programmed with the correct firmware.

Hitting the Toggle LED(s) should send a single packet of general purpose generic data to the Custom class USB peripheral
device. The data will arrive on the Bulk OUT endpoint. The firmware has been configured to receive this generic data packet,
parse the packet looking for the “Toggle LED(s)” command, and should respond appropriately by controlling the LED(s) on
the demo board.

The “Get Pushbutton State” button will send one packet of data over the USB to the peripheral device (to the Bulk OUT
endpoint) requesting the current pushbutton state. The firmware will process the received Get Pushbutton State command,
and will prepare an appropriate response packet depending upon the pushbutton state.

The PC then requests a packet of data from the device (which will be taken from the Bulk IN endpoint). Once the PC
application receives the response packet, it will update the pushbutton state label.

Try experimenting with the application by holding down the appropriate pushbutton on the demo board, and then
simultaneously clicking on the “Get Pushbutton State” button. Then try to repeat the process, but this time without holding
down the pushbutton on the demo board.

To make for a more fluid and gratifying end user experience, a real USB application would probably want to launch a
separate thread to periodically poll the pushbutton state, so as to get updates regularly. This is not done in this simple demo,
so as to avoid cluttering the PC application project with source code that is not related to USB communication.

4.18 Device - LibUSB Generic Driver MCHPFSUSB Library Help Running the Demo

93

In order to build the application navigate to the “<Install Directory>\USB Device - LibUSB - Generic Driver Demo\Linux
Application\Qt3” directory and execute the command “make”.

4.18 Device - LibUSB Generic Driver MCHPFSUSB Library Help Running the Demo

94

4.18.3.3 Android 3.1+
There are two main ways to get the example application on to the target Android device: the Android Market and by
compiling the source code.

1. The demo application can be downloaded from Microchip’s Android Marketplace page:
https://market.android.com/developer?pub=Microchip+Technology+Inc

2. The source code for this demo is also provided in the demo project folder. For more information about how to build and
load Android applications, please refer to the following pages:

• http://developer.android.com/index.html

• http://developer.android.com/sdk/index.html

• http://developer.android.com/sdk/installing.html

While there are no devices attached, the Android application will indicate that no devices are attached.

When the device is attached, the an alternative screen will allow various control/status features with the hardware on the
board.

4.18 Device - LibUSB Generic Driver MCHPFSUSB Library Help Running the Demo

95

http://developer.android.com/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing.html

4.19 Device - Mass Storage - Internal Flash
Demo

This demo uses the selected hardware platform as an drive on the computer using the internal flash of the device as the
drive storage media. Connect the hardware platform to a computer through a USB cable.

The device should appear as a new drive on the computer named “Drive Name”. The volume label or file information can be
changed in the Files.c file located in the project directory.

4.19.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256DA210 Development Board(page 191)

PIC24FJ64GB502 Microstick(page 189)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

4.19 Device - Mass Storage - Internal MCHPFSUSB Library Help Supported Demo Boards

96

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.19.2 Configuring the Demo

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

4.19 Device - Mass Storage - Internal MCHPFSUSB Library Help Configuring the Demo

97

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.19.3 Running the Demo

This demo uses the selected hardware platform as an drive on the computer using the internal flash of the device as the
drive storage media. Connect the hardware platform to a computer through a USB cable.

The device should appear as a new drive on the computer named “Drive Name”. The volume label or file information can be
changed in the Files.c file located in the project directory.

4.19 Device - Mass Storage - Internal MCHPFSUSB Library Help Running the Demo

98

4.19.3.1 Troubleshooting
Issue 1: The device appears correctly in the device manager, but no new drive letters appear on a Windows® operating
system based machine.

Solution: See Microsoft knowledge base article 297694: http://support.microsoft.com/kb/297694

If there is a drive letter conflict (ex: because a network drive has been mapped to a letter low in the alphabet), on some
operating systems the newly attached USB drive may not appear. If this occurs, either obtain the hotfix from Microsoft, or
remap the conflicting mapped network drive to a letter at the end of the alphabet (ex: Z:).

Issue 2: The device enumerates correctly and I can access the new drive. Even though the drive is not full yet, when I try to
write to the drive, I get an error message something like, “Cannot copy (some name): The directory or file cannot be created.”

Solution: In order to copy new files onto the drive volume, both the file contents themselves must be copied to the drive, and
the FAT table must also be updated in order to accommodate the new file name and path. Even if the drive has plenty of free
space available, the FAT table may have reached its limit. In order to keep the default demos small, the FAT table is
configured to be only 512 bytes long. This is not very large, and can easily be exceeded, especially if the files on the drive
have long file names. In order to use the remaining space available on the drive, it is recommended to keep the individual file
names as short as possible to minimize their size in the FAT table. Alternatively, the firmware can be modified so that the
FAT table is larger, and therefore able to accommodate more file name and path characters.

Issue 3: When I try to format the drive, I get an error message and the drive does not get formatted properly.

Solution: By default, common Windows based operating systems will try to place a large FAT table on the newly formatted
disk (larger than the default 512 bytes of the demo firmware). If the FAT table is larger than the total drive space, the drive
cannot be formatted. In order to successfully format the drive, an alternative method of formatting will be needed that places
a smaller FAT table on the drive. For example, the drive can be effectively reformatted by reprogramming the microcontroller
with the original HEX file. Alternatively, if the firmware is modified to increase the total drive space, the Windows operating
system managed FAT table may be able to fit. Unfortunately, this will shrink the effective drive size, making less of it
available for actual file data.

Issue 4: When I format the drive, the drive size shrinks.

Solution: See the solution to issue #3 above.

4.20 Device - Mass Storage - SD Card Data
Logger

This demo shows how to data log to an SD card using the Microchip MDD file system and present the data to the PC using
the Mass Storage data class to appear like an SD card reader.

4.20 Device - Mass Storage - SD Card MCHPFSUSB Library Help Supported Demo Boards

99

4.20.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC18F46J50 Plug-In-Module (PIM)(page 184) 1, 2

PIC18F47J53 Plug-In-Module (PIM)(page 185) 1, 2

PIC18F87J50 Plug-In-Module (PIM)(page 186) 1, 2

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1, 3

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1, 3

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1, 3

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1, 3

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1, 3

PIC32 USB Plug-In-Module (PIM)(page 193) 1, 3

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1, 3

Notes:

1. These boards require the SD Card PICTail/PICTail+ daughter board in order to run this demo.

2. This board can not be used by itself. It requires a PIC18 Explorer board in order to operate with this demo.

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.20.2 Configuring the Demo

PIC18 Explorer Based Demos

For all of the PIC18 Explorer based demo boards, please follow the following instructions:

1. Set switch S4 to the "ICE" position

2. On the SD Card PICTail™ Plus board, short JP1, JP2, and JP3 on the side farthest from the SD Card holder. Depending
on the revision of the board you have the silk-screen on the board may incorrectly label the top as the “HPC-EXP” setting.
Please ignore this silk screen and place the jumpers as described above and seen below.

4.20 Device - Mass Storage - SD Card MCHPFSUSB Library Help Configuring the Demo

100

3. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

• PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

• PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. On the SD Card PICTail™ Plus board, short JP1, JP2, and JP3 on the side farthest from the SD Card holder. Depending
on the revision of the board you have the silk-screen on the board may incorrectly label the top as the “HPC-EXP” setting.
Please ignore this silk screen and place the jumpers as described above and seen below.

7. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

1. Set switch S1 to the "PGX1" setting

2. Short J1 pin 1 (marked "POT") to the center pin

3. Short J2 pin 1 (marked "Temp") to the center pin

4. Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

1. Short JP1 "U" option to the center pin

2. Short JP2 "U" option to the center pin

3. Short JP3 "U" option to the center pin

4.20 Device - Mass Storage - SD Card MCHPFSUSB Library Help Configuring the Demo

101

4. Short JP4

• PIC24EP512GU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

1. Open J10

2. Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.20.3 Running the Demo

Logging Data:

Make sure that there is a FAT or FAT32 formatted SD card in the card reader. This can be done by either connecting the
device to a regulator SD card reader or connecting the hardware platform to the computer through the USB cable. The
device should appear as a new drive on the computer named “Removable Drive”.

Power the demo board if it is not powered already.

Press and hold down the specified button below. This will cause the unit to soft detach from the computer (if it is attached)
and start to log data to the card.

Demo Board (click link for board information) Button

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256DA210 Development Board(page 191) S1

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

Notes:

1) This is the button number on the Explorer 16.

4.20 Device - Mass Storage - SD Card MCHPFSUSB Library Help Running the Demo

102

Reading the Data:

Connect the hardware platform to a computer through a USB cable. If the device was attached to the computer while the
data logging occurred, you may need to remove the SD card from the card slot or disconnect and reconnect the device from
the computer for the files to appear. Most computers are not expecting the files on an attached drive to change if they are
not making the change so some operating systems will not look for additional drive changes.

The device should appear as a new drive on the computer named “Removable Drive”.

If no SD Card is inserted in the SD Card PICTail Plus, the following dialog will pop-up.

Once a compatible card is inserted in the card reader, files can be read, deleted, and manipulated like any other drive on the
computer. If the instructions in the “Logging Data” are performed, there should be a “LOG.CSV” file on the card.

This file can be read by a simple text editor program or graphical/statistical programs, like Microsoft® Excel®.

To plot the data in Excel, select the entire column that contains the data.

Click on the chart wizard button.

4.20 Device - Mass Storage - SD Card MCHPFSUSB Library Help Running the Demo

103

Select the “Line” option chart.

Click “Next” and “Finish” until the chart is generated.

4.20 Device - Mass Storage - SD Card MCHPFSUSB Library Help Running the Demo

104

Toubleshooting Tips:

Issue 1: The device appears correctly in the device manager, but no new drive letters appear on a Windows® operating
system based machine.

Solution: See Microsoft knowledge base article 297694: http://support.microsoft.com/kb/297694

If there is a drive letter conflict (ex: because a network drive has been mapped to a letter low in the alphabet), on some
operating systems, the newly attached USB drive may not appear. If this occurs, either obtain the hotfix from Microsoft, or
remap the conflicting mapped network drive to a letter at the end of the alphabet (ex: Z:).

NOTE WHEN USING THE HID BOOTLOADER (for PIC18F87J50 PIM): The “USB Device - Mass Storage - SD Card
reader” and “USB Device - Mass Storage - SD Card data logger” demos make use of the SD Card PICtail Daughter Board
(Microchip® Direct: AC164122). This PICtail uses the RB4 I/O pin for the card detect (CD) signal, and is actively driven by
the PICtail. The active drive overpowers the pull up resistor on the RB4 pushbutton (on the PIC18F87J50 FS USB Plug-In
Module board). As a result, if the PIC18F87J50 is programmed with the HID bootloader, and an SD Card is installed in the
socket when the microcontroller comes out of reset, the firmware will immediately enter the bootloader (irrespective of the
RB4 pushbutton state). To exit the bootloader firmware, remove the SD Card from the SD Card socket, and tap the MCLR
button. When the SD Card is not plugged in, the PICtail will drive the card detect signal (which is connected to RB4) logic
high, which will enable the bootloader to exit to the main application after coming out of reset. Once the main application
firmware is operating, the SD Card can be plugged in. The SD Card is “hot-swappable” and should be recognized by the
host upon insertion. To avoid this inconvenience when using the bootloader with the PICtail, it is suggested to modify the
bootloader firmware to use some other I/O pin for bootloader entry, such as RB0 (which has a pushbutton on it on the HPC
Explorer board).

4.21 Device - Mass Storage - SD Card Reader
This demo shows how to implement a simple SD card reader

4.21 Device - Mass Storage - SD Card MCHPFSUSB Library Help Supported Demo Boards

105

http://support.microsoft.com/kb/297694

4.21.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC18F46J50 Plug-In-Module (PIM)(page 184) 1, 2

PIC18F47J53 Plug-In-Module (PIM)(page 185) 1, 2

PIC18F87J50 Plug-In-Module (PIM)(page 186) 1, 2

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1, 3

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1, 3

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1, 3

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1, 3

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1, 3

PIC32 USB Plug-In-Module (PIM)(page 193) 1, 3

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1, 3

Notes:

1. These boards require the SD Card PICTail/PICTail+ daughter board in order to run this demo.

2. This board can not be used by itself. It requires a PIC18 Explorer board in order to operate with this demo.

3. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.21.2 Configuring the Demo

PIC18 Explorer Based Demos

For all of the PIC18 Explorer based demo boards, please follow the following instructions:

1. Set switch S4 to the "ICE" position

2. On the SD Card PICTail™ Plus board, short JP1, JP2, and JP3 on the side farthest from the SD Card holder. Depending
on the revision of the board you have the silk-screen on the board may incorrectly label the top as the “HPC-EXP” setting.
Please ignore this silk screen and place the jumpers as described above and seen below.

4.21 Device - Mass Storage - SD Card MCHPFSUSB Library Help Configuring the Demo

106

3. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

• PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

• PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. On the SD Card PICTail™ Plus board, short JP1, JP2, and JP3 on the side farthest from the SD Card holder. Depending
on the revision of the board you have the silk-screen on the board may incorrectly label the top as the “HPC-EXP” setting.
Please ignore this silk screen and place the jumpers as described above and seen below.

7. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

1. Set switch S1 to the "PGX1" setting

2. Short J1 pin 1 (marked "POT") to the center pin

3. Short J2 pin 1 (marked "Temp") to the center pin

4. Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

1. Short JP1 "U" option to the center pin

2. Short JP2 "U" option to the center pin

3. Short JP3 "U" option to the center pin

4.21 Device - Mass Storage - SD Card MCHPFSUSB Library Help Configuring the Demo

107

4. Short JP4

• PIC24EP512GU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

1. Open J10

2. Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.21.3 Running the Demo

Connect the hardware platform to a computer through a USB cable. If the device was attached to the computer while the
data logging occurred, you may need to remove the SD card from the card slot or disconnect and reconnect the device from
the computer for the files to appear. Most computers are not expecting the files on an attached drive to change if they are
not making the change so some operating systems will not look for additional drive changes.

The device should appear as a new drive on the computer named “Removable Drive”.

If no SD Card is inserted in the SD Card PICTail Plus, the following dialog will pop-up.

Once a compatible card is inserted in the card reader, files can be read, deleted, and manipulated like any other drive on the
computer.

4.22 Device - MCHPUSB Generic Driver Demo

4.22 Device - MCHPUSB Generic Driver MCHPFSUSB Library Help Supported Demo Boards

108

4.22.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.22.2 Configuring the Demo

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

4.22 Device - MCHPUSB Generic Driver MCHPFSUSB Library Help Configuring the Demo

109

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

4.22 Device - MCHPUSB Generic Driver MCHPFSUSB Library Help Configuring the Demo

110

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.22.3 Running the Demo

When running this demo, the following push buttons are used. Please refer to each of the following sections for a description
of how to run the demo on various operating systems:

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189) S1

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.22 Device - MCHPUSB Generic Driver MCHPFSUSB Library Help Running the Demo

111

4.22.3.1 Installing Windows Drivers
The generic driver (custom class) demo uses a custom class driver. Like any custom driver when first plugged into a
computer, a driver needs to be installed. When the device is plugged in to the computer the following window will pop-up:

Continue by selecting either options and clicking next.

If the driver has been installed on the computer before the installation process may complete itself without further action.

If the driver has not been installed before on the computer, then the driver will need to be installed. The Found New
Hardware Wizard will be looking for a *.inf file with a matching VID/PID as the newly attached USB device. The driver can be
found in the following location: “<Install Directory>\USB Tools\MCHPUSB Custom Driver\MCHPUSB Driver\Release”. Point
the install wizard to this directory. The install wizard should then continue and finally complete.

4.22 Device - MCHPUSB Generic Driver MCHPFSUSB Library Help Running the Demo

112

Some example PC applications which interface with the driver can be found at “<Install Directory>\USB Tools\MCHPUSB
Custom Driver\Mpusbapi”. PC applications can be written to either directly interface with the custom class USB driver (by
using standard I/O functions like CreateFile(), ReadFile(), WriteFile(), CloseHandle()), or indirectly through the use of
mpusbapi.dll. Mpusbapi.dll is a dynamic linked library file, which makes the process of interfacing with the custom class USB
driver (and therefore, your USB device) somewhat simpler.

4.22 Device - MCHPUSB Generic Driver MCHPFSUSB Library Help Running the Demo

113

4.22.3.2 PDFSUSB
The example application can be found in the “<Install Directory>\USB Device - MCHPUSB - Generic Driver Demo\PC
Software\Pdfsusb” directory.

When the application is first launched it will look like the following.

Select the “Demo Mode” tab.

In the listbox at the top of the application, select the “PICDEM FS USB…” option. If this option is not available then the
device is either not connected to the computer, the driver was not installed correctly, or the firmware programmed into the
device was not the correct project needed to interface with the generic driver.

4.22 Device - MCHPUSB Generic Driver MCHPFSUSB Library Help Running the Demo

114

With the listbox selecting the “PICDEM FS USB…” click the connect button. Once the button is clicked the application should
start reading the potentiometer and temperature data from the hardware. The application can also change the state of the
LEDs. NOTE: the Low Pin Count USB Development Kit does not have an on board temperature sensor. This feature is not
currently implemented. Clicking LED3 button will toggle LED D7 on the Explorer 16 board. Clicking LED4 button will toggle
LED D8 on the Explorer 16 board. While using Explorer 16 and dsPIC33EP512MU810 or PIC24EP512GU810 PIM, the
temperature sensor and potentiometer interface are not supported.

4.22 Device - MCHPUSB Generic Driver MCHPFSUSB Library Help Running the Demo

115

4.22.3.3 MCHPUSB PnP Demo
The example application can be found in the “<Install Directory>\USB Device - MCHPUSB - Generic Driver Demo\PC
Software\Visual C++ 2005 Express” directory.

When the application is launched and the MCHPUSB custom device is not attached, it will look like the following:

Once the device is attached the application will reflect that the device is attached and look like the following. Moving the
potentiometer will cause the status bar of the application to move to reflect the current value. While using Explorer 16 with
dsPIC33EP512MU810 or PIC24EP512GU810 PIM, the potentiometer interface is not supported.

4.22 Device - MCHPUSB Generic Driver MCHPFSUSB Library Help Running the Demo

116

4.22.3.4 Running the Demo (Android v3.1+)
There are two main ways to get the example application on to the target Android device: the Android Market and by
compiling the source code.

1. The demo application can be downloaded from Microchip’s Android Marketplace page:
https://market.android.com/developer?pub=Microchip+Technology+Inc

2. The source code for this demo is also provided in the demo project folder. For more information about how to build and
load Android applications, please refer to the following pages:

• http://developer.android.com/index.html

• http://developer.android.com/sdk/index.html

• http://developer.android.com/sdk/installing.html

While there are no devices attached, the Android application will indicate that no devices are attached.

When the device is attached, the an alternative screen will allow various control/status features with the hardware on the
board.

4.22 Device - MCHPUSB Generic Driver MCHPFSUSB Library Help Running the Demo

117

http://developer.android.com/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing.html

4.23 Device - Personal Healthcare Device Class
(PHDC) Demo

Four different medical device specialization demos are available for Personal Health Care Devices.

1) Blood Pressure Monitor Agent Demo

2) Glucose Meter Agent Demo

3) Thermometer Agent Demo

4) Weigh Scale Agent Demo

4.23.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182) 4,5,6,7

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1,4,5,6,7

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Supported Demo Boards

118

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1,4,5,6,7

PIC32 USB Plug-In-Module (PIM)(page 193) 1,4,5,6

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1,4,5,6,7

PIC32 USB Starter Kit(page 193) 3,4,5,6

PIC32 USB Starter Kit II(page 194) 4,5,6

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4. The USB Device PHDC - Blood Pressure Monitor demo is not currently available for this demo board. However it is very
easy to create a new project for this board by adding hardware profile file of the board.

5. The USB DevicePHDC - Glucose Meter demo is not currently available for this demo board. However it is very easy to
create a new project for this board by adding hardware profile file of the board.

6. The USB DevicePHDC - Thermometer demo is not currently available for this demo board. However it is very easy to
create a new project for this board by adding hardware profile file of the board.

7. The USB DevicePHDC - Weigh Scale demo is not currently available for this demo board. However it is very easy to
create a new project for this board by adding hardware profile file of the board.

4.23.2 Configuring the Demo

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18 Explorer Based Demos

For all of the PIC18 Explorer based demo boards, please follow the following instructions:

1. Set switch S4 to the "ICE" position

2. Apply power to the board.

3. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

• PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

• PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Configuring the Demo

119

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.23.3 Running the PHDC Blood Pressure Monitor Demo

The user needs to install the Continua Manager GUI in order to see the measured data that would be transmitted from the

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Blood Pressure

120

device. To obtain the Continua manager GUI one needs to be a member of the Continua Alliance organization. The
Continua Manager is part of Continua Reference Code Library (CESL V1.x Gold release). The CESL V1.x Gold release can
be downloaded from the following link http://members.continuaalliance.org/members/rc_library/.

After navigating to this webpage click on “Please click this link to electronically sign the Reference Code Agreement”. You
will get an email with ftp site link, username and password. After downloading the file unzip and install CESL-SDK-1.5.0.zip
file. This installs Continua Manager Utility.

In order to run this demo first compile and program the target device. Apply external power to the board if using PIC18
Explorer board or Explorer 16 board. If the demo board has an LCD display, it should displayed as shown below.

The systolic, diastolic blood pressure and Pulse rate are displayed on the LCD screen. The LCD also displays Connection
status to the Continua Manager and Time(if RTCC is available on the demo board). Initially Connection Status is shown as
DISCTD (disconnected).The potentiometer on the board emulates systolic blood pressure. Rotate the potentiometer on the
demo board to vary the systolic blood pressure.

Now attach the device to the USB Host.

If the host is a Windows PC and this is the first time you have plugged this device into the computer then you may be asked
for an .inf file. Microchip provides inf file along with the demo.

Select the “Install from a list or specific location (Advanced)” option. Point to the “<Install Directory>\USB\Device - PHDC -
Blood Pressure Monitor\Windows Driver and INF” directory.

Once the device is successfully installed, open up the Continua Manager GUI. On the GUI the “Start Transport” button has
to be pressed to connect with the device.

This enables the transport layer and the demo name will be shown in the "Device List" box.

Click on Start Transport Button

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Blood Pressure

121

http://members.continuaalliance.org/members/rc_library

The demo needs two push buttons on the device board to showcase the PHDC application. The PHDC application provided
emulates a Blood Pressure Monitor. Each press on a push button performs specific tasks. One of the push button toggles
between “Unassociated” and “Operating” state. When the Device enters operating the connection status on the LCD
changes to "CONCTD"(connected). The other pushbutton on assertion sends the measured data to the Continua Manager.
The measurement will be sent only when both Manager and agent are in Operating States.

In some of the Microchip USB demo boards there is only one Pushbutton. In those demo boards with only one pushbutton
the Agent (PHDC Device) Connects to the Manager when the pushbutton is pressed for the First time. When the pushbutton
is pressed for the second, third and fourth time the device sends measured data to the device. The Agent gets disconnected
from the Manager if the pushbutton is pressed for the Fifth time and this cycle repeats. Examples for demo boards with only
one pushbutton are PIC18F46J50 PIM, PIC18F46J50 PIM, PIC18F87J50 PIM, PIC18F Starter Kit, PIC24FJ64GB502
Microstick, and Low Pin Count USB Development Kit.

Press Push Button on the device to enter in Operating state. The Continua Manager indicates that it is in Operating State.

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Blood Pressure

122

Press the pushbutton on the device to Send Measured Data to the Manager. The continua Manager displays the received
data from the Agent (PHDC device).

The demo configuration can be changed by modifying the below macros in the hardware profile file of the demo board.

/************ PHDC Demo Configuration *******************/

#define PHD_USE_POT_FOR_TEMP_SIMULATION

#define PHD_USE_LCD_DISPLAY

#define PHD_USE_RTCC_FOR_TIME_STAMP

#define DEMO_BOARD_HAS_ONLY_ONE_PUSH_BUTTON

When running this demo, the following push buttons are used. Please refer to each of the following sections for a description
of how to run the demo on various operating systems:

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Blood Pressure

123

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.23.4 Running the PHDC Glucose Meter Demo

The user needs to install the Continua Manager GUI in order to see the measured data that would be transmitted from the
device. To obtain the Continua manager GUI one needs to be a member of the Continua Alliance organization. The
Continua Manager is part of Continua Reference Code Library (CESL V1.x Gold release). The CESL V1.x Gold release can
be downloaded from the following link http://members.continuaalliance.org/members/rc_library/.

After navigating to this webpage click on “Please click this link to electronically sign the Reference Code Agreement”. You
will get an email with ftp site link, username and password. After downloading the file unzip and install CESL-SDK-1.5.0.zip
file. This installs Continua Manager Utility.

In order to run this demo first compile and program the target device. Apply external power to the board if using PIC18
Explorer board or Explorer 16 board. If the demo board has an LCD display, it should displayed as shown below.

The blood glucose is displayed on the LCD screen. The LCD also displays Connection status to the Continua Manager and
Time(if RTCC is available on the demo board). Initially Connection Status is shown as DISCTD (disconnected).The
potentiometer on the board emulates blood glucose. Rotate the potentiometer on the demo board to vary the blood glucose.

Now attach the device to the USB Host.

If the host is a Windows PC and this is the first time you have plugged this device into the computer then you may be asked
for an .inf file. Microchip provides inf file along with the demo.

Select the “Install from a list or specific location (Advanced)” option. Point to the “<Install Directory>\USB\Device - PHDC -
Glucose Meter\Windows Driver and INF” directory.

Once the device is successfully installed, open up the Continua Manager GUI. On the GUI the “Start Transport” button has
to be pressed to connect with the device.

This enables the transport layer and the demo name will be shown in the "Device List" box.

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Glucose Meter Demo

124

http://members.continuaalliance.org/members/rc_library

Click on Start Transport Button

The demo needs two push buttons on the device board to showcase the PHDC application. The PHDC application provided
emulates a Glucose Meter. Each press on a push button performs specific tasks. One of the push button toggles between
“Unassociated” and “Operating” state. When the Device enters operating the connection status on the LCD changes to
"CONCTD"(connected). The other pushbutton on assertion sends the measured data to the Continua Manager. The
measurement will be sent only when both Manager and agent are in Operating States.

In some of the Microchip USB demo boards there is only one Pushbutton. In those demo boards with only one pushbutton
the Agent (PHDC Device) Connects to the Manager when the pushbutton is pressed for the First time. When the pushbutton
is pressed for the second, third and fourth time the device sends measured data to the device. The Agent gets disconnected
from the Manager if the pushbutton is pressed for the Fifth time and this cycle repeats. Examples for demo boards with only
one pushbutton are PIC18F46J50 PIM, PIC18F46J50 PIM, PIC18F87J50 PIM, PIC18F Starter Kit, PIC24FJ64GB502
Microstick, and Low Pin Count USB Development Kit.

Press Push Button on the device to enter in Operating state. The Continua Manager indicates that it is in Operating State.

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Glucose Meter Demo

125

Press the pushbutton on the device to Send Measured Data to the Manager. The continua Manager displays the received
data from the Agent (PHDC device).

The demo configuration can be changed by modifying the below macros in the hardware profile file of the demo board.

/************ PHDC Demo Configuration *******************/

#define PHD_USE_POT_FOR_TEMP_SIMULATION

#define PHD_USE_LCD_DISPLAY

#define PHD_USE_RTCC_FOR_TIME_STAMP

#define DEMO_BOARD_HAS_ONLY_ONE_PUSH_BUTTON

When running this demo, the following push buttons are used. Please refer to each of the following sections for a description
of how to run the demo on various operating systems:

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Glucose Meter Demo

126

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.23.5 Running the PHDC Themometer Demo

The user needs to install the Continua Manager GUI in order to see the measured data that would be transmitted from the
device. To obtain the Continua manager GUI one needs to be a member of the Continua Alliance organization. The
Continua Manager is part of Continua Reference Code Library (CESL V1.x Gold release). The CESL V1.x Gold release can
be downloaded from the following link http://members.continuaalliance.org/members/rc_library/.

After navigating to this webpage click on “Please click this link to electronically sign the Reference Code Agreement”. You
will get an email with ftp site link, username and password. After downloading the file unzip and install CESL-SDK-1.5.0.zip
file. This installs Continua Manager Utility.

In order to run this demo first compile and program the target device. Apply external power to the board if using PIC18
Explorer board or Explorer 16 board. If the demo board has an LCD display, it should displayed as shown below.

The Body Temperature is displayed on the LCD screen. The LCD also displays Connection status to the Continua Manager
and Time(if RTCC is available on the demo board). Initially Connection Status is shown as DISCTD (disconnected).The
potentiometer on the board emulates Temperature. Rotate the potentiometer on the demo board to vary the Temperature.

Now attach the device to the USB Host.

If the host is a Windows PC and this is the first time you have plugged this device into the computer then you may be asked
for an .inf file. Microchip provides inf file along with the demo.

Select the “Install from a list or specific location (Advanced)” option. Point to the “<Install Directory>\USB\Device - PHDC
-Thermometer\Windows Driver and INF” directory.

Once the device is successfully installed, open up the Continua Manager GUI. On the GUI the “Start Transport” button has
to be pressed to connect with the device.

This enables the transport layer and the demo name will be shown in the "Device List" box.

Click on Start Transport Button

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Themometer Demo

127

http://members.continuaalliance.org/members/rc_library

The demo needs two push buttons on the device board to showcase the PHDC application. The PHDC application provided
emulates a Thermometer. Each press on a push button performs specific tasks. One of the push button toggles between
“Unassociated” and “Operating” state. When the Device enters operating the connection status on the LCD changes to
"CONCTD"(connected). The other pushbutton on assertion sends the measured data to the Continua Manager. The
measurement will be sent only when both Manager and agent are in Operating States.

In some of the Microchip USB demo boards there is only one Pushbutton. In those demo boards with only one pushbutton
the Agent (PHDC Device) Connects to the Manager when the pushbutton is pressed for the First time. When the pushbutton
is pressed for the second, third and fourth time the device sends measured data to the device. The Agent gets disconnected
from the Manager if the pushbutton is pressed for the Fifth time and this cycle repeats. Examples for demo boards with only
one pushbutton are PIC18F46J50 PIM, PIC18F46J50 PIM, PIC18F87J50 PIM, PIC18F Starter Kit, PIC24FJ64GB502
Microstick, and Low Pin Count USB Development Kit.

Press Push Button on the device to enter in Operating state. The Continua Manager indicates that it is in Operating State.

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Themometer Demo

128

Press the pushbutton on the device to Send Measured Data to the Manager. The continua Manager displays the received
data from the Agent (PHDC device).

The demo configuration can be changed by modifying the below macros in the hardware profile file of the demo board.

/************ PHDC Demo Configuration *******************/

#define PHD_USE_POT_FOR_TEMP_SIMULATION

#define PHD_USE_LCD_DISPLAY

#define PHD_USE_RTCC_FOR_TIME_STAMP

#define DEMO_BOARD_HAS_ONLY_ONE_PUSH_BUTTON

When running this demo, the following push buttons are used. Please refer to each of the following sections for a description
of how to run the demo on various operating systems:

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Themometer Demo

129

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.23.6 Running the PHDC Weigh Scale Demo

The user needs to install the Continua Manager GUI in order to see the measured data that would be transmitted from the
device. To obtain the Continua manager GUI one needs to be a member of the Continua Alliance organization. The
Continua Manager is part of Continua Reference Code Library (CESL V1.x Gold release). The CESL V1.x Gold release can
be downloaded from the following link http://members.continuaalliance.org/members/rc_library/.

After navigating to this webpage click on “Please click this link to electronically sign the Reference Code Agreement”. You
will get an email with ftp site link, username and password. After downloading the file unzip and install CESL-SDK-1.5.0.zip
file. This installs Continua Manager Utility.

In order to run this demo first compile and program the target device. Apply external power to the board if using PIC18
Explorer board or Explorer 16 board. If the demo board has an LCD display, it should displayed as shown below.

The Weight is displayed on the LCD screen. The LCD also displays Connection status to the Continua Manager and Time(if
RTCC is available on the demo board). Initially Connection Status is shown as DISCTD (disconnected).The potentiometer
on the board emulates Weight. Rotate the potentiometer on the demo board to vary the Weight.

Now attach the device to the USB Host.

If the host is a Windows PC and this is the first time you have plugged this device into the computer then you may be asked
for an .inf file. Microchip provides inf file along with the demo.

Select the “Install from a list or specific location (Advanced)” option. Point to the “<Install Directory>\USB\Device - PHDC -
Weighing Scale\Windows Driver and INF” directory.

Once the device is successfully installed, open up the Continua Manager GUI. On the GUI the “Start Transport” button has
to be pressed to connect with the device.

This enables the transport layer and the demo name will be shown in the "Device List" box.

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Weigh Scale Demo

130

http://members.continuaalliance.org/members/rc_library

Click on Start Transport Button

The demo needs two push buttons on the device board to showcase the PHDC application. The PHDC application provided
emulates a Weight Scale. Each press on a push button performs specific tasks. One of the push button toggles between
“Unassociated” and “Operating” state. When the Device enters operating the connection status on the LCD changes to
"CONCTD"(connected). The other pushbutton on assertion sends the measured data to the Continua Manager. The
measurement will be sent only when both Manager and agent are in Operating States.

In some of the Microchip USB demo boards there is only one Pushbutton. In those demo boards with only one pushbutton
the Agent (PHDC Device) Connects to the Manager when the pushbutton is pressed for the First time. When the pushbutton
is pressed for the second, third and fourth time the device sends measured data to the device. The Agent gets disconnected
from the Manager if the pushbutton is pressed for the Fifth time and this cycle repeats. Examples for demo boards with only
one pushbutton are PIC18F46J50 PIM, PIC18F46J50 PIM, PIC18F87J50 PIM, PIC18F Starter Kit, PIC24FJ64GB502
Microstick, and Low Pin Count USB Development Kit.

Press Push Button on the device to enter in Operating state. The Continua Manager indicates that it is in Operating State.

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Weigh Scale Demo

131

Press the pushbutton on the device to Send Measured Data to the Manager. The continua Manager displays the received
data from the Agent (PHDC device).

The demo configuration can be changed by modifying the below macros in the hardware profile file of the demo board.

/************ PHDC Demo Configuration *******************/

#define PHD_USE_POT_FOR_TEMP_SIMULATION

#define PHD_USE_LCD_DISPLAY

#define PHD_USE_RTCC_FOR_TIME_STAMP

#define DEMO_BOARD_HAS_ONLY_ONE_PUSH_BUTTON

When running this demo, the following push buttons are used. Please refer to each of the following sections for a description
of how to run the demo on various operating systems:

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191) S1

PIC24F Starter Kit(page 192) N/A(2)

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Running the PHDC Weigh Scale Demo

132

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.23.7 Performing the Continua Precertification Tests

This PHDC Agent demo passes Continua Alliance pre certification tests using the Continua Precertification tool. The pre
certfication tool can be downloaded from Continua Alliance web site:
http://members.continuaalliance.org/members/td_library/?referring_url=%2Fkws.To obtain the Continua precertification tool
one needs to be a member of the Continua Alliance organization. Follow procedure given in the Test tool documentation for
performing the tests.

PICS and PIXIT for each demo is given below.

PICS - USB Device PHDC Blood Pressure Monitor Demo

The USB Device PHDC Blood Pressure Monitor demo supports following PICS for the tests.

Sl No PICS Caption

1 C_OXP_000 The SUT is an Agent

2 C_AG_OXP_001 Agent supports standard configuration

3 C_AG_OXP_006 Agent has an internal real-time clock

4 C_AG_OXP_008 Agent supports settable time.

5 C_AG_OXP_009 Agent reports AbsoluteTime

6 C_AG_OXP_040 Agent supports at least one Numeric object.

7 C_AG_OXP_053 Agent supports Confirmed event reports

8 C_AG_OXP_182 Agent uses fixed format value messages to report dynamic data for Numeric Objects

9 C_AG_OXP_192 Agent supports Absolute-Time Time Stamp for Numeric objects

10 C_AG_UDG_001 Agent supports USB transport

11 C_AG_OXP_013 Agent supports Mds-Time-Info attribute (MDS Objetc)

12 C_AG_BPM_003 Agent supports Pulse Object

13 C_AG_OXP_236 Do you want to apply for Blood pressure monitor specialization?

14 C_AG_OXP_177 Configuration under test supports Blood pressure monitor specialization

15 C_AG_OXP_207 Agent supports Blood Pressure Monitor Specialization

16 C_AG_OXP_190 Agent supports Metric-Id-List at least for a Numeric object

PIXITS - USB Device PHDC Blood Pressure Monitor demo

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Performing the Continua Precertification

133

http://members.continuaalliance.org/members/td_library/?referring_url=%2Fkws

Sl No PIXIT Caption Value

1 I_AG_OXP_001 System-Id: OUI '313233'O

2 I_AG_OXP_002 System-Id: 40-bit manufacturer part '3435363738'O

3 I_AG_OXP_003 System-Model: manufacturer "Microchip "

4 I_AG_OXP_004 System-Model: model-number "BP Monitor "

5 I_AG_OXP_005 Product-Specification: serial number DE124567

6 I_AG_OXP_006 Product-Specification: Firmware revision -

7 I_AG_OXP_007 Config-Id: Id for Configuration that is going to be tested. 700

PICS - USB Device PHDC Glucose meter demo

The USB Device PHDC Glucose meter demo supports following PICS for the tests.

Sl No PICS Caption

1 C_OXP_000 The SUT is an Agent

2 C_AG_OXP_001 Agent supports standard configuration

3 C_AG_OXP_006 Agent has an internal real-time clock

4 C_AG_OXP_008 Agent supports settable time.

5 C_AG_OXP_009 Agent reports AbsoluteTime

6 C_AG_OXP_040 Agent supports at least one Numeric object.

7 C_AG_OXP_053 Agent supports Confirmed event reports

8 C_AG_OXP_182 Agent uses fixed format value messages to report dynamic data for Numeric
Objects

9 C_AG_OXP_192 Agent supports Absolute-Time Time Stamp for Numeric objects

10 C_AG_UDG_001 Agent supports USB transport

11 C_AG_OXP_013 Agent supports Mds-Time-Info attribute (MDS Objetc)

12 C_AG_OXP_233 Do you want to apply for Glucose meter specialization?

13 C_AG_OXP_178 Configuration under test supports Glucose meter specialization

14 C_AG_OXP_204 Agent supports Glucose Meter Specialization

15 C_AG_OXP_190 Agent supports Metric-Id-List at least for a Numeric object

PIXITS - USB Device PHDC Glucose Meter demo

Sl No PIXIT Caption Value

1 I_AG_OXP_001 System-Id: OUI '313233'O

2 I_AG_OXP_002 System-Id: 40-bit manufacturer part '3435363738'O

3 I_AG_OXP_003 System-Model: manufacturer "Microchip "

4 I_AG_OXP_004 System-Model: model-number "GlucoseMeter"

5 I_AG_OXP_005 Product-Specification: serial number DE124567

6 I_AG_OXP_006 Product-Specification: Firmware revision -

7 I_AG_OXP_007 Config-Id: Id for Configuration that is going to be tested. 1700

PICS - USB Device PHDC Thermometer demo

The USB Device PHDC Thermometer demo supports following PICS for the tests.

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Performing the Continua Precertification

134

Sl No PICS Caption

1 C_OXP_000 The SUT is an Agent

2 C_AG_OXP_001 Agent supports standard configuration

3 C_AG_OXP_006 Agent has an internal real-time clock

4 C_AG_OXP_008 Agent supports settable time.

5 C_AG_OXP_009 Agent reports AbsoluteTime

6 C_AG_OXP_040 Agent supports at least one Numeric object.

7 C_AG_OXP_053 Agent supports Confirmed event reports

8 C_AG_OXP_182 Agent uses fixed format value messages to report dynamic data for Numeric
Objects

9 C_AG_OXP_192 Agent supports Absolute-Time Time Stamp for Numeric objects

10 C_AG_UDG_001 Agent supports USB transport

11 C_AG_OXP_013 Agent supports Mds-Time-Info attribute (MDS Objetc)

12 C_AG_OXP_234 Do you want to apply for Thermometer specialization?

13 C_AG_OXP_171 Configuration under test supports Thermometer specialization

14 C_AG_OXP_205 Agent supports ThermoMeter Specialization

15 C_AG_OXP_190 Agent supports Metric-Id-List at least for a Numeric object

PIXITS - USB Device PHDC Themometer demo

Sl No PIXIT Caption Value

1 I_AG_OXP_001 System-Id: OUI '313233'O

2 I_AG_OXP_002 System-Id: 40-bit manufacturer part '3435363738'O

3 I_AG_OXP_003 System-Model: manufacturer "Microchip "

4 I_AG_OXP_004 System-Model: model-number "Thermometer "

5 I_AG_OXP_005 Product-Specification: serial number DE124567

6 I_AG_OXP_006 Product-Specification: Firmware revision -

7 I_AG_OXP_007 Config-Id: Id for Configuration that is going to be tested. 800

PICS - USB Device PHDC Weight Scale demo

The USB Device PHDC Weight Scale demo supports following PICS for the tests.

Sl No PICS Caption

1 C_OXP_000 The SUT is an Agent

2 C_AG_OXP_001 Agent supports standard configuration

3 C_AG_OXP_006 Agent has an internal real-time clock

4 C_AG_OXP_008 Agent supports settable time.

5 C_AG_OXP_009 Agent reports AbsoluteTime

6 C_AG_OXP_040 Agent supports at least one Numeric object.

7 C_AG_OXP_053 Agent supports Confirmed event reports

8 C_AG_OXP_182 Agent uses fixed format value messages to report dynamic data for Numeric
Objects

9 C_AG_OXP_192 Agent supports Absolute-Time Time Stamp for Numeric objects

10 C_AG_UDG_001 Agent supports USB transport

4.23 Device - Personal Healthcare Device MCHPFSUSB Library Help Performing the Continua Precertification

135

11 C_AG_OXP_013 Agent supports Mds-Time-Info attribute (MDS Objetc)

12 C_AG_OXP_237 Do you want to apply for Weigh Scale specialization?

13 C_AG_OXP_174 Configuration under test supports Weigh Scale specialization

14 C_AG_OXP_208 Agent supports Weigh Scale Specialization

15 C_AG_OXP_190 Agent supports Metric-Id-List at least for a Numeric object

PIXITS - USB Device PHDC Weigh Scale demo

Sl No PIXIT Caption Value

1 I_AG_OXP_001 System-Id: OUI '313233'O

2 I_AG_OXP_002 System-Id: 40-bit manufacturer part '3435363738'O

3 I_AG_OXP_003 System-Model: manufacturer "Microchip "

4 I_AG_OXP_004 System-Model: model-number "Weigh Scale "

5 I_AG_OXP_005 Product-Specification: serial number DE124567

6 I_AG_OXP_006 Product-Specification: Firmware revision -

7 I_AG_OXP_007 Config-Id: Id for Configuration that is going to be tested. 1500

4.24 Device - WinUSB Generic Driver Demo

4.24.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

4.24 Device - WinUSB Generic Driver MCHPFSUSB Library Help Supported Demo Boards

136

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.24.2 Configuring the Demo

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

4.24 Device - WinUSB Generic Driver MCHPFSUSB Library Help Configuring the Demo

137

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.24.3 Running the Demo

When running this demo, the following push buttons are used. Please refer to each of the following sections for a description
of how to run the demo on various operating systems:

Demo Board (click link for board information) Button

Low Pin Count USB Development Kit(page 182) S1

PICDEM FS USB(page 183) S2

PIC18F46J50 Plug-In-Module (PIM)(page 184) S2

PIC18F47J53 Plug-In-Module (PIM)(page 185) S2

PIC18F87J50 Plug-In-Module (PIM)(page 186) S4

PIC18F Starter Kit(page 187) S1

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1)

PIC24FJ64GB502 Microstick(page 189) S1

PIC24FJ256DA210 Development Board(page 191) S1

4.24 Device - WinUSB Generic Driver MCHPFSUSB Library Help Running the Demo

138

PIC24F Starter Kit(page 192) N/A(2)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) S3(1)

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) S3(1)

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1)

PIC32 USB Starter Kit(page 193) SW1

PIC32 USB Starter Kit II(page 194) SW1

Notes:

1) This is the button number on the Explorer 16.

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.24 Device - WinUSB Generic Driver MCHPFSUSB Library Help Running the Demo

139

4.24.3.1 Windows
This demo uses the selected hardware platform as a WinUSB class USB device. WinUSB is a vender specific driver
produced by Microsoft for use with Windows® XP service pack 2 and Windows Vista® operating systems. This driver allows
users to have access to interrupt, bulk, and control transfers directly.

The SimpleWinUSBDemo.exe program, and the associated firmware demonstrate how to use the WinUSB device drivers for
basic general purpose USB data transfer. To make the PC source code as easy to understand as possible, the demo has
deliberately been made simple, and only sends/receives small amounts of data.

Before you can run the SimpleWinUSBDemo.exe executable, you will need to have the Microsoft® .NET Framework Version
2.0 Redistributable Package (later versions probably okay, but not tested) installed on your computer. Programs which were
built in the Visual Studio® .NET languages require the .NET redistributable package in order to run. The redistributable
package can be freely downloaded from Microsoft’s website. Users of Windows Vista® operating systems will not need to
install the .NET framework, as it comes pre-installed as part of the operating system.

The source code for SimpleWinUSBDemo.exe file was created in Microsoft Visual C++® 2005 Express Edition. The source
code can be found in the “<Install Directory>\ USB Device - WinUSB - Generic Driver Demo\WinUSB Simple Demo - PC
Application - MS VC++ 2005 Express” directory. Microsoft currently distributes Visual C++ 2005 Express Edition for free, and
can be downloaded from Microsoft’s website. When downloading Microsoft Visual C++ 2005 Express Edition, also make
sure to download and install the Platform SDK, and follow Microsoft’s instructions for integrating it with the development
environment.

It is not necessary to install either Microsoft Visual C++ 2005, or the Platform SDK in order to begin using the
SimpleWinUSBDemo.exe program. These are only required if the source code will be modified or compiled.

To launch the application, simply double click on the executable “SimpleWinUSBDemo.exe” in the “<Install Directory>\USB
Device - WinUSB - Generic Driver Demo” directory. A window like that shown below should appear:

If instead of this window, an error message pops up while trying to launch the application, it is likely the Microsoft .NET
Framework Version 2.0 Redistributable Package has not yet been installed. Please install it and try again.

In order to begin sending/receiving packets to the device, you must first find and “connect” to the device. As configured by
default, the application is looking for USB devices with VID = 0x04D8 and PID = 0x0053. The device descriptor in the
firmware project meant to be used with this demo uses the same VID/PID. If you plug in a USB device programmed with the
correct precompiled .hex file, and hit the “Connect” button, the other pushbuttons should become enabled. If hitting the
connect button has no effect, it is likely the USB device is either not connected, or has not been programmed with the correct
firmware.

Hitting the Toggle LED(s) should send a single packet of general purpose generic data to the HID class USB peripheral
device. The data will arrive on the interrupt OUT endpoint. The firmware has been configured to receive this generic data
packet, parse the packet looking for the “Toggle LED(s)” command, and should respond appropriately by controlling the
LED(s) on the demo board.

Please see the "Running the Demo"(page 138) section for information about specific board limitations. Not all
demo features may be available on all boards.

The “Get Pushbutton State” button will send one packet of data over the USB to the peripheral device (to the interrupt OUT
endpoint) requesting the current pushbutton state. The firmware will process the received Get Pushbutton State command,
and will prepare an appropriate response packet depending upon the pushbutton state.

The PC then requests a packet of data from the device (which will be taken from the interrupt IN endpoint). Once the PC

4.24 Device - WinUSB Generic Driver MCHPFSUSB Library Help Running the Demo

140

application receives the response packet, it will update the pushbutton state label.

Try experimenting with the application by holding down the appropriate pushbutton on the demo board, and then
simultaneously clicking on the “Get Pushbutton State” button. Then try to repeat the process, but this time without holding
down the pushbutton on the demo board.

To make for a more fluid and gratifying end user experience, a real USB application would probably want to launch a
separate thread to periodically poll the pushbutton state, so as to get updates regularly. This is not done in this simple demo,
so as to avoid cluttering the PC application project with source code that is not related to USB communication.

4.24 Device - WinUSB Generic Driver MCHPFSUSB Library Help Running the Demo

141

4.24.3.2 Android v3.1+
There are two main ways to get the example application on to the target Android device: the Android Market and by
compiling the source code.

1. The demo application can be downloaded from Microchip’s Android Marketplace page:
https://market.android.com/developer?pub=Microchip+Technology+Inc

2. The source code for this demo is also provided in the demo project folder. For more information about how to build and
load Android applications, please refer to the following pages:

• http://developer.android.com/index.html

• http://developer.android.com/sdk/index.html

• http://developer.android.com/sdk/installing.html

While there are no devices attached, the Android application will indicate that no devices are attached.

When the device is attached, the an alternative screen will allow various control/status features with the hardware on the
board.

4.24 Device - WinUSB Generic Driver MCHPFSUSB Library Help Running the Demo

142

http://developer.android.com/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing.html

4.25 Device - WinUSB High Bandwidth Demo

4.25.1 Supported Demo Boards

Demo Board (click link for board information) Notes

Low Pin Count USB Development Kit(page 182)

PICDEM FS USB(page 183)

PIC18F46J50 Plug-In-Module (PIM)(page 184)

PIC18F47J53 Plug-In-Module (PIM)(page 185)

PIC18F87J50 Plug-In-Module (PIM)(page 186)

PIC18F Starter Kit(page 187)

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 3

PIC32 USB Starter Kit II(page 194)

4.25 Device - WinUSB High Bandwidth MCHPFSUSB Library Help Supported Demo Boards

143

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.25.2 Configuring the Demo

Low Pin Count USB Development Kit

1. Short J14 between pins 2 and 3. This will power the board from the USB port.

2. Make sure that J12 is left open.

PICDEM FS USB:

• No hardware related configuration or jumper setting changes are necessary.

PIC18F46J50 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F47J53 Plug-In-Module:

1. Short JP2 such that the "R" and the "U" options are shorted together.

2. Short JP3. This allows the demo board to be powered through the USB bus power.

PIC18F87J50 Plug-In-Module:

1. Short JP1 such that the "R" and the "U" options are shorted together.

2. Short JP4. This allows the demo board to be powered through the USB bus power.

3. Short JP5. This enabled the LED operation on the board.

PIC18F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

4.25 Device - WinUSB High Bandwidth MCHPFSUSB Library Help Configuring the Demo

144

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.25.3 Running the Demo

This demo uses the selected hardware platform as a WinUSB class USB device. WinUSB is a vender specific driver
produced by Microsoft for use with Windows® XP service pack 2 and later operating systems. This driver allows users to
have access to interrupt, bulk, and control transfers directly.

The HighBandwidthWinUSB.exe program, and the associated firmware demonstrate how to use the WinUSB device drivers
for USB Bulk data transfers. Total Time taken to transmit the data & data transmission rate (Bytes/Sec) is shown in the GUI
once the data transmission of 9,60,000 bytes is completed from the PC side.

Before you can run the HighBandwidthWinUSB.exe executable, you will need to have the Microsoft® .NET Framework
Version 2.0 Redistributable Package (later versions probably okay, but not tested) installed on your computer. Programs
which were built in the Visual Studio® .NET languages require the .NET redistributable package in order to run. The
redistributable package can be freely downloaded from Microsoft’s website. Users of Windows Vista® operating systems will
not need to install the .NET framework, as it comes pre-installed as part of the operating system.

The source code for HighBandwidthWinUSB.exe file was created in Microsoft Visual C++® 2005 Express Edition. The
source code can be found in the “<Install Directory>\ USB Device - WinUSB - High Bandwidth Demo\WinUSB High
Bandwidth Demo - PC Application - MS VC++ 2005 Express” directory. Microsoft currently distributes Visual C++ 2005
Express Edition for free, and can be downloaded from Microsoft’s website. When downloading Microsoft Visual C++ 2005
Express Edition, also make sure to download and install the Platform SDK, and follow Microsoft’s instructions for integrating
it with the development environment.

It is not necessary to install either Microsoft Visual C++ 2005, or the Platform SDK in order to begin using the
HighBandwidthWinUSB.exe program. These are only required if the source code will be modified or compiled.

4.25 Device - WinUSB High Bandwidth MCHPFSUSB Library Help Running the Demo

145

To launch the application, simply double click on the executable “HighBandwidthWinUSB.exe” in the “<Install
Directory>\USB Device - WinUSB - High Bandwidth Demo” directory. A window like that shown below should appear:

If instead of this window, an error message pops up while trying to launch the application, it is likely the Microsoft .NET
Framework Version 2.0 Redistributable Package has not yet been installed. Please install it and try again.

As configured by default, the application is looking for USB devices with VID = 0x04D8 and PID = 0x0052. The device
descriptor in the firmware project meant to be used with this demo uses the same VID/PID. Once the device flashed with
corresponding firmware is connected to the PC, the below window appears:

Hitting the “Send Bulk OUT Packets” tab will transmit 960,000 bytes of data on the USB bus to the corresponding endpoints
(EP1 Only or EP1,EP2, EP3 Simultaneously depending upon the button pressed in the GUI). Elapsed Time (ms) &
Bandwidth (Bytes/Sec) are displayed in the GUI once the data transmission is complete.

4.26 Dual Role - MSD Host + HID Device
This demo shows how to create a dual role device (one that supports both host and device functionality.

4.26.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256DA210 Development Board(page 191)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

4.26 Dual Role - MSD Host + HID Device MCHPFSUSB Library Help Supported Demo Boards

146

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.26.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.26.3 Running the Demo

This demo has two separate portions, the host portion and the device portion. You must press a button on the board for the
demo to enter host mode. It will remain in this mode until a device is attached and then removed. A second button is used to
place the demo into device mode. It will stay in this mode until it detects a detachment from the USB bus.

The host portion is a MSD host and acts exactly the same as the Host - Mass Storage (MSD) - Simple Demo(page 163).
Make sure to use the Configuring the Demo(page 147) from this section and the Running the Demo(page 165) from the
MSD host demo. Simply plug in a FAT/FAT32 thumb drive to the host port and this demo will write a test file to the drive.

The device portion of this demo acts exactly the same as the Device - HID - Custom Demo(page 65). Make sure to use
the Configuring the Demo(page 147) from this section and the Running the Demo(page 68) from the HID device demo.

4.26 Dual Role - MSD Host + HID Device MCHPFSUSB Library Help Running the Demo

147

Please read the description of how to run this demo provided in the link above.

You can not have both the device port and the host port connected when running this demo. The host
functionality and device functionality are using the same USB peripheral on the device, even though it is using
two separate USB connectors.

Demo Board (click link for board information) Button to enter
host mode

Button to enter
device mode

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) S3(1) S6(1)

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1) S6(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1) S6(1)

PIC24FJ256DA210 Development Board(page 191) S2 S3

PIC32 USB Plug-In-Module (PIM)(page 193) S3(1) S6(1)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1) S6(1)

Notes:

1) This is the button number on the Explorer 16.

4.27 Host - Audio MIDI Demo

4.27.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1, 2

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1, 2

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1, 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1, 2

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1, 2

PIC32 USB Plug-In-Module (PIM)(page 193) 1, 2

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1, 2

Notes:

1. These boards require the Speech Playback PICTail/PICTail+ daughter board in order to run this demo.

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.27.2 Configuring the Demo

Explorer 16 Based Demos

4.27 Host - Audio MIDI Demo MCHPFSUSB Library Help Configuring the Demo

148

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP1 on the USB PICTail+ board

3. Open JP2, JP3, and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

1. Set switch S1 to the "PGX1" setting

2. Short J1 pin 1 (marked "POT") to the center pin

3. Short J2 pin 1 (marked "Temp") to the center pin

4. Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

1. Short JP1 "U" option to the center pin

2. Short JP2 "U" option to the center pin

3. Short JP3 "U" option to the center pin

4. Short JP4

• PIC24EP512GU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

1. Open J10

2. Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.27.3 Running the Demo

This is a simple demo to show how an embedded MIDI host can be implemented. When a USB MIDI device is attached to
the host, the demo host application polls for input data from the device and converts the data from MIDI USB packets to
MIDI UART packets and sends the UART packets over the UART bus. And when a UART MIDI device is connected to the
host, the demo host application polls for input data from that device and converts the data from MIDI UART packets to MIDI
USB packets, and sends the USB packets over the USB bus.

To test this demo, connect a USB MIDI device to the development board, and either connect the board to a computer via
RS-232 or a MIDI UART device. The USB MIDI packets will be converted to UART MIDI packets and will be sent to the
attached UART MIDI device, or if connected to a computer, send to a terminal program.

To test with a terminal program, make sure that a baud rate of 32150 is used, and the terminal program reads hex, not ascii.
The packets sent will be shown in the terminal following the MIDI protocol, which is explained here:

http://www.srm.com/qtma/davidsmidispec.html

4.28 Host - Boot Loader - Thumb Drive MCHPFSUSB Library Help

149

http://www.srm.com/qtma/davidsmidispec.html

4.28 Host - Boot Loader - Thumb Drive Boot
Loader

4.28.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256DA210 Development Board(page 191)

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.28.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24FJ256DA210 Development Board Based Demos

For all of the PIC24FJ256DA210 demo board based demos, please follow the following instructions

4.28 Host - Boot Loader - Thumb Drive MCHPFSUSB Library Help Configuring the Demo

150

1. Short JP13 between the S1 and RG8 taps.

2. Short JP14 between the S2 and RE9 taps.

3. Short JP15 between the S3 and RB5 taps.

4. Short JP6

5. Open JP5 and JP7

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.28.3 Running the Demo

Once the image.hex file is created using the process described in the Creating a Hex File to Load(page 152) section, copy
this file onto a thumbdrive. Insert the thumbdrive into the USB A connector. Press and hold the boot load button specified in
the table below while resetting the board by pressing the MCLR button or applying power to the board.

An LED on the board should illuminate if this is done correctly (see table below). The LED should turn itself off once the
bootload process is complete. At this point of time the application should be running. If you wish to abort a bootload
sequence you can press the abort switch or power cycle the board.

Demo Board (click link for board information) Boot Load
Button

Abort
Button

LED

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) S3(1) S6(1) D5(1)

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) S3(1) S6(1) D5(1)

PIC24FJ256DA210 Development Board(page 191) S3 S2 D1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) S3(1) S6(1) D5(1)

PIC32 USB Starter Kit II(page 194) SW1 SW2 LED3

Notes:

1) This is the button/LED number on the Explorer 16(page 195).

2) This demo board only has capacitive touch buttons. At this time the button feature of this demo does not work on this
board.

4.28 Host - Boot Loader - Thumb Drive MCHPFSUSB Library Help Running the Demo

151

4.28.3.1 Creating a Hex File to Load
Any application in the MCHPFSUSB release can be used to create a hex file the can be loaded with this bootloader.

In order to create a new hex file to bootload, follow these steps:

MPLAB 8:

1. First open up the target project.

2. Insure that the correct processor is selected in the “Configure->Select Device” option of MPLAB 8

3. If there is a linker script already attached to the project, remove it from the project by right clicking on it and selecting
remove.

4. Copy the appropriate linker file to the demo project folder. The linker files for the thumbdrive bootloader can be found in
the “<install directory>\USB Host - Bootloaders\Mass Storage Bootloader\Application Files\Linker Files” folder. For PIC32
target device refer to Customizing the Boot loader and Target application Linker Scripts for PIC32 devices(page 153).

5. Add this file to the project by right clicking on the “linker scripts” folder in the project window, select “Add Files…”.

6. Compile the project.

7. Rename the resulting .hex file to “image.hex”. It is important that the name be exact. The bootloader is looking for that file
specifically by name.

MPLAB X:

1) first open up the target project.

2) Select the configuration that corresponds to your demo board.

3) Copy the appropriate linker file to the demo project folder. The linker files for the thumbdrive bootloader can be found in
the “<install directory>\USB Host - Bootloaders\Mass Storage Bootloader\Application Files\Linker Files” folder. For PIC32
target device refer to Customizing the Boot loader and Target application Linker Scripts for PIC32 devices(page 153).

4) Add this file to the project by right clicking on the “linker scripts” folder in the project window, select “Add Existing Item…”.
Select the correct file that corresponds to the processor that is being used on the demo board.

5) Compile the project.

6) Rename the resulting .hex file to “image.hex”. It is important that the name be exact. The bootloader is looking for that file
specifically by name.

4.28 Host - Boot Loader - Thumb Drive MCHPFSUSB Library Help Running the Demo

152

4.28.3.2 Customizing the Boot Loader and Target Application
Linker Scripts for PIC32 devices

The PIC32 USB MSD Host boot loader uses the PIC32MX795F512L device by default. To use the boot loader with another
PIC32 device (for example, say the PIC32MX564F128H device), the following steps should be followed.

For Boot Loader Applications:

1. Copy the procdefs.ld file from \Program Files\Microchip\mplabc32\v2.01\pic32mx\lib\proc\32MX564F128H folder to the
boot loader project folder (the folder that contains USB Host - Mass Storage Bootloader - C32.mcp file). You may have to
overwrite the existing procdefs.ld file.

2. Open the procdefs.ld file in a text editor. Change the length of the kseg0_program_mem section to 0xE000. See the
figure below. This is the memory allocated for the boot loader code with compiler size optimization enabled. If the
compiler size optimization is disabled, this number should be changed to 0x17000. If the size is not increased, the linker
would indicate an error saying that it cannot fit the code within the specified memory region.

3. Save and close procdefs.ld file. Build the USB Host - Mass Storage Bootloader - C32.mcp project and program the boot
loader on to the device.

For Target Applications:

1. Copy the procdefs.ld file from \Program Files\Microchip\mplabc32\v2.01\pic32mx\lib\proc\32MX564F128H folder to the
target application folder (the folder that contains the project to be boot loaded).

2. Open the procdefs.ld file in a text editor. Multiple changes are needed to the application procdefs.ld file.

1. Change _RESET_ADDR to 0x9D00F000

2. Change _BEV_EXCPT_ADDR to 0x9D00F380

3. Change _DBG_EXCPT_ADDR to 0x9D00F480

4. Change the exception_mem origin to start from 0x9D00E000. This origin address is obtained by adding the size of
boot loader application (which is 0xE000 in our case) to the actual start of the KSEG0 program memory (that is
0x9D000000).

5. Change the kseg1_boot_mem origin to start from 0x9D00F000

6. Change the kseg0_boot_mem origin to start from 0x9D00F490

7. Change the kseg0_program_mem origin to start from 0x9D00FA00. Change the length to 0x10600 (i.e. 0x20000 (the
total memory on device) - 0xFA00). The changes are shown in the screen shot below.

4.28 Host - Boot Loader - Thumb Drive MCHPFSUSB Library Help Running the Demo

153

3. Save and close the procdefs.ld file. Compile and build the target application. This completes the steps required for using
the boot loader with another PIC32 device.

4.29 Host - CDC Serial Demo
This demo shows how to interface to USB CDC devices. This typically includes many cell phone models and USB modems.

4.29.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1, 2

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 2

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 2

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 2

PIC32 USB Plug-In-Module (PIM)(page 193) 2

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 2

Notes:

1. This configuration requires optimizations in order to fit the memory of the part. Not all versions of the compilers support all
optimization levels.

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.29.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

4.29 Host - CDC Serial Demo MCHPFSUSB Library Help Configuring the Demo

154

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

1. Set switch S1 to the "PGX1" setting

2. Short J1 pin 1 (marked "POT") to the center pin

3. Short J2 pin 1 (marked "Temp") to the center pin

4. Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

1. Short JP1 "U" option to the center pin

2. Short JP2 "U" option to the center pin

3. Short JP3 "U" option to the center pin

4. Short JP4

• PIC24EP512GU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

1. Open J10

2. Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.29.3 Running the Demo

This is a simple demo to show how an embedded CDC host can be implemented. When a CDC-RS232 device is attached to
the host, the demo host application polls for input data from the device and displays the data on the LCD mounted on the
explorer 16 board. When a switch SW6 on explorer 16 board is pressed a string “**** Test Data *****” is sent to the attached
device to simulate the OUT transfer.

4.30 Host - Charger - Simple Charger

4.30.1 Supported Demo Boards

4.30 Host - Charger - Simple Charger MCHPFSUSB Library Help Supported Demo Boards

155

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.30.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

4.30 Host - Charger - Simple Charger MCHPFSUSB Library Help Configuring the Demo

156

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.30.3 Running the Demo

This demo shows how to create a simple USB host based charger. To run the demo, plug in a device to the USB port. If it is
capable of charging from USB at a 500mA rate, it should start charging.

Not all devices are capable of charging from USB, so not all devices may work with this demo. Some devices can charge
over USB, but require a device that implements the USB battery charging specification device to allow higher charge rates
than 500mA. This demo does not currently support the USB battery charging specification, so it will not be able to charge
these devices either.

For more information about the USB battery charging specification, please refer to the specification at the USB website
(http://www.usb.org/developers/devclass_docs).

4.31 Host - Composite - MSD+ CDC

4.31.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1, 2

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 2

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 2

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 2

PIC32 USB Plug-In-Module (PIM)(page 193) 2

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 2

Notes:

1. This configuration requires optimizations in order to fit the memory of the part. Not all versions of the compilers support all
optimization levels.

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.31 Host - Composite - MSD+ CDC MCHPFSUSB Library Help Configuring the Demo

157

http://www.usb.org/developers/devclass_docs

4.31.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

1. Set switch S1 to the "PGX1" setting

2. Short J1 pin 1 (marked "POT") to the center pin

3. Short J2 pin 1 (marked "Temp") to the center pin

4. Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

1. Short JP1 "U" option to the center pin

2. Short JP2 "U" option to the center pin

3. Short JP3 "U" option to the center pin

4. Short JP4

• PIC24EP512GU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

1. Open J10

2. Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.31.3 Running the Demo

This demo supports a composite device with MSD and CDC interfaces only. Please refer CDC host(page 154) and MSD
host(page 163)documentation to understand the individual host requirements. The device end can be programmed on any
of the development boards for which "USB Device - Composite - MSD + CDC" demo is implemented. The composite host
demo works in two steps.

Step 1 - The MSD interface opens a file "test.txt" with text "This is from Composite Host." as the content of the file.

Step 2 - On pressing switch 'S6' on host i.e Explorer 16 board the demo send a character on the CDC interface. The same
character is echoed back by the device firmware. On reception the character is displayed on the LCD display on the Explorer
16 demo board.

4.32 Host - Composite - HID + MSD MCHPFSUSB Library Help

158

4.32 Host - Composite - HID + MSD

4.32.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1, 2

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 2

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 2

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 2

PIC32 USB Plug-In-Module (PIM)(page 193) 2

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 2

Notes:

1. This configuration requires optimizations in order to fit the memory of the part. Not all versions of the compilers support all
optimization levels.

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.32.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

1. Set switch S1 to the "PGX1" setting

2. Short J1 pin 1 (marked "POT") to the center pin

3. Short J2 pin 1 (marked "Temp") to the center pin

4. Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

1. Short JP1 "U" option to the center pin

2. Short JP2 "U" option to the center pin

4.32 Host - Composite - HID + MSD MCHPFSUSB Library Help Configuring the Demo

159

3. Short JP3 "U" option to the center pin

4. Short JP4

• PIC24EP512GU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

1. Open J10

2. Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.32.3 Running the Demo

This demo supports a composite device with HID and MSD interfaces only. Please refer HID host and MSD host
documentation to understand the individual host requirements. The device end can be programmed on any of the
development boards for which "USB Device - Composite - HID + MSD(page 58)" demo is implemented. The composite
host demo works in two steps.

Step 1 - The MSD interface opens a file "test.txt" with text "This is from Composite Host." as the content of the file.

Step 2 - The HID interface gets POT value from the device and displays it on the LCD mounted on the Explorer 16 board.
On press of switch 'S6' on Explorer 16 board HID interface sends a command to toggle the LED's on the device board.

4.33 Host - HID - Keyboard Demo
This demo shows how to interface to USB keyboards. Many USB barcode scanners also appear as a USB keyboard.

4.33.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.33 Host - HID - Keyboard Demo MCHPFSUSB Library Help Supported Demo Boards

160

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.33.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.33.3 Running the Demo

When the device is programmed correctly with the HID host keyboard application the LCD screen on the Explorer 16 should
read “Device Detached” if there is no device attached to the USB port. At this point plug in a USB keyboard, bar code
scanner that supports HID keyboard emulation, or magnetic card reader that supports HID keyboard emulation. Type a key
on the keyboard. This character should be printed on the LCD screen. Pressing the “ESC” key will clear the screen and
return the cursor to the first position.

4.33 Host - HID - Keyboard Demo MCHPFSUSB Library Help Running the Demo

161

Limitations:

• Neither compound nor composite devices are supported. Some keyboards are either compound or composite.

• The “~” prints as an arrow character instead (“->”). This is an effect of the LCD screen on the Explorer 16. The ascii
character for “~” is remapped in the LCD controller.

• The “\” prints as a “¥” character instead. This is an effect of the LCD screen on the Explorer 16. The ascii character for
“\” is remapped in the LCD controller.

• Backspace and arrow keys may have issues on Explorer 16 boards with certain LCD modules

4.34 Host - HID - Mouse Demo

4.34.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board does not contain all of the hardware features to run all of the features of the demo, but will work in a limited
capacity or has the hardware feature emulated in software.

3. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.34.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

4.34 Host - HID - Mouse Demo MCHPFSUSB Library Help Configuring the Demo

162

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.34.3 Running the Demo

When the device is programmed correctly with the HID host mouse application the LCD screen on the Explorer 16 should
read “Device Detached” if there is no device attached to the USB port. At this point plug in a USB mouse. As you move the
mouse the X & Y co-ordinates of the mouse are displayed on the LCD display mounted on the Explorer 16 demo board. The
display also toggles the status of Left/Right click status received from the mouse.

Limitations:

• Composite and compound device are not currently supported. These devices may not enumerate or operate correctly.
Devices with built in USB hubs are likely compound device. Many multimedia devices with mouse as one of the
interface are composite devices.

4.35 Host - Mass Storage (MSD) - Simple Demo

4.35.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

4.35 Host - Mass Storage (MSD) - Simple MCHPFSUSB Library Help Supported Demo Boards

163

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ64GB502 Microstick(page 189)

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 2

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.35.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

4.35 Host - Mass Storage (MSD) - Simple MCHPFSUSB Library Help Configuring the Demo

164

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC24FJ64GB502 Microstick

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.35.3 Running the Demo

This demo is a simple example of how to write files to a thumb drive through the Microchip MDD file system library. When a
thumb drive is plugged in the code will create a text file on the drive. This process only takes a brief moment. After
connecting the thumb drive to the board and waiting for a couple of seconds, remove the drive and plug it back into a
computer. There should be an additional text file created named “test.txt”.

Limitations:

• Due to the size of this demo, optimizations must be enabled in the compiler in order for this demo to work on the
certain hardware platforms. Optimizations are not available on all versions of the compilers.

4.36 Host - Mass Storage - Thumb Drive Data
Logger

This demo shows how to create a console based interface to a system that can read, write, and log data to a thumb drive.
This demo is great for showing the various capabilities of the MDD library and the the USB host stack, but is a fairly complex
demo. For a more simple introduction(page 1) to interfacing to a thumb drive, consider starting from the Host - Mass
Storage - Simple Demo(page 163) instead of this demo.

4.36.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1, 2

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 2

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 2

4.36 Host - Mass Storage - Thumb Drive MCHPFSUSB Library Help Supported Demo Boards

165

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 2

PIC32 USB Plug-In-Module (PIM)(page 193) 2

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 2

Notes:

1. This configuration requires optimizations in order to fit the memory of the part. Not all versions of the compilers support all
optimization levels.

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.36.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

1. Set switch S1 to the "PGX1" setting

2. Short J1 pin 1 (marked "POT") to the center pin

3. Short J2 pin 1 (marked "Temp") to the center pin

4. Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

1. Short JP1 "U" option to the center pin

2. Short JP2 "U" option to the center pin

3. Short JP3 "U" option to the center pin

4. Short JP4

• PIC24EP512GU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

1. Open J10

2. Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.36 Host - Mass Storage - Thumb Drive MCHPFSUSB Library Help Running the Demo

166

4.36.3 Running the Demo

Once the device is programmed with the correct firmware, connect a serial cable from the Explorer 16 to the computer. Open
up a terminal program with the following settings: baud rate – 57600, data – 8bit, parity – none, stop – 1 bit, and flow control
– none.

Connect power to the Explorer 16. If power was already connected to the board before the serial port was connected, either
cycle power, press reset, or press enter. This should give a “>” prompt. Connect a USB Thumb Drive to the host connector.
If the prompt does not appear then verify that you programmed the firmware correctly and that you have the correct serial
port settings.

Type “HELP” in the prompt for a list of the available commands.

4.37 Host - MCHPUSB - Generic Driver Demo
This demo shows how to interface to Vendor class devices. It uses "Device - MCHPUSB - Generic Driver Demo"(page
108) as the target device.

4.37 Host - MCHPUSB - Generic Driver MCHPFSUSB Library Help Supported Demo Boards

167

4.37.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1, 2

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 2

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 2

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 2

PIC32 USB Plug-In-Module (PIM)(page 193) 2

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 2

Notes:

1. This configuration requires optimizations in order to fit the memory of the part. Not all versions of the compilers support all
optimization levels.

2. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

4.37.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

1. Set switch S1 to the "PGX1" setting

2. Short J1 pin 1 (marked "POT") to the center pin

3. Short J2 pin 1 (marked "Temp") to the center pin

4. Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

1. Short JP1 "U" option to the center pin

2. Short JP2 "U" option to the center pin

3. Short JP3 "U" option to the center pin

4. Short JP4

• PIC24EP512GU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

4.37 Host - MCHPUSB - Generic Driver MCHPFSUSB Library Help Configuring the Demo

168

• dsPIC33EP512MU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

1. Open J10

2. Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.37.3 Running the Demo

This demo will require two Microchip devices to run. One will act as the USB host and the other will run the USB peripheral.

Program the peripheral with the firmware found in the “USB Device – MCHPUSB – Generic driver demo”(page 108) folder.
Program the host with the firmware found in the “USB Host – MCHPUSB – Generic driver demo” folder.

Power the host. The LCD screen should show the revision number of the MCHPUSB class driver. Plug in the peripheral
device. The LCD screen should now update with the potentiometer and temperature data from the attached peripheral.

4.38 Host - Printer - Print Screen Demo

4.38.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1, 2

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 2

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 2

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 2

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 2

PIC32 USB Plug-In-Module (PIM)(page 193) 2

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 2

Notes:

1. This configuration requires optimizations in order to fit the memory of the part. Not all versions of the compilers support all
optimization levels.

2. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194), and a Graphics PICTail+ daughter board 3.2" (AC164127-3) in order to operate.

4.38.2 Configuring the Demo

Explorer 16 Based Demos

4.38 Host - Printer - Print Screen Demo MCHPFSUSB Library Help Configuring the Demo

169

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

1. Set switch S1 to the "PGX1" setting

2. Short J1 pin 1 (marked "POT") to the center pin

3. Short J2 pin 1 (marked "Temp") to the center pin

4. Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

1. Short JP1 "U" option to the center pin

2. Short JP2 "U" option to the center pin

3. Short JP3 "U" option to the center pin

4. Short JP4

• PIC24EP512GU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

1. Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

2. Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

1. Open J10

2. Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

4.38.3 Running the Demo

The first step required before running this demo is to calibrate the touch screen. Touch screen calibration is done by holding
the touch screen down and power cycling the board. This will bring you to the touch screen calibration screen.

4.38 Host - Printer - Print Screen Demo MCHPFSUSB Library Help Running the Demo

170

Follow the instructions on the screen.

Once the touch screen calibration is complete, plug in a printer into the board and reset the board. If the following screen
comes up, then the printer that was plugged in is not supported or there is no printer plugged in. Please plug in a printer and
reset the demo.

4.38 Host - Printer - Print Screen Demo MCHPFSUSB Library Help Running the Demo

171

If the printer is successfully loaded then the following screen should come up. You can then draw on the screen and press
print. When you press print the attached printer should print exactly what is on the screen and clear the screen.

4.39 Host - Printer - Simple Full Sheet
This demo shows how to create a host that can send a simple print out to a full sheet printer.

4.39.1 Supported Demo Boards

4.39 Host - Printer - Simple Full Sheet MCHPFSUSB Library Help Supported Demo Boards

172

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 2

PIC32 USB Starter Kit II(page 194)

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.39.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

4.39 Host - Printer - Simple Full Sheet MCHPFSUSB Library Help Configuring the Demo

173

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.39.3 Running the demo

To run this demo, power the target printer. Plug the USB cable from the printer into the demo board. This should cause a
sheet to be printed with example images and text. To run the demo again, either reset the board, or remove and reconnect
the USB cable to the printer.

4.40 Host - Printer - Simple Point of Sale (POS)
This demo shows how to create a simple embedded host application that talks to an Epson Point of Sale (POS) printer.

4.40.1 Supported Demo Boards

Demo Board (click link for board information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page 188) 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page 190) 1

PIC24FJ256DA210 Development Board(page 191)

PIC24F Starter Kit(page 192)

PIC24EP512GU810 Plug-In-Module (PIM)(page 192) 1

dsPIC33EP512MU810 Plug-In-Module (PIM)(page 192) 1

PIC32 USB Plug-In-Module (PIM)(page 193) 1

PIC32 CAN-USB Plug-In-Module (PIM)(page 193) 1

PIC32 USB Starter Kit(page 193) 2

PIC32 USB Starter Kit II(page 194)

4.40 Host - Printer - Simple Point of Sale MCHPFSUSB Library Help Supported Demo Boards

174

Notes:

1. This board can not be used by itself. It requires an Explorer 16(page 195) and a USB PICTail+ Daughter Board(page
194) in order to operate.

2. This board is no longer sold. It was replaced by the PIC32 USB Starter Kit II.

4.40.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP2 and JP3 on the USB PICTail+ board

3. Open JP1 and JP4 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

• Set switch S1 to the "PGX1" setting

• Short J1 pin 1 (marked "POT") to the center pin

• Short J2 pin 1 (marked "Temp") to the center pin

• Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

• Short JP1 "U" option to the center pin

• Short JP2 "U" option to the center pin

• Short JP3 "U" option to the center pin

• Short JP4

• PIC24EP512GU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• dsPIC33EP512MU810 PIM

• Short pins 2 and 3 on jumpers J1, J2, J3, J4, and J5

• Open jumpers J6, J7, J8, J9, and J10

• PIC32MX795F512L PIM

• Open J10

• Short pins 1 (marked "USB") and pin 2 (center) of jumpers J1 and J2

PIC24F Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit

• No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

• No hardware related configuration or jumper setting changes are necessary.

4.40 Host - Printer - Simple Point of Sale MCHPFSUSB Library Help Running the Demo

175

4.40.3 Running the Demo

To run this demo, power the target printer. Plug the USB cable from the printer into the demo board. This should cause a
sheet to be printed with example images and text. To run the demo again, either reset the board, or remove and reconnect
the USB cable to the printer.

4.41 Loading a precompiled demo
This section describes how to load a pre-compiled demo hex file.

4.41.1 MPLAB 8

Selecting a target device:

1. Open MPLAB® IDE

2. Select Configure->Select Device

3. Select the target device from the drop down menu

Importing a hex file:

4.41 Loading a precompiled demo MCHPFSUSB Library Help MPLAB 8

176

1. Make sure that the correct device is selected before the hex file is imported (see above for instructions).

2. Select File->Import

3. Select the desired hex file

Programming the device:

1. Once the correct device is selected and a hex file is imported it is ready to be programmed into a device. Select
Programmer->Select Programmer->… and select the programmer that you have available and connected to the computer.

2. After the programmer is enabled connect it to the target device.

3. Select Programmer->Program to program the device.

Running the device:

1. After the device is programmed, some programmers hold the device in reset. The easiest way to get the device running
despite what programmer is being used is to disconnect the programmer from the target device.

4.42 PC - WM_DEVICECHANGE Demo
This demo uses the "Device - HID Simple Custom Demo"(page 65) as the firmware. Please refer to that demos

4.42 PC - WM_DEVICECHANGE Demo MCHPFSUSB Library Help

177

documentation for the supported boards and setups.

Before you can run the WM_DEVICECHANGE_Demo.exe executable, you will need to have the Microsoft® .NET
Framework Version 2.0 Redistributable Package (later versions probably okay, but not tested) installed on your computer.
Programs which were built in the Visual Studio® .NET languages require the .NET redistributable package in order to run.
The redistributable package can be freely downloaded from Microsoft’s website. Users of Windows Vista® operating
systems will not need to install the .NET framework, as it comes pre-installed as part of the operating system.

The source code for the WM_DEVICECHANGE_Demo.exe file was created in Microsoft Visual C++® 2005 Express Edition.
The source code can be found in the “<Install Directory>\USB PC - WM_DEVICECHANGE Demo\WM_DEVICECHANGE
Demo - PC Software” directory. Microsoft currently distributes Visual C++ 2005 Express Edition for free, and can be
downloaded from Microsoft’s website. When downloading Microsoft Visual C++ 2005 Express Edition, also make sure to
download and install the Platform SDK, and follow Microsoft’s instructions for integrating it with the development
environment.

It is not necessary to install either Microsoft Visual C++ 2005, or the Platform SDK in order to begin using the
WM_DEVICECHANGE_Demo.exe file. These are only required if the source code will be modified or compiled.

To run the demo, simply run the executable by double clicking on it. The executable can be found in the “<Install
Directory>\USB PC - WM_DEVICECHANGE Demo” directory. If the application launches successfully, a window similar to
that shown below should appear:

4.43 OTG - MCHPUSB MCHPFSUSB Library Help

178

4.43 OTG - MCHPUSB Device/MCHPUSB Host
Demo

This demo shows how to implement an OTG device. Both the device and the host are both MCHPUSB custom class demos.
More information about the device portion of the demo and how it would work on other hosts can be found in the Device -
MCHPUSB Generic Driver Demo(page 108) section. More information about the host portion of this demo can be found in
the Host - MCHPUSB Generic Driver Demo(page 167) section.

4.43.1 Supported Demo Boards

Demo Board (click link for board information) Part Number (click link for ordering information) Notes

PIC24FJ64GB004 Plug-In-Module (PIM)(page
188)

MA240019 1

PIC24FJ256GB110 Plug-In-Module (PIM)(page
190)

MA240014 1

PIC24FJ256GB210 Plug-In-Module (PIM)(page
190)

MA240021 1

Notes:

1. This board can not be used by itself. It requires an Explorer 16 (DM240001) and a USB PICTail+ Daughter Board
(AC164131) in order to operate.

4.43.2 Configuring the Demo

Explorer 16 Based Demos

For all of the Explorer 16-based demo boards, please follow the following instructions

1. Connect the USB PICTail+ Daughter Board to the Explorer 16.

2. Short JP4 on the USB PICTail+ board

3. Open JP1, JP2, and JP3 on the USB PICTail+ board

4. Make sure that S2 on the Explorer 16 is switched to the "PIM" setting.

5. Short JP2 on the Explorer 16 to enable the LEDs.

6. Follow any processor specific instructions below. All instructions apply to the PIM unless otherwise stated:

• PIC24FJ64GB004 PIM

1. Set switch S1 to the "PGX1" setting

2. Short J1 pin 1 (marked "POT") to the center pin

3. Short J2 pin 1 (marked "Temp") to the center pin

4. Short J3 pin 1 (marked "EEPROM CS") to the center pin

• PIC24FJ256GB210 PIM

1. Short JP1 "U" option to the center pin

2. Short JP2 "U" option to the center pin

4.43 OTG - MCHPUSB MCHPFSUSB Library Help Configuring the Demo

179

http://www.microchipdirect.com/ProductSearch.aspx?Keywords=MA240019
http://www.microchipdirect.com/ProductSearch.aspx?Keywords=MA240014
http://www.microchipdirect.com/ProductSearch.aspx?keywords=MA240021
http://www.microchipdirect.com/ProductSearch.aspx?Keywords=DM240001
http://www.microchipdirect.com/ProductSearch.aspx?Keywords=AC164131

3. Short JP3 "U" option to the center pin

4. Short JP4

4.43.3 Running the Demo

This demo will require two Microchip devices to run. One will act as the USB host and the other will run the USB peripheral.

To demo the full OTG functionality, program 2 sets of boards with the code provided in the “USB OTG – MCHPUSB –
Generic driver demo” folder.

Power both boards. For this demo you will need a micro-A to micro-B cable. At the time of this release these cables are rare
and still hard to find. When purchasing a cable please insure that the ID pin on both connectors is correct. On the A side of
the cable the ID pin should be less than 10 ohms to ground. On the B-side of the cable the ID pin should be more than 100k
ohms to gnd. There are several manufactures that produce micro-A to micro-B cables that are not OTG compliant and these
cables have the ID pin connected straight through the cable instead of grounded on one end and floating on the other as the
OTG specification calls for.

When the A end of the cable is plugged into either of the boards, that board will become host. When the B end of the cable is
connected to either of the boards, that board will become peripheral. On the host board, press the S3 button (seen below).
This will cause the host to start supplying 5v to the peripheral. At this point the peripheral should start to operate.

Changing the POT on the peripheral board will cause the LCD on the host to reflect the new value. Similarly the temperature
will be affected. Pressing S3 again will cause the host to power down the peripheral. With the power to the peripheral off,
press the S3 button on the peripheral. This initiates a Session Request Protocol (SRP). This requests that the host power
the bus again. At this point the device should run again without enabling the power from the device.

To switch roles, while both devices are power and the host is communicating to the peripheral, press the S6 button (seen
below) on the host (the A device). This initiates a Host Negotiate Protocol (HNP). This causes the A device to become the
peripheral and the B device to become the host. The demo is run the same as before except that the POT on the A device is
now read on the LCD of the B device. To return to the original configuration, press the S6 button on the B device (now the
host). This will suspend the bus and return host control to the A device.

4.43 OTG - MCHPUSB MCHPFSUSB Library Help Running the Demo

180

4.43 OTG - MCHPUSB MCHPFSUSB Library Help Running the Demo

181

5 Demo Board Information

This section gives a brief introduction(page 1) and links to more information for the USB demo boards.

Description

5.1 Low Pin Count USB Development Board
Overview

This board features the PIC18F14K50 microcontroller. This controller has 20 pins, 16KB of flash, 768 bytes of RAM and an
8-bit core running up to 12MIPS.

J12 - Shorts the VUSB pin to Vdd rail.

J14 - Selects the power source for the board. Short pins 1 and 2 to power from J9. Short pins 2 and 3 to power from the USB
VBUS line.

S1 - Application button. Connected to RA3

D1 - Application LED. Connected to RC0

D2 - Application LED. Connected to RC1

D3 - Application LED. Connected to RC2

D4 - Application LED. Connected to RC3

More Information

Product webpage

PIC18F14K50 webpage

5.2 PICDEM FS USB Board MCHPFSUSB Library Help

182

http://www.microchip.com/pic18f14k50
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en536385
http://www.microchip.com/PIC18F14K50

5.2 PICDEM FS USB Board
Overview

S1 - MCLR reset button

S2 - Application button

S3 - Application button

D1 - Application LED

D2 - Application LED

D3 - Application LED

D4 - Application LED

D7 - Bus powered indicator - When this LED is illuminated, the board is being powered by the USB bus.

D8 - Self powered indicator - When this LED is illuminated, the board is being powered by an external power supply.

JP11 - connects RB2 of the microcontroller to the temperature sensor on the board (U4). On some revisions of the board
there is a trace shorting this jumper that needs to be cut in order to open this jumper.

More Information

Product website

5.3 PIC18F46J50 Plug-In-Module (PIM) MCHPFSUSB Library Help

183

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en021940&part=DM163025

5.3 PIC18F46J50 Plug-In-Module (PIM)
Overview

• JP2 - This is a three-pin header with the labels, "I", "R" and "U". The "R" is an abbreviation referring to microcontroller pin,
RC2. "I" is an abbreviation referring to the "ICE" female header pin for the RC2 signal. "U" is an abbreviation for the USB
VBUS line. When the jumper is in the "R" to "I" position, the RC2 pin connects only to the ICE female header pin, just like
most of the other general purpose I/O pins. When the jumper is in the "R" to "U" position, RC2 (which is 5.5V tolerant) can
be used to sense when the USB cable has been attached to the host, and when the host is actively providing power to the
+5V VBUS line. According to the USB 2.0 specifications, no device should ever pull the D+ or D- lines high (such as with
the D+ or D- pull-up resistor) until the host actively powers the +5V VBUS line. This is intended to prevent self-powered
peripherals from ever sourcing even small amounts of power to the host when the host is not powered. Small amounts of
current could potentially prevent the host (and possibly other USB peripherals connected to that host) from fully becoming
depowered, which may cause problems during power-up and initialization. Self-powered peripherals should periodically
monitor the +5V VBUS line and detect when it is driven high. Only when it is powered should user firmware enable the
USB module and turn on the D+ (for full speed) or D- (for low speed) pull-up resistor, signaling device attach to the host.
The recommended method of monitoring the +5V VBUS line is to connect it to one of the microcontroller.s 5.5V tolerant
I/O pins through a large value resistor (such as 100 kOhms). The resistor serves to improve the ESD ruggedness of the
circuit as well as to prevent microcontroller damage if user firmware should ever unintentionally configure the I/O pin as
an output. Peripherals which are purely bus powered obtain all of their power directly from the +5V VBUS line itself. For
these types of devices, it is unnecessary to monitor when the VBUS is powered, as the peripheral will not be able to
source current on the D+, D- or VBUS lines when the host is not powered.

• JP3 - This jumper is located in series with the +5V VBUS power supply line from the USB connector. When the jumper is
removed, a current meter may be placed between the header pins to measure the board current which is being drawn
from the USB port. Additionally, by removing the jumper cap altogether, JP3 provides a means of preventing the board
from consuming USB power.

• S2 - Switch for application use. Tied to RB2.

• S4 - MCLR reset switch

• D1 - LED for application use. Tied to RE0.

• D2 - LED for application use. Tied to RE1.

More Information

Product webpage

5.4 PIC18F47J53 Plug-In-Module (PIM) MCHPFSUSB Library Help

184

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en540669

5.4 PIC18F47J53 Plug-In-Module (PIM)
Overview

• JP2 - This is a three-pin header with the labels, "I", "R" and "U". The "R" is an abbreviation referring to microcontroller pin,
RC2. "I" is an abbreviation referring to the "ICE" female header pin for the RC2 signal. "U" is an abbreviation for the USB
VBUS line. When the jumper is in the "R" to "I" position, the RC2 pin connects only to the ICE female header pin, just like
most of the other general purpose I/O pins. When the jumper is in the "R" to "U" position, RC2 (which is 5.5V tolerant) can
be used to sense when the USB cable has been attached to the host, and when the host is actively providing power to the
+5V VBUS line. According to the USB 2.0 specifications, no device should ever pull the D+ or D- lines high (such as with
the D+ or D- pull-up resistor) until the host actively powers the +5V VBUS line. This is intended to prevent self-powered
peripherals from ever sourcing even small amounts of power to the host when the host is not powered. Small amounts of
current could potentially prevent the host (and possibly other USB peripherals connected to that host) from fully becoming
depowered, which may cause problems during power-up and initialization. Self-powered peripherals should periodically
monitor the +5V VBUS line and detect when it is driven high. Only when it is powered should user firmware enable the
USB module and turn on the D+ (for full speed) or D- (for low speed) pull-up resistor, signaling device attach to the host.
The recommended method of monitoring the +5V VBUS line is to connect it to one of the microcontroller.s 5.5V tolerant
I/O pins through a large value resistor (such as 100 kOhms). The resistor serves to improve the ESD ruggedness of the
circuit as well as to prevent microcontroller damage if user firmware should ever unintentionally configure the I/O pin as
an output. Peripherals which are purely bus powered obtain all of their power directly from the +5V VBUS line itself. For
these types of devices, it is unnecessary to monitor when the VBUS is powered, as the peripheral will not be able to
source current on the D+, D- or VBUS lines when the host is not powered.

• JP3 - This jumper is located in series with the +5V VBUS power supply line from the USB connector. When the jumper is
removed, a current meter may be placed between the header pins to measure the board current which is being drawn
from the USB port. Additionally, by removing the jumper cap altogether, JP3 provides a means of preventing the board
from consuming USB power.

• S2 - Switch for application use. Tied to RB2.

• S4 - MCLR reset switch

• D1 - LED for application use. Tied to RE0.

• D2 - LED for application use. Tied to RE1.

More Information

Product website

5.5 PIC18F87J50 Plug-In-Module (PIM) MCHPFSUSB Library Help

185

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en549861

5.5 PIC18F87J50 Plug-In-Module (PIM) Demo
Board
Overview

• JP1 - This is a three-pin header with the labels, "I", "R" and "U". The "R" is an abbreviation referring to microcontroller pin,
RB5. "I" is an abbreviation referring to the "ICE" female header pin for the RB5 signal. "U" is an abbreviation for the USB
VBUS line. When the jumper is in the "R" to "I" position, the RB5 pin connects only to the ICE female header pin, just like
most of the other general purpose I/O pins. When the jumper is in the "R" to "U" position, RB5 (which is 5.5V tolerant) can
be used to sense when the USB cable has been attached to the host, and when the host is actively providing power to the
+5V VBUS line. According to the USB 2.0 specifications, no device should ever pull the D+ or D- lines high (such as with
the D+ or D- pull-up resistor) until the host actively powers the +5V VBUS line. This is intended to prevent self-powered
peripherals from ever sourcing even small amounts of power to the host when the host is not powered. Small amounts of
current could potentially prevent the host (and possibly other USB peripherals connected to that host) from fully becoming
depowered, which may cause problems during power-up and initialization. Self-powered peripherals should periodically
monitor the +5V VBUS line and detect when it is driven high. Only when it is powered should user firmware enable the
USB module and turn on the D+ (for full speed) or D- (for low speed) pull-up resistor, signaling device attach to the host.
The recommended method of monitoring the +5V VBUS line is to connect it to one of the microcontroller.s 5.5V tolerant
I/O pins through a large value resistor (such as 100 kOhms). The resistor serves to improve the ESD ruggedness of the
circuit as well as to prevent microcontroller damage if user firmware should ever unintentionally configure the I/O pin as
an output. Peripherals which are purely bus powered obtain all of their power directly from the +5V VBUS line itself. For
these types of devices, it is unnecessary to monitor when the VBUS is powered, as the peripheral will not be able to
source current on the D+, D- or VBUS lines when the host is not powered.

• JP4 - This jumper is located in series with the +5V VBUS power supply line from the USB connector. When the jumper is
removed, a current meter may be placed between the header pins to measure the board current which is being drawn
from the USB port. Additionally, by removing the jumper cap altogether, JP4 provides a means of preventing the board
from consuming USB power.

• JP5 - This jumper provides a means of removing the LED pin loading on the RE0 and RE1 pins.

• S4 - Switch for application use. Tied to RB4.

• D3 - LED for application use. Tied to RE0.

• D4 - LED for application use. Tied to RE1.

More Information

• Product webpage

5.6 PIC18 Starter Kit MCHPFSUSB Library Help

186

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en532010

5.6 PIC18 Starter Kit
Overview

S1 - Application switch. Connected to RB0.

More Information

Product Website

Introduction Video

5.7 PIC24FJ64GB004 Plug-In-Module MCHPFSUSB Library Help

187

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en543105&redirects=pic18starter
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=7&ved=0CEwQtwIwBg&url=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dy8y63pML4_s&ei=yZDiTvayEYrciQLP9PjhBw&usg=AFQjCNGrZPECRsYn3bTXtrMwX9l3Qb5t6g

5.7 PIC24FJ64GB004 Plug-In-Module (PIM)
Overview

S1 - Select which programming pins are going to be used on the microcontroller. The "PGX1" setting must be used for USB
operation.

J1 - A/D setting for RC1 (center tap). Setting the jumper to "POT" connects the pin to the potentiometer on the Explorer 16.
Setting the jumper to "PT+" connects the pin to the PICTail+ connector on the Explorer 16.

J2 - A/D setting for RC0 (center tap). Setting the jumper to "Temp" connects the pin to the temperature sensor on the
Explorer 16. Setting the jumper to "PT+" connects the pin to the PICTail+ connector on the Explorer 16.

J3 - I/O selection for RA8 (center tap). Setting the jumper to "EEPROM CS" connects the pin to the chip select line of the
EEPROM on the Explorer 16. Setting the jumper to "PT+" connects the pin to the PICTail+ connector on the Explorer 16.

More Information

Plug-In-Module (PIM) Information Sheet

5.8 PIC24FJ64GB502 Microstick MCHPFSUSB Library Help

188

http://ww1.microchip.com/downloads/en/DeviceDoc/51846a.pdf

5.8 PIC24FJ64GB502 Microstick
Overview

S1 - Application switch. Tied to RB7.

D1 - Application LED. Tied to RB9.

D2 - Application LED. Tied to RB8.

This board has 3 USB connectors on it.

• The mini-B connector is for the PICkit on-board debugger. It is located on the top of the board.

5.8 PIC24FJ64GB502 Microstick MCHPFSUSB Library Help

189

• The mini-B connector is for USB device operation on the target microcontroller. It is located on the bottom side of the
board.

• The A connector is for USB host support on the target microcontroller.

More Information

Product webpage

5.9 PIC24FJ256GB110 Plug-In-Module (PIM)
Overview

The PIC24FJ256GB110 Plug-In-Module (PIM) is not a standalone board. It requires the use of the Explorer 16(page 195)
(DM240001). For USB applications the USB PICTail plus daughter board(page 194) (AC164131) is also required.

More Information

Information sheet

5.10 PIC24FJ256GB210 Plug-In-Module (PIM)
Overview

The PIC24FJ256GB110 Plug-In-Module (PIM) is not a standalone board. It requires the use of the Explorer 16(page 195)
(DM240001). For USB applications the USB PICTail plus daughter board(page 194) (AC164131) is also required.

For USB operation, jumpers JP1, JP2, and JP3 should be shorted from pins 1 to 2.

More Information

Information sheet

5.11 PIC24FJ256DA210 Development MCHPFSUSB Library Help

190

http://www.microchip.com/USBMicrostick
http://www.microchip.com/explorer16
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en535384
http://ww1.microchip.com/downloads/en/DeviceDoc/PIC24FJ256GB110%20PIM%20Info%20Sheet%20(39908a).pdf
http://www.microchip.com/explorer16
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en535384
http://ww1.microchip.com/downloads/en/DeviceDoc/51906a.pdf

5.11 PIC24FJ256DA210 Development Board
Overview

S1 - Application switch. Tied to RG8 when JP13 is shorted from S1 to RG8 settings.

S2 - Application switch. Tied to RE9 when JP14 is shorted from S1 to RE9 settings.

S3 - Application switch. Tied to RB5 when JP15 is shorted from S1 to RB5 settings.

S4 - MCLR reset button. Resets the microcontroller on the board.

D1 - Application LED. Connected to RG8 when JP13 is shorted from PAD1 to RG8.

D2 - Application LED. Connected to RE9 when JP14 is shorted from PAD2 to RE9.

D3 - Application LED. Connected to RB5 when JP15 is shorted from PAD3 to RB5.

D4 - Application LED. Connected to RA7 when JP11 is shorted from 1 to 2.

JP5 - Connect USB OTG port to VBUS.

JP6 - Connect USB Host port to VBUS.

JP7 - Connect USB Device port to VBUS.

JP11 - Functionality selection for RA7.

JP13 - Functionality selection for RG8.

JP14 - Functionality selection for RE9.

JP15 - Functionality selection for RB5.

5.11 PIC24FJ256DA210 Development MCHPFSUSB Library Help

191

More Information

Product Webpage

5.12 PIC24F Starter Kit
Overview

D8 - For dual role examples on the PIC24F starter kit, D8 needs to be removed. D8 allows the firmware to verify that the 5v
has been delivered to the application USB host port. This, however, is also tied to the application USB device port. With the
diode in place the controller can not determine if the 5v it sees is from the USB host port being powered or from the USB
device port on an attachment to a USB host.

More Information

Product Website

Introduction Video

5.13 PIC24EP512GU810 Plug-In-Module (PIM)
More Information

Information Sheet

5.14 dsPIC33EP512MU810 Plug-In-Module (PIM)
More Information

Information Sheet

5.15 PIC32MX460F512L Plug-In-Module MCHPFSUSB Library Help

192

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en547654
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en535092
http://www.microchip.com/microchip.webcontent.provider/Video.aspx?id=en539592
http://ww1.microchip.com/downloads/en/DeviceDoc/PIM_810_infosheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/DualMotor_PIM_Infosheet.pdf

5.15 PIC32MX460F512L Plug-In-Module (PIM)
More Information

Schematic

5.16 PIC32MX795F512L Plug-In-Module (PIM)
More Information

Information Sheet

5.17 PIC32 USB Starter Kit
Overview

SW1 - Application switch. Tied to RD6.

SW2 - Application switch. Tied to RD7.

SW3 - Application switch. Tied to RD13.

LED1 - Application LED. Tied to RD0.

LED2 - Application LED. Tied to RD1.

LED3 - Application LED. Tied to RD2.

This board has 3 USB connectors on it.

• The mini-B connector is for on-board debugger. It is located on the top of the board.

• The micro-A/B connector is for USB OTG operation on the target microcontroller. It is located on the bottom side of the
board.

• The A connector is for USB host support on the target microcontroller.

5.17 PIC32 USB Starter Kit MCHPFSUSB Library Help

193

http://ww1.microchip.com/downloads/en/DeviceDoc/PIC32_USB_PIM_Schematics_51775A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/51949A.pdf

More Information

The PIC32 USB Starter Kit is no longer sold. It has been replaced by the PIC32 USB Starter Kit II(page 194).

5.18 PIC32 USB Starter Kit II
Overview

SW1 - Application switch. Tied to RD6.

SW2 - Application switch. Tied to RD7.

SW3 - Application switch. Tied to RD13.

LED1 - Application LED. Tied to RD0.

LED2 - Application LED. Tied to RD1.

LED3 - Application LED. Tied to RD2.

This board has 3 USB connectors on it.

• The mini-B connector is for on-board debugger. It is located on the top of the board.

• The micro-A/B connector is for USB OTG operation on the target microcontroller. It is located on the bottom side of the
board.

• The A connector is for USB host support on the target microcontroller.

More Information

Product webpage

5.19 USB PICTail Plus Daughter Board
Overview

5.19 USB PICTail Plus Daughter Board MCHPFSUSB Library Help

194

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2615&dDocName=en535536

JP1 - Connects the VBUS pin of the mini-B connector to the VBUS pin of the microcontroller.

JP2 - Connects the VBUS pin of the A connector (and associated circuitry) to the VBUS pin of the microcontroller.

JP3 - Connects the VBUS voltage detection resistor divider circuit to the microcontroller (pin varies depending on the
processor module).

JP4 - Connects the VBUS pin of the micro-A/B connector (and associated circuitry) to the VBUS pin of the microcontroller.

This board has 3 USB connectors on it.

• The mini-B connector is for USB device operation. For use in this mode JP1 should be shorted and JP2, JP3, and JP4
should be open.

• The A connector is for USB host support. JP2 should be short for this mode. JP3 can be shorted to enable VBUS voltage
sensing. Some demos may require this feature. JP1 and JP4 should be open.

• The micro-A/B connector is for USB OTG operation. JP4 should be short and JP1, JP2, and JP3 should be open.

More Information

Product website

Ordering information

5.20 Explorer 16
Overview:

5.20 Explorer 16 MCHPFSUSB Library Help

195

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en535384
http://www.microchipdirect.com/ProductSearch.aspx?keywords=AC164131

S1 - Reset button (MCLR)

S2 - Processor switch. This switch determines which processor is running, the processor on the board or the processor on
the Plug-In-Module (PIM).

S3, S4, S5, S6 - Application switches. For information about what pin is connected to this switch, please refer to the
information for the PIM in use.

D3 through D10 - Application LEDs. For information about what pin is connected to this LED, please refer to the information
for the PIM in use.

More Information:

Product webpage

5.20 Explorer 16 MCHPFSUSB Library Help

196

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en024858&part=DM240001

6 PC Tools and Example Code

Find out what PC tools and example code are available for development with the MCHPFSUSB Library.

Description

Microchip General Purpose (Custom/Vendor Class) USB Driver

See: <Install Directory>\USB Tools\MCHP Custom Driver\MCHPUSB Driver\Release

Microchip provides a general purpose Windows driver which can be used by Windows applications to interface with a
custom class USB device. This driver will not be necessary in many USB applications, such as USB HID class devices,
which would normally use built in HID class drivers which distribute with the OS.

For USB applications that do not readily fit within the constraints of these other device class options, Microchip’s general
purpose driver may be used. Windows applications can access USB devices either by directly interfacing with the driver
(mchpusb.sys), or they may indirectly use the driver through a pre-compiled library.

The custom class firmware examples are intended to be used with the general purpose USB driver.

After installation, the release notes for the general purpose USB driver are located at: <Install
Directory>\Microchip\USB\Utilities\MCHP Custom Driver\MCHPUSB Driver\MCHPUSB Driver Release Notes.htm

MPUSBAPI Library and DLL Source

See: <Install Directory>\USB Tools\MCHPUSB Custom Driver\Mpusbapi

A custom class Windows application using the Microchip General Purpose USB driver may interface directly with the driver
(mchpusb.sys). Doing so directly requires more effort and more time to learn than using a pre-compiled library that exposes
a simple to use API including basic functions like open(), read(), write(), and close().

The MPUSBAPI.DLL file is a library which provides a number of functions including the basic ones needed for reading and
writing to a USB device. A list of the functions available, and the calling conventions for those functions is currently
documented in the form of inline comments in the source code for the DLL file. The DLL is compiled using Borland® C++
Builder™ 6 development environment, and the source code is provided in the “<install
directory>\Microchip\USB\Utilities\MCHPUSB Custom Driver\Mpusbapi\Dll\Borland_C\Source” directory.

A load time linking and a run time linking example showing how to use the DLL are included in “<install
directory>\Microchip\USB\Utilities\MCHPUSB Custom Driver\Mpusbapi\Example Applications\Borland_C” directory.

PICDEM FS USB Demo Tool “Pdfsusb”

See: <Install Directory>\USB Tools\Pdfsusb

This computer program demonstrates basic USB communication using the Microchip Custom class driver with a Windows
GUI based application. The USB Device – MCHPUSB – Generic Driver Demo Firmware is intended to be used in
conjunction with the “PICDEM FS USB Demo Tool” which can be launched by executing the PDFSUSB.exe file. The
features and use of this application are described in the PICDEM FS USB Demonstration Board User’s Guide (DS51526).

This application was originally intended to be used with the PICDEM FS USB Demo Board, but it can be used with the other
available USB platforms as well. The demo tool makes use of hardware features, such as a temperature sensor and
potentiometer which are not found on all of the hardware platforms. In order to use the demo tool with the PIC18F87J50
PIM, the PIM should be used while it is plugged into the HPC Explorer board. The HPC Explorer board has the needed
potentiometer, temperature sensor, and additional LEDs.

In order to use the PICDEM FS USB Demo Tool with any of the hardware platforms, the board will need to be programmed
with the code generated by the Custom class device example project or from the custom class precompiled examples.

USBConfig.exe Tool

See: <Install Directory>\USB Tools\USBConfig Tool

6 MCHPFSUSB Library Help

197

Each of the firmware projects requires a usb_config.h that defines several macros that the USB stack uses to know how it
should perform. In the case of the embedded host applications there is also a .c file that needs to be create that describes
the Targeted Peripheral List (TPL). The TPL is a list of supported devices. This .c file also contains various information that
the stack needs to know in order to load and execute the correct client drivers for these devices.

The USBConfig.exe tool is a simple to use interface to help generate the files required by the USB stack.

At the moment the USBConfig.exe tool is only functional for the embedded host examples.

Driver Management Tool

See: <Install Directory>\USB PC - Driver Management Tool

This tool provides an example of how to install a USB driver from within a PC application. This is useful for operating
systems like Windows Vista or Windows 7 where the operating system doesn't always ask the user for the driver files if they
are not pre-installed.

6 MCHPFSUSB Library Help

198

7 Application Programming Interface
(API)

7.1 Stack Configuration
This section describes how the stack is configured and how it ties to various external hardware features that are required.

Description

The USB device stack configuration is done mostly through three files:

1. usb_config.h

2. usb_config.c

3. HardwareProfile.h

The usb_config.h and usb_config.c files configure the stack options and features through macros and tables.

HardwareProfile.h links the stack to hardware specific features and requirements.

The various class drivers, client drivers, and main stacks (device/peripheral, host, and OTG) have various requirements for
each of these files. Each section in this document describes what is required in the configuration files in order to use these
code blocks. Please refer to configuration section of each module for more details.

7.2 Device/Peripheral

7.2.1 Device Stack

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

199

7.2.1.1 Configuration Options

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

200

7.2.1.1.1 usb_config.h

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

201

7.2.1.1.1.1 Ping Pong buffering (USB_PING_PONG_MODE)

Ping Pong buffering is a mechanism that allows the stack and users to operate and prepare a buffer and the USB module to
receive/transmit data out of a second buffer. This allows maximum data throughput at the expense of additional RAM usage.

There are 4 ping-pong buffering options available in the stack:

• No ping-pong

• Full ping-pong

• Endpoint 0 OUT only ping-pong

• All but Endpoint 0 ping-pong

Note: Not all ping-pong modes are available in every device. Please check the datasheet for the device you are
using to know what options, if any, are available.

The ping-pong option is determined by defining the USB_PING_PONG_MODE macro to the desired ping-pong mode. The
options are:

• USB_PING_PONG__NO_PING_PONG

• USB_PING_PONG__FULL_PING_PONG

• USB_PING_PONG__EP0_OUT_ONLY

• USB_PING_PONG__ALL_BUT_EP0

For example, to use full ping-pong buffering, define the following in the usb_config.h file:

#define USB_PING_PONG_MODE USB_PING_PONG__FULL_PING_PONG

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

202

7.2.1.1.1.2 Endpoint 0 size (USB_EP0_BUFF_SIZE)

Each USB device must communicate over endpoint 0 in order to enumerate. This is done mostly through the USB stack and
not through the function drivers or through the user interface. Thus the stack takes ownership of endpoint 0. The USB
specification allows endpoint 0 to be one of 4 sizes: 8, 16, 32, or 64. The MCHPFSUSB stack allows users to modify the
endpoint 0 buffer size through a configuration option. The definition used is the USB_EP0_BUFF_SIZE macro and it can be
set to either 8, 16, 32, or 64. For example:

#define USB_EP0_BUFF_SIZE 8

Changing the endpoint 0 buffer size will have a small impact on the RAM footprint of the overall USB stack, but can be useful
on small devices to conserve limited RAM space. Increasing the endpoint zero size can slightly decrease the time required
for enumeration and other EP0 communications.

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

203

7.2.1.1.1.3 Endpoints Used (USB_MAX_EP_NUMBER)

In order to conserve RAM usage in the stack, variables used to track the status of each of the endpoints is only allocated
when required. The stack does this through the USB_MAX_EP_NUMBER definition. The optimization technique used removes
the variables for all endpoints above the maximum endpoint number used. For example, if only endpoint 1 is used:

#define USB_MAX_EP_NUMBER 1

This definition prevents the RAM to be allocated for endpoints 2-15. Note that this technique means that if endpoint 15 needs
to be used for compatibility reasons USB_MAX_EP_NUMBER must be defined to be 15 and the RAM for all of the endpoints is
allocated even though they may not be used. When designing systems that have flexibility in endpoint number selection,
selecting lower number endpoints can reduce RAM usage.

The valid value range for this definition is 1-15.

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

204

7.2.1.1.1.4 Interface mode (USB_POLLING or USB_INTERRUPT)

The USB device stack can operate in one of two modes, polling or interrupt. There are two definitions that are use to select
between the two modes.

#define USB_POLLING

#define USB_INTERRUPT

Note: Only one of these two modes should be defined at a given point of time.

If USB_POLLING is defined, then the stack is in polling mode and only operates when called. The USBDeviceTasks(page
231)() function must be called periodically in order to keep the stack running and for data to be transfers. The event
notification routine (USB_APPLICATION_EVENT_HANDLER(page 218)) is called from the USBDeviceTasks(page
231)() function, so these notifications are only as timely as the calls to the USBDeviceTasks(page 231)().

In interrupt mode, the USBDeviceTasks(page 231)() function should be placed in the interrupt handler for PIC18 devices.
For PIC24 and PIC32 devices the USBDeviceTasks(page 231)() function is automatically defined as the USB interrupt
function so there is no need to call this function in interrupt mode. In interrupt mode all events from the
USB_APPLICATION_EVENT_HANDLER(page 218) function are in interrupt context. As such care should be taken not to
perform tasks in the handler that have any significant duration. In interrupt mode the USB stack will take up as much CPU
time as it requires that is allowed via the interrupt priority scheme/settings for the target controller.

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

205

7.2.1.1.1.5 Speed selection (USB_SPEED_OPTION)

The MCHPFSUSB stack is capable of both full-speed and low-speed operation. The speed of operation is selected via the
USB_SPEED_OPTION macro. The valid settings are:

• USB_FULL_SPEED

• USB_LOW_SPEED

For example

#define USB_SPEED_OPTION USB_FULL_SPEED

Note: Not every speed mode is available on every device. Please refer to the specific device datasheet for the
capabilities of the target controller.

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

206

7.2.1.1.1.6 D+/D- Internal Pull-ups (USB_PULLUP_OPTION)

Many Microchip USB controllers have the option of using an internal D+/D- pull up for their attach signaling. In some usage
cases users may rather have this as an external resistor instead of using the internal one. The USB_PULLUP_OPTION macro
can be used to enable or disable the internal pull-ups. The options available are:

• USB_PULLUP_ENABLE

• USB_PULLUP_DISABLED

For example:

#define USB_PULLUP_OPTION USB_PULLUP_ENABLE

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

207

7.2.1.1.1.7 Device Mode Enable (USB_SUPPORT_DEVICE)

To enable the USB device mode, the USB_SUPPORT_DEVICE macro must be defined. This macro tells the USB stack that it
will be running in device mode. Example:

#define USB_SUPPORT_DEVICE

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

208

7.2.1.1.1.8 Transceiver Option (USB_TRANSCEIVER_OPTION)

Some of the Microchip USB products have the option of using an external USB transceiver instead of the internal
transceiver. The selection between the two options is done via the USB_TRANSCEIVER_OPTION configuration macro. This
macro should be set to one of two options:

• USB_INTERNAL_TRANSCEIVER

• USB_EXTERNAL_TRANSCEIVER

For example:

#define USB_TRANSCEIVER_OPTION USB_INTERNAL_TRANSCEIVER

Note: External Transceiver support is not available on all product families. Please refer to the product family
datasheet for more information if this feature is available on the target processor.

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

209

7.2.1.1.1.9 Number of Interfaces (USB_MAX_NUM_INT)

The USB stack needs to track the interfaces and alternate interfaces being used. In order to do this the stack must allocate
space to trace each interface. In order to conserve RAM the stack only allocates space for the number of interfaces being
used. The user must configure the stack to tell it how many interfaces are being used. This is done with the
USB_MAX_NUM_INT macro in the usb_config.h file. This macro should be set to the highest totol number of interfaces used
in a single configuration. For example, if an application has two configurations, one has one interface and the second has 3
interfaces, this value should be set to 3.

Example usage:

#define USB_MAX_NUM_INT 1

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

210

7.2.1.1.1.10 Status Stage Timout Enable (USB_ENABLE_STATUS_STAGE_TIMEOUTS
and USB_STATUS_STAGE_TIMEOUT)

Option to enable auto-arming of the status stage of control transfers, if no "progress" has been made for the
USB_STATUS_STAGE_TIMEOUT value. If progress is made (any successful transactions completing on EP0 IN or OUT) the
timeout counter gets reset to the USB_STATUS_STAGE_TIMEOUT value.

During normal control transfer processing, the USB stack or the application firmware will call
USBCtrlEPAllowStatusStage(page 221)() as soon as the firmware is finished processing the control transfer.
Therefore, the status stage completes as quickly as is physically possible. The USB_ENABLE_STATUS_STAGE_TIMEOUTS
feature, and the USB_STATUS_STAGE_TIMEOUT value are only relevant, when:

1. The application uses the USBDeferStatusStage(page 226)() API function, but never calls
USBCtrlEPAllowStatusStage(page 221)(). Or:

2. The application uses host to device (OUT) control transfers with data stage, and some abnormal error occurs, where the
host might try to abort the control transfer, before it has sent all of the data it claimed it was going to send.

If the application firmware never uses the USBDeferStatusStage(page 226)() API function, and it never uses host to
device control transfers with data stage, then it is not required to enable the USB_ENABLE_STATUS_STAGE_TIMEOUTS
feature.

Section 9.2.6 of the USB 2.0 specifications indicate that:

1. Control transfers with no data stage: Status stage must complete within 50ms of the start of the control transfer.

2. Control transfers with (IN) data stage: Status stage must complete within 50ms of sending the last IN data packet in
fullfilment of the data stage.

3. Control transfers with (OUT) data stage: No specific status stage timing requirement. However, the total time of the entire
control transfer (ex: including the OUT data stage and IN status stage) must not exceed 5 seconds.

Therefore, if the USB_ENABLE_STATUS_STAGE_TIMEOUTS feature is used, it is suggested to set the
USB_STATUS_STAGE_TIMEOUT value to timeout in less than 50ms. If the USB_ENABLE_STATUS_STAGE_TIMEOUTS
feature is not enabled, then the USB_STATUS_STAGE_TIMEOUT parameter is not relevant.

The USB_STATUS_STAGE_TIMEOUT is approximately the timeout in milliseconds, except when USB_POLLING mode is
used, and USBDeviceTasks(page 231)() is called at < 1kHz. In this special case, the timeout becomes approximately:

Timeout(in milliseconds) = ((1000 * (USB_STATUS_STAGE_TIMEOUT - 1)) / (USBDeviceTasks(page 231)() polling
frequency in Hz))

This feature is optional and is not required unless needed by the application.

Example Usage:

#define USB_ENABLE_STATUS_STAGE_TIMEOUTS

#define USB_STATUS_STAGE_TIMEOUT (BYTE)45

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

211

7.2.1.1.1.11 String Descriptor Array size (USB_NUM_STRING_DESCRIPTORS)

The USB stack needs to know how many string descriptors that there are on a device so that if a host requests a string
descriptor index that is higher than what is supported, the stack can respond correctly to that event. This is done with the
USB_NUM_STRING_DESCRIPTORS definition.

Example:

#define USB_NUM_STRING_DESCRIPTORS 3

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

212

7.2.1.1.1.12 Event Notifications

The USB stack passes events that the user might want to handle to the USER_USB_CALLBACK_EVENT_HANDLER() function.
Some applications may not want to handle certain types of events. The stack provides a mechanism to disable certain
events. Disabling an event in most cases will only stop the event handler from being called. This will slightly reduce the code
size and slightly increase the code performance, but in most cases it will not stop the interrupt generation from occurring in
the first place (if USB_INTERRUPT mode is being used).

The valid options are:

• USB_DISABLE_SUSPEND_HANDLER

• USB_DISABLE_WAKEUP_FROM_SUSPEND_HANDLER

• USB_DISABLE_SOF_HANDLER

• USB_DISABLE_TRANSFER_TERMINATED_HANDLER

• USB_DISABLE_ERROR_HANDLER

• USB_DISABLE_NONSTANDARD_EP0_REQUEST_HANDLER

• USB_DISABLE_SET_DESCRIPTOR_HANDLER

• USB_DISABLE_SET_CONFIGURATION_HANDLER

• USB_DISABLE_TRANSFER_COMPLETE_HANDLER

To disable any specific event, just define one of these options in the usb_config.h file. For example:

#define USB_DISABLE_SOF_HANDLER

will cause the stack to stop sending SOF notifications to the application when SOF events occur.

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

213

7.2.1.1.1.13 Disable DTS checking (USB_DEVICE_DISABLE_DTS_CHECKING)

Note: Developers should use caution when enabling this option. This option should only be used in cases where it
is understood that this option is required due to a target host that is non-compliant and having DTS mismatch
issues. This option should not be required when talking to compliant hosts.

The stack by default enables DTS checking to verify that incoming packets have the correct DTS setting and filters out any
packets that have a DTS mismatch. In a case where a host is sending an incorrect DTS, the application will appear to miss
data from the host. In order to disable DTS checking, add the following to the usb_config.h file:

#define USB_DEVICE_DISABLE_DTS_CHECKING

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

214

7.2.1.2 Interface Routines
Functions

Name Description

USB_APPLICATION_EVENT_HANDLER(
page 218)

This function is called whenever the USB stack wants to notify
the user of an event.

USBCancelIO(page 219) This function cancels the transfers pending on the specified
endpoint. This function can only be used after a SETUP packet is
received and before that setup packet is handled. This is the time
period in which the EVENT_EP0_REQUEST is thrown, before
the event handler function returns to the stack.

USBCtrlEPAllowDataStage(page 220) This function allows the data stage of either a host-to-device or
device-to-host control transfer (with data stage) to complete. This
function is meant to be used in conjunction with either the
USBDeferOUTDataStage(page 224)() or
USBDeferINDataStage(page 222)(). If the firmware does not
call either USBDeferOUTDataStage(page 224)() or
USBDeferINDataStage(page 222)(), then the firmware does
not need to manually call USBCtrlEPAllowDataStage(), as the
USB stack will call this function instead.

USBCtrlEPAllowStatusStage(page 221) This function prepares the proper endpoint 0 IN or endpoint 0
OUT (based on the controlTransferState) to allow the status
stage packet of a control transfer to complete. This function gets
used internally by the USB stack itself, but it may also be called
from the application firmware, IF the application firmware called
the USBDeferStatusStage(page 226)() function during the
initial processing of the control transfer request. In this case, the
application must call the USBCtrlEPAllowStatusStage() once,
after it has fully completed processing and handling the data
stage portion of the request.
If the application firmware has no need for delaying... more(
page 221)

USBDeferINDataStage(page 222) This function will cause the USB hardware to continuously NAK
the IN token packets sent from the host, during the data stage of
a device to host control transfer. This allows the firmware more
time to process and prepare the IN data packets that will
eventually be sent to the host. This is also useful, if the firmware
needs to process/prepare the IN data in a different context than
what the USBDeviceTasks(page 231)() function executes at.
Calling this function (macro) will assert ownership of the currently
pending control transfer. Therefore, the USB stack will not STALL
when it reaches the... more(page 222)

USBDeferOUTDataStage(page 224) This function will cause the USB hardware to continuously NAK
the OUT data packets sent from the host, during the data stage
of a device to host control transfer. This allows the firmware more
time to prepare the RAM buffer that will eventually be used to
receive the data from the host. This is also useful, if the firmware
wishes to receive the OUT data in a different context than what
the USBDeviceTasks(page 231)() function executes at.
Calling this function (macro) will assert ownership of the currently
pending control transfer. Therefore, the USB stack will not STALL
when it reaches... more(page 224)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

215

USBDeferStatusStage(page 226) Calling this function will prevent the USB stack from automatically
enabling the status stage for the currently pending control
transfer from completing immediately after all data bytes have
been sent or received. This is useful if a class handler or USB
application firmware project uses control transfers for
sending/receiving data over EP0, but requires time in order to
finish processing and/or to consume the data.
For example: Consider an application which receives OUT data
from the USB host, through EP0 using control transfers. Now
assume that this application wishes to do something time
consuming with this data (ex: transmit it... more(page 226)

USBDeviceAttach(page 227) Checks if VBUS is present, and that the USB module is not
already initalized, and if so, enables the USB module so as to
signal device attachment to the USB host.

USBDeviceDetach(page 228) This function configures the USB module to "soft detach" itself
from the USB host.

USBDeviceInit(page 230) This function initializes the device stack it in the default state. The
USB module will be completely reset including all of the internal
variables, registers, and interrupt flags.

USBDeviceTasks(page 231) This function is the main state machine/transaction handler of the
USB device side stack. When the USB stack is operated in
"USB_POLLING" mode (usb_config.h user option) the
USBDeviceTasks() function should be called periodically to
receive and transmit packets through the stack. This function
also takes care of control transfers associated with the USB
enumeration process, and detecting various USB events (such
as suspend). This function should be called at least once every
1.8ms during the USB enumeration process. After the
enumeration process is complete (which can be determined
when USBGetDeviceState(page 239)() returns
CONFIGURED_STATE), the USBDeviceTasks() handler may be
called the... more(page 231)

USBEnableEndpoint(page 233) This function will enable the specified endpoint with the specified
options

USBEP0Receive(page 235) Sets the destination, size, and a function to call on the
completion of the next control write.

USBEP0SendRAMPtr(page 236) Sets the source, size, and options of the data you wish to send
from a RAM source

USBEP0SendROMPtr(page 237) Sets the source, size, and options of the data you wish to send
from a ROM source

USBEP0Transmit(page 238) Sets the address of the data to send over the control endpoint

USBGetDeviceState(page 239) This function will return the current state of the device on the
USB. This function should return CONFIGURED_STATE before
an application tries to send information on the bus.

USBGetNextHandle(page 240) Retrieves the handle to the next endpoint BDT entry that the
USBTransferOnePacket(page 254)() will use.

USBGetRemoteWakeupStatus(page 242) This function indicates if remote wakeup has been enabled by
the host. Devices that support remote wakeup should use this
function to determine if it should send a remote wakeup.

USBGetSuspendState(page 243) This function indicates if the USB port that this device is attached
to is currently suspended. When suspended, it will not be able to
transfer data over the bus.

USBHandleBusy(page 244) Checks to see if the input handle is busy

USBHandleGetAddr(page 245) Retrieves the address of the destination buffer of the input handle

USBHandleGetLength(page 246) Retrieves the length of the destination buffer of the input handle

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

216

USBINDataStageDeferred(page 247) Returns TRUE if a control transfer with IN data stage is pending,
and the firmware has called USBDeferINDataStage(page
222)(), but has not yet called USBCtrlEPAllowDataStage(page
220)(). Returns FALSE if a control transfer with IN data stage is
either not pending, or the firmware did not call
USBDeferINDataStage(page 222)() at the start of the control
transfer.
This function (macro) would typically be used in the case where
the USBDeviceTasks(page 231)() function executes in the
interrupt context (ex: USB_INTERRUPT option selected in
usb_config.h), but the firmware wishes to take care of handling
the data stage of the control transfer in the main... more(page
247)

USBIsBusSuspended(page 248) This function indicates if the USB bus is in suspend mode.

USBIsDeviceSuspended(page 249) This function indicates if the USB module is in suspend mode.

USBRxOnePacket(page 250) Receives the specified data out the specified endpoint

USBSoftDetach(page 251) This function performs a detach from the USB bus via software.

USBOUTDataStageDeferred(page 252) Returns TRUE if a control transfer with OUT data stage is
pending, and the firmware has called
USBDeferOUTDataStage(page 224)(), but has not yet called
USBCtrlEPAllowDataStage(page 220)(). Returns FALSE if a
control transfer with OUT data stage is either not pending, or the
firmware did not call USBDeferOUTDataStage(page 224)() at
the start of the control transfer.
This function (macro) would typically be used in the case where
the USBDeviceTasks(page 231)() function executes in the
interrupt context (ex: USB_INTERRUPT option selected in
usb_config.h), but the firmware wishes to take care of handling
the data stage of the control transfer in the main... more(page
252)

USBStallEndpoint(page 253) Configures the specified endpoint to send STALL to the host, the
next time the host tries to access the endpoint.

USBTransferOnePacket(page 254) Transfers a single packet (one transaction) of data on the USB
bus.

USBTxOnePacket(page 256) Sends the specified data out the specified endpoint

Description

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

217

7.2.1.2.1 USB_APPLICATION_EVENT_HANDLER Function
This function is called whenever the USB stack wants to notify the user of an event.

File

usb_device.h

C

BOOL USB_APPLICATION_EVENT_HANDLER(
 BYTE address,
 USB_EVENT event,
 void * pdata,
 WORD size
);

Returns

None

Description

This function is called whenever the USB stack wants to notify the user of an event. This function should be implemented by
the user.

Example Usage:

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE address the address of the device when the event happened

BYTE event The event input specifies which event happened. The possible options are
listed in the USB_DEVICE_STACK_EVENTS(page 259) enumeration.

Function

BOOL USB_APPLICATION_EVENT_HANDLER(BYTE address, USB_EVENT event, void *pdata, WORD size);

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

218

7.2.1.2.2 USBCancelIO Function
File

usb_device.h

C

void USBCancelIO(
 BYTE endpoint
);

Description

This function cancels the transfers pending on the specified endpoint. This function can only be used after a SETUP packet
is received and before that setup packet is handled. This is the time period in which the EVENT_EP0_REQUEST is thrown,
before the event handler function returns to the stack.

Remarks

None

Parameters

Parameters Description

BYTE endpoint the endpoint number you wish to cancel the transfers for

Function

void USBCancelIO(BYTE endpoint)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

219

7.2.1.2.3 USBCtrlEPAllowDataStage Function
This function allows the data stage of either a host-to-device or device-to-host control transfer (with data stage) to complete.
This function is meant to be used in conjunction with either the USBDeferOUTDataStage(page 224)() or
USBDeferINDataStage(page 222)(). If the firmware does not call either USBDeferOUTDataStage(page 224)() or
USBDeferINDataStage(page 222)(), then the firmware does not need to manually call USBCtrlEPAllowDataStage(), as the
USB stack will call this function instead.

File

usb_device.h

C

void USBCtrlEPAllowDataStage();

Preconditions

A control transfer (with data stage) should already be pending, if the firmware calls this function. Additionally, the firmware
should have called either USBDeferOUTDataStage(page 224)() or USBDeferINDataStage(page 222)() at the start of the
control transfer, if the firmware will be calling this function manually.

Function

void USBCtrlEPAllowDataStage(void);

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

220

7.2.1.2.4 USBCtrlEPAllowStatusStage Function
This function prepares the proper endpoint 0 IN or endpoint 0 OUT (based on the controlTransferState) to allow the status
stage packet of a control transfer to complete. This function gets used internally by the USB stack itself, but it may also be
called from the application firmware, IF the application firmware called the USBDeferStatusStage(page 226)() function
during the initial processing of the control transfer request. In this case, the application must call the
USBCtrlEPAllowStatusStage() once, after it has fully completed processing and handling the data stage portion of the
request.

If the application firmware has no need for delaying control transfers, and therefore never calls USBDeferStatusStage(
page 226)(), then the application firmware should not call USBCtrlEPAllowStatusStage().

File

usb_device.h

C

void USBCtrlEPAllowStatusStage();

Remarks

None

Preconditions

None

Function

void USBCtrlEPAllowStatusStage(void);

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

221

7.2.1.2.5 USBDeferINDataStage Function
This function will cause the USB hardware to continuously NAK the IN token packets sent from the host, during the data
stage of a device to host control transfer. This allows the firmware more time to process and prepare the IN data packets
that will eventually be sent to the host. This is also useful, if the firmware needs to process/prepare the IN data in a different
context than what the USBDeviceTasks(page 231)() function executes at.

Calling this function (macro) will assert ownership of the currently pending control transfer. Therefore, the USB stack will not
STALL when it reaches the data stage of the control transfer, even if the firmware has not (yet) called the
USBEP0SendRAMPtr(page 236)() or USBEP0SendROMPtr(page 237)() API function. However, the application firware
must still (eventually, once it is ready) call one of the aforementioned API functions.

Example Usage:

1. Host sends a SETUP packet to the device, requesting a device to host control transfer, with data stage.

2. USBDeviceTasks(page 231)() executes, and then calls the USBCBCheckOtherReq() callback event handler. The
USBCBCheckOtherReq() calls the application specific/device class specific handler that detects the type of control
transfer.

3. If the firmware needs more time to prepare the first IN data packet, or, if the firmware wishes to process the command in
a different context (ex: if USBDeviceTasks(page 231)() executes as an interrupt handler, but the IN data stage data
needs to be prepared in the main loop context), then it may call USBDeferINDataStage(), in the context of the
USBCBCheckOtherReq() handler function.

4. If the firmware called USBDeferINDataStage() in step #3 above, then the hardware will NAK the IN token packets sent by
the host, for the IN data stage.

5. Once the firmware is ready, and has successfully prepared the data to be sent to the host in fulfillment of the control
transfer, it should then call USBEP0SendRAMPtr(page 236)() or USBEP0SendROMPtr(page 237)(), to prepare the
USB stack to know how many bytes to send to the host, and from what source location.

6. The firmware should now call USBCtrlEPAllowDataStage(page 220)(). This will allow the data stage to complete. The
USB stack will send the data buffer specified by the USBEP0SendRAMPtr(page 236)() or USBEP0SendROMPtr(
page 237)() function, when it was called.

7. Once all data has been sent to the host, or if the host performs early termination, the status stage (a 0-byte OUT packet)
will complete automatically (assuming the firmware did not call USBDeferStatusStage(page 226)() during step #3).

File

usb_device.h

C

void USBDeferINDataStage();

Remarks

Section 9.2.6 of the official USB 2.0 specifications indicates that the USB device must return the first IN data packet within
500ms of the start of the control transfer. In order to meet this specification, the firmware must call USBEP0SendRAMPtr(
page 236)() or USBEP0SendROMPtr(page 237)(), and then call USBCtrlEPAllowDataStage(page 220)(), in less than
500ms from the start of the control transfer.

If the firmware calls USBDeferINDataStage(), it must eventually call USBEP0SendRAMPtr(page 236)() or
USBEP0SendROMPtr(page 237)(), and then call USBCtrlEPAllowDataStage(page 220)(). If it does not do this, the
control transfer will never be able to complete.

The firmware should never call both USBDeferINDataStage() and USBDeferOUTDataStage(page 224)() during the same
control transfer. These functions are mutually exclusive (a control transfer with data stage can never contain both IN and
OUT data packets during the data stage).

Preconditions

Before calling USBDeferINDataStage(), the firmware should first verify that the control transfer has a data stage, and that it
is of type device-to-host (IN).

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

222

Function

void USBDeferINDataStage(void);

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

223

7.2.1.2.6 USBDeferOUTDataStage Function
This function will cause the USB hardware to continuously NAK the OUT data packets sent from the host, during the data
stage of a device to host control transfer. This allows the firmware more time to prepare the RAM buffer that will eventually
be used to receive the data from the host. This is also useful, if the firmware wishes to receive the OUT data in a different
context than what the USBDeviceTasks(page 231)() function executes at.

Calling this function (macro) will assert ownership of the currently pending control transfer. Therefore, the USB stack will not
STALL when it reaches the data stage of the control transfer, even if the firmware has not (yet) called the
USBEP0Receive(page 235)() API function. However, the application firware must still (eventually, once it is ready) call one
of the aforementioned API function.

Example Usage:

1. Host sends a SETUP packet to the device, requesting a host to device control transfer, with data stage (OUT data
packets).

2. USBDeviceTasks(page 231)() executes, and then calls the USBCBCheckOtherReq() callback event handler. The
USBCBCheckOtherReq() calls the application specific/device class specific handler that detects the type of control
transfer.

3. If the firmware needs more time before it wishes to receive the first OUT data packet, or, if the firmware wishes to process
the command in a different context, then it may call USBDeferOUTDataStage(), in the context of the
USBCBCheckOtherReq() handler function.

4. If the firmware called USBDeferOUTDataStage() in step #3 above, then the hardware will NAK the OUT data packets
sent by the host, for the OUT data stage.

5. Once the firmware is ready, it should then call USBEP0Receive(page 235)(), to prepare the USB stack to receive the
OUT data from the host, and to write it to the user specified buffer.

6. The firmware should now call USBCtrlEPAllowDataStage(page 220)(). This will allow the data stage to complete. Once
all OUT data has been received, the user callback function (provided by the function pointer provided when calling
USBEP0Receive(page 235)()) will get called.

7. Once all data has been received from the host, the status stage (a 0-byte IN packet) will complete automatically
(assuming the firmware did not call USBDeferStatusStage(page 226)() during step #3).

File

usb_device.h

C

void USBDeferOUTDataStage();

Remarks

Section 9.2.6 of the official USB 2.0 specifications indicates that the USB device must be able to receive all bytes and
complete the control transfer within a maximum of 5 seconds.

If the firmware calls USBDeferOUTDataStage(), it must eventually call USBEP0Receive(page 235)(), and then call
USBCtrlEPAllowDataStage(page 220)(). If it does not do this, the control transfer will never be able to complete. This will
break the USB connection, as the host needs to be able to communicate over EP0, in order to perform basic tasks including
enumeration.

The firmware should never call both USBDeferINDataStage(page 222)() and USBDeferOUTDataStage() during the same
control transfer. These functions are mutually exclusive (a control transfer with data stage can never contain both IN and
OUT data packets during the data stage).

Preconditions

Before calling USBDeferOUTDataStage(), the firmware should first verify that the control transfer has a data stage, and that
it is of type host-to-device (OUT).

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

224

Function

void USBDeferOUTDataStage(void);

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

225

7.2.1.2.7 USBDeferStatusStage Function
Calling this function will prevent the USB stack from automatically enabling the status stage for the currently pending control
transfer from completing immediately after all data bytes have been sent or received. This is useful if a class handler or USB
application firmware project uses control transfers for sending/receiving data over EP0, but requires time in order to finish
processing and/or to consume the data.

For example: Consider an application which receives OUT data from the USB host, through EP0 using control transfers.
Now assume that this application wishes to do something time consuming with this data (ex: transmit it to and save it to an
external EEPROM device, connected via SPI/I2C/etc.). In this case, it would typically be desireable to defer allowing the
USB status stage of the control transfer to complete, until after the data has been fully sent to the EEPROM device and
saved.

If the USB class handler firmware that processes the control transfer SETUP packet determines that it will need extra time to
complete the control transfer, it may optionally call USBDeferStatusStage(). If it does so, it is then the responsibility of the
application firmware to eventually call USBCtrlEPAllowStatusStage(page 221)(), once the firmware has finished
processing the data associated with the control transfer.

If the firmware call USBDeferStatusStage(), but never calls USBCtrlEPAllowStatusStage(page 221)(), then one of two
possibilities will occur.

1. If the "USB_ENABLE_STATUS_STAGE_TIMEOUTS" option is commented in usb_config.h, then the status stage of the
control transfer will never be able to complete. This is an error case and should be avoided.

2. If the "USB_ENABLE_STATUS_STAGE_TIMEOUTS" option is enabled in usb_config.h, then the USBDeviceTasks(
page 231)() function will automatically call USBCtrlEPAllowStatusStage(page 221)(), after the
"USB_STATUS_STAGE_TIMEOUT" has elapsed, since the last quanta of "progress" has occurred in the control transfer.
Progress is defined as the last successful transaction completing on EP0 IN or EP0 OUT. Although the timeouts feature
allows the status stage to [eventually] complete, it is still preferable to manually call USBCtrlEPAllowStatusStage(page
221)() after the application firmware has finished processing/consuming the control transfer data, as this will allow for
much faster processing of control transfers, and therefore much higher data rates and better user responsiveness.

File

usb_device.h

C

void USBDeferStatusStage();

Remarks

If this function is called, is should get called after the SETUP packet has arrived (the control transfer has started), but before
the USBCtrlEPServiceComplete() function has been called by the USB stack. Therefore, the normal place to call
USBDeferStatusStage() would be from within the USBCBCheckOtherReq() handler context. For example, in a HID
application using control transfers, the USBDeferStatusStage() function would be called from within the
USER_GET_REPORT_HANDLER or USER_SET_REPORT_HANDLER functions.

Preconditions

None

Function

void USBDeferStatusStage(void);

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

226

7.2.1.2.8 USBDeviceAttach Function
Checks if VBUS is present, and that the USB module is not already initalized, and if so, enables the USB module so as to
signal device attachment to the USB host.

File

usb_device.h

C

void USBDeviceAttach();

Description

This function indicates to the USB host that the USB device has been attached to the bus. This function needs to be called in
order for the device to start to enumerate on the bus.

Remarks

See also the USBDeviceDetach(page 228)() API function documentation.

Preconditions

Should only be called when USB_INTERRUPT is defined. Also, should only be called from the main() loop context. Do not
call USBDeviceAttach() from within an interrupt handler, as the USBDeviceAttach() function may modify global interrupt
enable bits and settings.

For normal USB devices: Make sure that if the module was previously on, that it has been turned off for a long time (ex:
100ms+) before calling this function to re-enable the module. If the device turns off the D+ (for full speed) or D- (for low
speed) ~1.5k ohm pull up resistor, and then turns it back on very quickly, common hosts will sometimes reject this event,
since no human could ever unplug and reattach a USB device in a microseconds (or nanoseconds) timescale. The host
could simply treat this as some kind of glitch and ignore the event altogether.

Function

void USBDeviceAttach(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

227

7.2.1.2.9 USBDeviceDetach Function
This function configures the USB module to "soft detach" itself from the USB host.

File

usb_device.h

C

void USBDeviceDetach();

Description

This function configures the USB module to perform a "soft detach" operation, by disabling the D+ (or D-) ~1.5k pull up
resistor, which lets the host know the device is present and attached. This will make the host think that the device has been
unplugged. This is potentially useful, as it allows the USB device to force the host to re-enumerate the device (on the
firmware has re-enabled the USB module/pull up, by calling USBDeviceAttach(page 227)(), to "soft re-attach" to the host).

Remarks

If the application firmware calls USBDeviceDetach(), it is strongly recommended that the firmware wait at least >= 80ms
before calling USBDeviceAttach(page 227)(). If the firmeware performs a soft detach, and then re-attaches too soon (ex:
after a few micro seconds for instance), some hosts may interpret this as an unexpected "glitch" rather than as a physical
removal/re-attachment of the USB device. In this case the host may simply ignore the event without re-enumerating the
device. To ensure that the host properly detects and processes the device soft detach/re-attach, it is recommended to make
sure the device remains detached long enough to mimic a real human controlled USB unplug/re-attach event (ex: after
calling USBDeviceDetach(), do not call USBDeviceAttach(page 227)() for at least 80+ms, preferrably longer.

Neither the USBDeviceDetach() or USBDeviceAttach(page 227)() functions are blocking or take long to execute. It is the
application firmware's responsibility for adding the 80+ms delay, when using these API functions.

The Windows plug and play event handler processing is fairly slow, especially in certain versions of Windows, and for certain
USB device classes. It has been observed that some device classes need to provide even more USB detach dwell interval
(before calling USBDeviceAttach(page 227)()), in order to work correctly after re-enumeration. If the USB device is a CDC
class device, it is recommended to wait at least 1.5 seconds or longer, before soft re-attaching to the host, to provide the
plug and play event handler enough time to finish processing the removal event, before the re-attach occurs.

If the application is using the USB_POLLING mode option, then the USBDeviceDetach() and USBDeviceAttach(page
227)() functions are not available. In this mode, the USB stack relies on the "#define USE_USB_BUS_SENSE_IO" and
"#define USB_BUS_SENSE" options in the HardwareProfile – [platform name].h file.

When using the USB_POLLING mode option, and the "#define USE_USB_BUS_SENSE_IO" definition has been
commented out, then the USB stack assumes that it should always enable the USB module at pretty much all times.
Basically, anytime the application firmware calls USBDeviceTasks(page 231)(), the firmware will automatically enable the
USB module. This mode would typically be selected if the application was designed to be a purely bus powered device. In
this case, the application is powered from the +5V VBUS supply from the USB port, so it is correct and sensible in this type
of application to power up and turn on the USB module, at anytime that the microcontroller is powered (which implies the
USB cable is attached and the host is also powered).

In a self powered application, the USB stack is designed with the intention that the user will enable the "#define
USE_USB_BUS_SENSE_IO" option in the HardwareProfile – [platform name].h file. When this option is defined, then the
USBDeviceTasks(page 231)() function will automatically check the I/O pin port value of the designated pin (based on the
#define USB_BUS_SENSE option in the HardwareProfile – [platform name].h file), every time the application calls
USBDeviceTasks(page 231)(). If the USBDeviceTasks(page 231)() function is executed and finds that the pin defined
by the #define USB_BUS_SENSE is in a logic low state, then it will automatically disable the USB module and tri-state the
D+ and D- pins. If however the USBDeviceTasks(page 231)() function is executed and finds the pin defined by the #define
USB_BUS_SENSE is in a logic high state, then it will automatically enable the USB module, if it has not already been
enabled.

Preconditions

Should only be called when USB_INTERRUPT is defined. See remarks section if USB_POLLING mode option is being used

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

228

(usb_config.h option).

Additionally, this function should only be called from the main() loop context. Do not call this function from within an interrupt
handler, as this function may modify global interrupt enable bits and settings.

Function

void USBDeviceDetach(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

229

7.2.1.2.10 USBDeviceInit Function
File

usb_device.h

C

void USBDeviceInit();

Description

This function initializes the device stack it in the default state. The USB module will be completely reset including all of the
internal variables, registers, and interrupt flags.

Remarks

None

Preconditions

This function must be called before any of the other USB Device functions can be called, including USBDeviceTasks(page
231)().

Function

void USBDeviceInit(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

230

7.2.1.2.11 USBDeviceTasks Function
This function is the main state machine/transaction handler of the USB device side stack. When the USB stack is operated in
"USB_POLLING" mode (usb_config.h user option) the USBDeviceTasks() function should be called periodically to receive
and transmit packets through the stack. This function also takes care of control transfers associated with the USB
enumeration process, and detecting various USB events (such as suspend). This function should be called at least once
every 1.8ms during the USB enumeration process. After the enumeration process is complete (which can be determined
when USBGetDeviceState(page 239)() returns CONFIGURED_STATE), the USBDeviceTasks() handler may be called the
faster of: either once every 9.8ms, or as often as needed to make sure that the hardware USTAT FIFO never gets full. A
good rule of thumb is to call USBDeviceTasks() at a minimum rate of either the frequency that USBTransferOnePacket(
page 254)() gets called, or, once/1.8ms, whichever is faster. See the inline code comments near the top of usb_device.c for
more details about minimum timing requirements when calling USBDeviceTasks().

When the USB stack is operated in "USB_INTERRUPT" mode, it is not necessary to call USBDeviceTasks() from the main
loop context. In the USB_INTERRUPT mode, the USBDeviceTasks() handler only needs to execute when a USB interrupt
occurs, and therefore only needs to be called from the interrupt context.

File

usb_device.h

C

void USBDeviceTasks();

Description

This function is the main state machine/transaction handler of the USB device side stack. When the USB stack is operated in
"USB_POLLING" mode (usb_config.h user option) the USBDeviceTasks() function should be called periodically to receive
and transmit packets through the stack. This function also takes care of control transfers associated with the USB
enumeration process, and detecting various USB events (such as suspend). This function should be called at least once
every 1.8ms during the USB enumeration process. After the enumeration process is complete (which can be determined
when USBGetDeviceState(page 239)() returns CONFIGURED_STATE), the USBDeviceTasks() handler may be called the
faster of: either once every 9.8ms, or as often as needed to make sure that the hardware USTAT FIFO never gets full. A
good rule of thumb is to call USBDeviceTasks() at a minimum rate of either the frequency that USBTransferOnePacket(
page 254)() gets called, or, once/1.8ms, whichever is faster. See the inline code comments near the top of usb_device.c for
more details about minimum timing requirements when calling USBDeviceTasks().

When the USB stack is operated in "USB_INTERRUPT" mode, it is not necessary to call USBDeviceTasks() from the main
loop context. In the USB_INTERRUPT mode, the USBDeviceTasks() handler only needs to execute when a USB interrupt
occurs, and therefore only needs to be called from the interrupt context.

Typical usage:

void main(void)
{
 USBDeviceInit();
 while(1)
 {
 USBDeviceTasks(); //Takes care of enumeration and other USB events
 if((USBGetDeviceState() < CONFIGURED_STATE) ||
 (USBIsDeviceSuspended() == TRUE))
 {
 //Either the device is not configured or we are suspended,
 // so we don't want to execute any USB related application code
 continue; //go back to the top of the while loop
 }
 else
 {
 //Otherwise we are free to run USB and non-USB related user
 //application code.
 UserApplication();
 }
 }
}

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

231

Remarks

USBDeviceTasks() does not need to be called while in the USB suspend mode, if the user application firmware in the
USBCBSuspend() callback function enables the ACTVIF USB interrupt source and put the microcontroller into sleep mode. If
the application firmware decides not to sleep the microcontroller core during USB suspend (ex: continues running at full
frequency, or clock switches to a lower frequency), then the USBDeviceTasks() function must still be called periodically, at a
rate frequent enough to ensure the 10ms resume recovery interval USB specification is met. Assuming a worst case primary
oscillator and PLL start up time of <5ms, then USBDeviceTasks() should be called once every 5ms in this scenario.

When the USB cable is detached, or the USB host is not actively powering the VBUS line to +5V nominal, the application
firmware does not always have to call USBDeviceTasks() frequently, as no USB activity will be taking place. However, if
USBDeviceTasks() is not called regularly, some alternative means of promptly detecting when VBUS is powered (indicating
host attachment), or not powered (host powered down or USB cable unplugged) is still needed. For self or dual self/bus
powered USB applications, see the USBDeviceAttach(page 227)() and USBDeviceDetach(page 228)() API
documentation for additional considerations.

Preconditions

Make sure the USBDeviceInit(page 230)() function has been called prior to calling USBDeviceTasks() for the first time.

Function

void USBDeviceTasks(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

232

7.2.1.2.12 USBEnableEndpoint Function
This function will enable the specified endpoint with the specified options

File

usb_device.h

C

void USBEnableEndpoint(
 BYTE ep,
 BYTE options
);

Returns

None

Description

This function will enable the specified endpoint with the specified options.

Typical Usage:

void USBCBInitEP(void)
{
 USBEnableEndpoint(MSD_DATA_IN_EP,USB_IN_ENABLED|USB_OUT_ENABLED|USB_HANDSHAKE_ENABLED|US
B_DISALLOW_SETUP);
 USBMSDInit();
}

In the above example endpoint number MSD_DATA_IN_EP is being configured for both IN and OUT traffic with
handshaking enabled. Also since MSD_DATA_IN_EP is not endpoint 0 (MSD does not allow this), then we can explicitly
disable SETUP packets on this endpoint.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE ep the endpoint to be configured

BYTE options optional settings for the endpoint. The options should be ORed together to form
a single options string. The available optional settings for the endpoint. The
options should be ORed together to form a single options string. The available
options are the following:

• USB_HANDSHAKE_ENABLED enables USB handshaking (ACK, NAK)

• USB_HANDSHAKE_DISABLED disables USB handshaking (ACK, NAK)

• USB_OUT_ENABLED enables the out direction

• USB_OUT_DISABLED disables the out direction

• USB_IN_ENABLED enables the in direction

• USB_IN_DISABLED disables the in direction

• USB_ALLOW_SETUP enables control transfers

• USB_DISALLOW_SETUP disables control transfers

• USB_STALL_ENDPOINT STALLs this endpoint

Function

void USBEnableEndpoint(BYTE ep, BYTE options)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

233

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

234

7.2.1.2.13 USBEP0Receive Function
Sets the destination, size, and a function to call on the completion of the next control write.

File

usb_device.h

C

void USBEP0Receive(
 BYTE* dest,
 WORD size,
 void (*function)
);

Remarks

None

Preconditions

None

Parameters

Parameters Description

dest address of where the incoming data will go (make sure that this address is
directly accessable by the USB module for parts with dedicated USB RAM this
address must be in that space)

size the size of the data being received (is almost always going tobe presented by
the preceeding setup packet SetupPkt.wLength)

(*function) a function that you want called once the data is received. If this is specificed as
NULL then no function is called.

Function

void USBEP0Receive(BYTE* dest, WORD size, void (*function))

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

235

7.2.1.2.14 USBEP0SendRAMPtr Function
Sets the source, size, and options of the data you wish to send from a RAM source

File

usb_device.h

C

void USBEP0SendRAMPtr(
 BYTE* src,
 WORD size,
 BYTE Options
);

Remarks

None

Preconditions

None

Parameters

Parameters Description

src address of the data to send

size the size of the data needing to be transmitted

options the various options that you want when sending the control data. Options are:

• USB_EP0_ROM(page 265)

• USB_EP0_RAM(page 264)

• USB_EP0_BUSY(page 260)

• USB_EP0_INCLUDE_ZERO(page 261)

• USB_EP0_NO_DATA(page 262)

• USB_EP0_NO_OPTIONS(page 263)

Function

void USBEP0SendRAMPtr(BYTE* src, WORD size, BYTE Options)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

236

7.2.1.2.15 USBEP0SendROMPtr Function
Sets the source, size, and options of the data you wish to send from a ROM source

File

usb_device.h

C

void USBEP0SendROMPtr(
 BYTE* src,
 WORD size,
 BYTE Options
);

Remarks

None

Preconditions

None

Parameters

Parameters Description

src address of the data to send

size the size of the data needing to be transmitted

options the various options that you want when sending the control data. Options are:

• USB_EP0_ROM(page 265)

• USB_EP0_RAM(page 264)

• USB_EP0_BUSY(page 260)

• USB_EP0_INCLUDE_ZERO(page 261)

• USB_EP0_NO_DATA(page 262)

• USB_EP0_NO_OPTIONS(page 263)

Function

void USBEP0SendROMPtr(BYTE* src, WORD size, BYTE Options)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

237

7.2.1.2.16 USBEP0Transmit Function
Sets the address of the data to send over the control endpoint

File

usb_device.h

C

void USBEP0Transmit(
 BYTE options
);

Remarks

None

Preconditions

None

Paramters: options - the various options that you want when sending the control data. Options are: USB_EP0_ROM(page
265) USB_EP0_RAM(page 264) USB_EP0_BUSY(page 260) USB_EP0_INCLUDE_ZERO(page 261)
USB_EP0_NO_DATA(page 262) USB_EP0_NO_OPTIONS(page 263)

Function

void USBEP0Transmit(BYTE options)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

238

7.2.1.2.17 USBGetDeviceState Function
This function will return the current state of the device on the USB. This function should return CONFIGURED_STATE
before an application tries to send information on the bus.

File

usb_device.h

C

USB_DEVICE_STATE USBGetDeviceState();

Description

This function returns the current state of the device on the USB. This function is used to determine when the device is ready
to communicate on the bus. Applications should not try to send or receive data until this function returns
CONFIGURED_STATE.

It is also important that applications yield as much time as possible to the USBDeviceTasks(page 231)() function as
possible while the this function returns any value between ATTACHED_STATE through CONFIGURED_STATE.

For more information about the various device states, please refer to the USB specification section 9.1 available from
www.usb.org.

Typical usage:

void main(void)
{
 USBDeviceInit()
 while(1)
 {
 USBDeviceTasks();
 if((USBGetDeviceState() < CONFIGURED_STATE) ||
 (USBIsDeviceSuspended() == TRUE))
 {
 //Either the device is not configured or we are suspended
 // so we don't want to do execute any application code
 continue; //go back to the top of the while loop
 }
 else
 {
 //Otherwise we are free to run user application code.
 UserApplication();
 }
 }
}

Remarks

None

Preconditions

None

Return Values

Return Values Description

USB_DEVICE_STATE(page 258) the current state of the device on the bus

Function

USB_DEVICE_STATE(page 258) USBGetDeviceState(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

239

7.2.1.2.18 USBGetNextHandle Function
Retrieves the handle to the next endpoint BDT entry that the USBTransferOnePacket(page 254)() will use.

File

usb_device.h

C

USB_HANDLE USBGetNextHandle(
 BYTE ep_num,
 BYTE ep_dir
);

Description

Retrieves the handle to the next endpoint BDT that the USBTransferOnePacket(page 254)() will use. Useful for
initialization and when ping pong buffering will be used on application endpoints.

Remarks

This API is useful for initializing USB_HANDLEs during initialization of the application firmware. It is also useful when
ping-pong bufferring is enabled, and the application firmware wishes to arm both the even and odd BDTs for an endpoint
simultaneously. In this case, the application firmware for sending data to the host would typically be something like follows:

 USB_HANDLE Handle1;
USB_HANDLE Handle2;
USB_HANDLE* pHandle = &Handle1;
BYTE UserDataBuffer1[64];
BYTE UserDataBuffer2[64];
BYTE* pDataBuffer = &UserDataBuffer1[0];

//Add some code that loads UserDataBuffer1[] with useful data to send,
//using the pDataBuffer pointer, for example:
//for(i = 0; i < 64; i++)
//{
// *pDataBuffer++ = [useful data value];
//}

//Check if the next USB endpoint BDT is available
if(!USBHandleBusy(USBGetNextHandle(ep_num, IN_TO_HOST))
{
 //The endpoint is available. Send the data.
 *pHandle = USBTransferOnePacket(ep_num, ep_dir, pDataBuffer, bytecount);
 //Toggle the handle and buffer pointer for the next transaction
 if(pHandle == &Handle1)
 {
 pHandle = &Handle2;
 pDataBuffer = &UserDataBuffer2[0];
 }
 else
 {
 pHandle = &Handle1;
 pDataBuffer = &UserDataBuffer1[0];
 }
}

//The firmware can then load the next data buffer (in this case
//UserDataBuffer2)with useful data, and send it using the same
//process. For example:

//Add some code that loads UserDataBuffer2[] with useful data to send,
//using the pDataBuffer pointer, for example:
//for(i = 0; i < 64; i++)
//{
// *pDataBuffer++ = [useful data value];
//}

//Check if the next USB endpoint BDT is available
if(!USBHandleBusy(USBGetNextHandle(ep_num, IN_TO_HOST))

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

240

{
 //The endpoint is available. Send the data.
 *pHandle = USBTransferOnePacket(ep_num, ep_dir, pDataBuffer, bytecount);
 //Toggle the handle and buffer pointer for the next transaction
 if(pHandle == &Handle1)
 {
 pHandle = &Handle2;
 pDataBuffer = &UserDataBuffer2[0];
 }
 else
 {
 pHandle = &Handle1;
 pDataBuffer = &UserDataBuffer1[0];
 }
}

Preconditions

Will return NULL if the USB device has not yet been configured/the endpoint specified has not yet been initalized by
USBEnableEndpoint(page 233)().

Parameters

Parameters Description

BYTE ep_num The endpoint number to get the handle for (valid values are 1-15, 0 is not a
valid input value for this API)

BYTE ep_dir The endpoint direction associated with the endpoint number to get the handle
for (valid values are OUT_FROM_HOST and IN_TO_HOST).

Return Values

Return Values Description

USB_HANDLE(page 266) Returns the USB_HANDLE(page 266) (a pointer) to the BDT that will be used
next time the USBTransferOnePacket(page 254)() function is called, for the
given ep_num and ep_dir

Function

USB_HANDLE(page 266) USBGetNextHandle(BYTE ep_num, BYTE ep_dir)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

241

7.2.1.2.19 USBGetRemoteWakeupStatus Function
This function indicates if remote wakeup has been enabled by the host. Devices that support remote wakeup should use this
function to determine if it should send a remote wakeup.

File

usb_device.h

C

BOOL USBGetRemoteWakeupStatus();

Description

This function indicates if remote wakeup has been enabled by the host. Devices that support remote wakeup should use this
function to determine if it should send a remote wakeup.

If a device does not support remote wakeup (the Remote wakeup bit, bit 5, of the bmAttributes field of the Configuration
descriptor is set to 1), then it should not send a remote wakeup command to the PC and this function is not of any use to the
device. If a device does support remote wakeup then it should use this function as described below.

If this function returns FALSE and the device is suspended, it should not issue a remote wakeup (resume).

If this function returns TRUE and the device is suspended, it should issue a remote wakeup (resume).

A device can add remote wakeup support by having the _RWU symbol added in the configuration descriptor (located in the
usb_descriptors.c file in the project). This done in the 8th byte of the configuration descriptor. For example:

 ROM BYTE configDescriptor1[]={
 0x09, // Size
 USB_DESCRIPTOR_CONFIGURATION, // descriptor type
 DESC_CONFIG_WORD(0x0022), // Total length
 1, // Number of interfaces
 1, // Index value of this cfg
 0, // Configuration string index
 _DEFAULT | _SELF | _RWU, // Attributes, see usb_device.h
 50, // Max power consumption in 2X mA(100mA)

 //The rest of the configuration descriptor should follow

For more information about remote wakeup, see the following section of the USB v2.0 specification available at www.usb.org:

• Section 9.2.5.2

• Table 9-10

• Section 7.1.7.7

• Section 9.4.5

Remarks

None

Preconditions

None

Return Values

Return Values Description

TRUE Remote Wakeup has been enabled by the host

FALSE Remote Wakeup is not currently enabled

Function

BOOL USBGetRemoteWakeupStatus(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

242

7.2.1.2.20 USBGetSuspendState Function
This function indicates if the USB port that this device is attached to is currently suspended. When suspended, it will not be
able to transfer data over the bus.

File

usb_device.h

C

BOOL USBGetSuspendState();

Description

This function indicates if the USB port that this device is attached to is currently suspended. When suspended, it will not be
able to transfer data over the bus. This function can be used by the application to skip over section of code that do not need
to exectute if the device is unable to send data over the bus. This function can also be used to help determine when it is
legal to perform USB remote wakeup signalling, for devices supporting this feature.

Typical usage:

 void main(void)
 {
 USBDeviceInit()
 while(1)
 {
 USBDeviceTasks();
 if((USBGetDeviceState() < CONFIGURED_STATE) ||
 (USBGetSuspendState() == TRUE))
 {
 //Either the device is not configured or we are suspended
 // so we don't want to do execute any application code
 continue; //go back to the top of the while loop
 }
 else
 {
 //Otherwise we are free to run user application code.
 UserApplication();
 }
 }
 }

Remarks

This function is the same as USBIsBusSuspended(page 248)().

Preconditions

None

Return Values

Return Values Description

TRUE the USB port this device is attached to is suspended.

FALSE the USB port this device is attached to is not suspended.

Function

BOOL USBGetSuspendState(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

243

7.2.1.2.21 USBHandleBusy Function
Checks to see if the input handle is busy

File

usb_device.h

C

BOOL USBHandleBusy(
 USB_HANDLE handle
);

Description

Checks to see if the input handle is busy

Typical Usage

//make sure that the last transfer isn't busy by checking the handle
if(!USBHandleBusy(USBGenericInHandle))
{
 //Send the data contained in the INPacket[] array out on
 // endpoint USBGEN_EP_NUM
 USBGenericInHandle = USBGenWrite(USBGEN_EP_NUM,(BYTE*)&INPacket[0],sizeof(INPacket));
}

Remarks

None

Preconditions

None

Parameters

Parameters Description

USB_HANDLE handle handle of the transfer that you want to check the status of

Return Values

Return Values Description

TRUE The specified handle is busy

FALSE The specified handle is free and available for a transfer

Function

BOOL USBHandleBusy(USB_HANDLE(page 266) handle)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

244

7.2.1.2.22 USBHandleGetAddr Function
Retrieves the address of the destination buffer of the input handle

File

usb_device.h

C

WORD USBHandleGetAddr(
 USB_HANDLE
);

Description

Retrieves the address of the destination buffer of the input handle

Remarks

None

Preconditions

None

Parameters

Parameters Description

USB_HANDLE handle the handle to the transfer you want the address for.

Return Values

Return Values Description

WORD address of the current buffer that the input handle points to.

Function

WORD USBHandleGetAddr(USB_HANDLE(page 266))

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

245

7.2.1.2.23 USBHandleGetLength Function
Retrieves the length of the destination buffer of the input handle

File

usb_device.h

C

WORD USBHandleGetLength(
 USB_HANDLE handle
);

Description

Retrieves the length of the destination buffer of the input handle

Remarks

None

Preconditions

None

Parameters

Parameters Description

USB_HANDLE handle the handle to the transfer you want the address for.

Return Values

Return Values Description

WORD length of the current buffer that the input handle points to. If the transfer is
complete then this is the length of the data transmitted or the length of data
actually received.

Function

WORD USBHandleGetLength(USB_HANDLE(page 266) handle)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

246

7.2.1.2.24 USBINDataStageDeferred Function
Returns TRUE if a control transfer with IN data stage is pending, and the firmware has called USBDeferINDataStage(page
222)(), but has not yet called USBCtrlEPAllowDataStage(page 220)(). Returns FALSE if a control transfer with IN data
stage is either not pending, or the firmware did not call USBDeferINDataStage(page 222)() at the start of the control
transfer.

This function (macro) would typically be used in the case where the USBDeviceTasks(page 231)() function executes in the
interrupt context (ex: USB_INTERRUPT option selected in usb_config.h), but the firmware wishes to take care of handling
the data stage of the control transfer in the main loop context.

In this scenario, typical usage would be:

1. Host starts a control transfer with IN data stage.

2. USBDeviceTasks(page 231)() (in this scenario, interrupt context) executes.

3. USBDeviceTasks(page 231)() calls USBCBCheckOtherReq(), which in turn determines that the control transfer is class
specific, with IN data stage.

4. The user code in USBCBCheckOtherReq() (also in interrupt context, since it is called from USBDeviceTasks(page
231)(), and therefore executes at the same priority/context) calls USBDeferINDataStage(page 222)().

5. Meanwhile, in the main loop context, a polling handler may be periodically checking if(USBINDataStageDeferred() ==
TRUE). Ordinarily, it would evaluate false, but when a control transfer becomes pending, and after the
USBDeferINDataStage(page 222)() macro has been called (ex: in the interrupt context), the if() statement will evaluate
true. In this case, the main loop context can then take care of sending the data (when ready), by calling
USBEP0SendRAMPtr(page 236)() or USBEP0SendROMPtr(page 237)() and USBCtrlEPAllowDataStage(page
220)().

File

usb_device.h

C

BOOL USBINDataStageDeferred();

Function

BOOL USBINDataStageDeferred(void);

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

247

7.2.1.2.25 USBIsBusSuspended Function
This function indicates if the USB bus is in suspend mode.

File

usb_device.h

C

BOOL USBIsBusSuspended();

Returns

None

Description

This function indicates if the USB bus is in suspend mode. This function is typically used for checking if the conditions are
consistent with performing a USB remote wakeup sequence.

Typical Usage:

if((USBIsBusSuspended() == TRUE) && (USBGetRemoteWakeupStatus() == TRUE))
{
 //Check if some stimulus occured, which will be used as the wakeup source
 if(sw3 == 0)
 {
 USBCBSendResume(); //Send the remote wakeup signalling to the host
 }
}
// otherwise do some other application specific tasks

Remarks

The USBIsBusSuspended() function relies on the USBBusIsSuspended boolean variable, which gets updated by the
USBDeviceTasks(page 231)() function. Therefore, in order to be sure the return value is not "stale", it is suggested to
make sure USBDeviceTasks(page 231)() has executed recently (if using USB polling mode).

Preconditions

None

Function

BOOL USBIsBusSuspended(void);

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

248

7.2.1.2.26 USBIsDeviceSuspended Function
This function indicates if the USB module is in suspend mode.

File

usb_device.h

C

BOOL USBIsDeviceSuspended();

Returns

None

Description

This function indicates if the USB module is in suspend mode. This function does NOT indicate that a suspend request has
been received. It only reflects the state of the USB module.

Typical Usage:

if(USBIsDeviceSuspended() == TRUE)
{
 return;
}
// otherwise do some application specific tasks

Remarks

None

Preconditions

None

Function

BOOL USBIsDeviceSuspended(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

249

7.2.1.2.27 USBRxOnePacket Function
Receives the specified data out the specified endpoint

File

usb_device.h

C

USB_HANDLE USBRxOnePacket(
 BYTE ep,
 BYTE* data,
 WORD len
);

Remarks

None

Preconditions

None

Parameters

Parameters Description

ep The endpoint number you want to receive the data on.

data Pointer to a user buffer where the data will go when

it arrives from the host. Note This RAM must be USB module accessible.

len The len parameter should always be set to the maximum endpoint packet size,
specified in the USB descriptor for this endpoint. The host may send <= the
number of bytes as the endpoint size in the endpoint descriptor. After the
transaction is complete, the application firmware can call
USBHandleGetLength(page 246)() to determine how many bytes the host
actually sent in the last transaction on this endpoint.

Return Values

Return Values Description

USB_HANDLE(page 266) Returns a pointer to the BDT entry associated with the transaction. The
firmware can check for completion of the transaction by using the
USBHandleBusy(page 244)() function, using the returned USB_HANDLE(
page 266) value.

Function

USB_HANDLE(page 266) USBRxOnePacket(BYTE ep, BYTE* data, WORD len)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

250

7.2.1.2.28 USBSoftDetach Function
This function performs a detach from the USB bus via software.

File

usb_device.h

C

void USBSoftDetach();

Returns

None

Description

This function performs a detach from the USB bus via software.

Remarks

Caution should be used when detaching from the bus. Some PC drivers and programs may require additional time after a
detach before a device can be reattached to the bus.

Preconditions

None

Function

void USBSoftDetach(void);

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

251

7.2.1.2.29 USBOUTDataStageDeferred Function
Returns TRUE if a control transfer with OUT data stage is pending, and the firmware has called USBDeferOUTDataStage(
page 224)(), but has not yet called USBCtrlEPAllowDataStage(page 220)(). Returns FALSE if a control transfer with OUT
data stage is either not pending, or the firmware did not call USBDeferOUTDataStage(page 224)() at the start of the
control transfer.

This function (macro) would typically be used in the case where the USBDeviceTasks(page 231)() function executes in the
interrupt context (ex: USB_INTERRUPT option selected in usb_config.h), but the firmware wishes to take care of handling
the data stage of the control transfer in the main loop context.

In this scenario, typical usage would be:

1. Host starts a control transfer with OUT data stage.

2. USBDeviceTasks(page 231)() (in this scenario, interrupt context) executes.

3. USBDeviceTasks(page 231)() calls USBCBCheckOtherReq(), which in turn determines that the control transfer is class
specific, with OUT data stage.

4. The user code in USBCBCheckOtherReq() (also in interrupt context, since it is called from USBDeviceTasks(page
231)(), and therefore executes at the same priority/context) calls USBDeferOUTDataStage(page 224)().

5. Meanwhile, in the main loop context, a polling handler may be periodically checking if(USBOUTDataStageDeferred() ==
TRUE). Ordinarily, it would evaluate false, but when a control transfer becomes pending, and after the
USBDeferOUTDataStage(page 224)() macro has been called (ex: in the interrupt context), the if() statement will
evaluate true. In this case, the main loop context can then take care of receiving the data, by calling USBEP0Receive(
page 235)() and USBCtrlEPAllowDataStage(page 220)().

File

usb_device.h

C

BOOL USBOUTDataStageDeferred();

Function

BOOL USBOUTDataStageDeferred(void);

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

252

7.2.1.2.30 USBStallEndpoint Function
Configures the specified endpoint to send STALL to the host, the next time the host tries to access the endpoint.

File

usb_device.h

C

void USBStallEndpoint(
 BYTE ep,
 BYTE dir
);

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE ep The endpoint number that should be configured to send STALL.

BYTE dir The direction of the endpoint to STALL, either IN_TO_HOST or
OUT_FROM_HOST.

Function

void USBStallEndpoint(BYTE ep, BYTE dir)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

253

7.2.1.2.31 USBTransferOnePacket Function
Transfers a single packet (one transaction) of data on the USB bus.

File

usb_device.h

C

USB_HANDLE USBTransferOnePacket(
 BYTE ep,
 BYTE dir,
 BYTE* data,
 BYTE len
);

Description

The USBTransferOnePacket() function prepares a USB endpoint so that it may send data to the host (an IN transaction), or
receive data from the host (an OUT transaction). The USBTransferOnePacket() function can be used both to receive and
send data to the host. This function is the primary API function provided by the USB stack firmware for sending or receiving
application data over the USB port.

The USBTransferOnePacket() is intended for use with all application endpoints. It is not used for sending or receiving
applicaiton data through endpoint 0 by using control transfers. Separate API functions, such as USBEP0Receive(page
235)(), USBEP0SendRAMPtr(page 236)(), and USBEP0SendROMPtr(page 237)() are provided for this purpose.

The USBTransferOnePacket() writes to the Buffer Descriptor Table (BDT) entry associated with an endpoint buffer, and sets
the UOWN bit, which prepares the USB hardware to allow the transaction to complete. The application firmware can use the
USBHandleBusy(page 244)() macro to check the status of the transaction, to see if the data has been successfully
transmitted yet.

Typical Usage

//make sure that the we are in the configured state
if(USBGetDeviceState() == CONFIGURED_STATE)
{
 //make sure that the last transaction isn't busy by checking the handle
 if(!USBHandleBusy(USBInHandle))
 {
 //Write the new data that we wish to send to the host to the INPacket[] array
 INPacket[0] = USEFUL_APPLICATION_VALUE1;
 INPacket[1] = USEFUL_APPLICATION_VALUE2;
 //INPacket[2] = ... (fill in the rest of the packet data)

 //Send the data contained in the INPacket[] array through endpoint "EP_NUM"
 USBInHandle =
USBTransferOnePacket(EP_NUM,IN_TO_HOST,(BYTE*)&INPacket[0],sizeof(INPacket));
 }
}

Remarks

If calling the USBTransferOnePacket() function from within the USBCBInitEP() callback function, the set configuration is still
being processed and the USBDeviceState may not be == CONFIGURED_STATE yet. In this special case, the
USBTransferOnePacket() may still be called, but make sure that the endpoint has been enabled and initialized by the
USBEnableEndpoint(page 233)() function first.

Preconditions

Before calling USBTransferOnePacket(), the following should be true.

1. The USB stack has already been initialized (USBDeviceInit(page 230)() was called).

2. A transaction is not already pending on the specified endpoint. This is done by checking the previous request using the
USBHandleBusy(page 244)() macro (see the typical usage example).

3. The host has already sent a set configuration request and the enumeration process is complete. This can be checked by

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

254

verifying that the USBGetDeviceState(page 239)() macro returns "CONFIGURED_STATE", prior to calling
USBTransferOnePacket().

Parameters

Parameters Description

BYTE ep The endpoint number that the data will be transmitted or received on

BYTE dir The direction of the transfer This value is either OUT_FROM_HOST or
IN_TO_HOST

BYTE* data For IN transactions: pointer to the RAM buffer containing

the data to be sent to the host. For OUT
transactions

pointer to the RAM buffer that the received data should get written to.

BYTE len Length of the data needing to be sent (for IN transactions). For OUT
transactions, the len parameter should normally be set to the endpoint size
specified in the endpoint descriptor.

Return Values

Return Values Description

USB_HANDLE(page 266) handle to the transfer. The handle is a pointer to the BDT entry associated with
this transaction. The

status of the transaction (ex if it is complete or still pending) can be checked using the USBHandleBusy(
page 244)() macro and supplying the USB_HANDLE(page 266) provided by
USBTransferOnePacket().

Function

USB_HANDLE(page 266) USBTransferOnePacket(BYTE ep, BYTE dir, BYTE* data, BYTE len)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

255

7.2.1.2.32 USBTxOnePacket Function
Sends the specified data out the specified endpoint

File

usb_device.h

C

USB_HANDLE USBTxOnePacket(
 BYTE ep,
 BYTE* data,
 WORD len
);

Remarks

None

Preconditions

None

Parameters

Parameters Description

ep the endpoint number you want to send the data out of

data pointer to a user buffer that contains the data that you wish to

send to the host. Note This RAM buffer must be accessible by the USB module.

len the number of bytes of data that you wish to send to the host,

in the next transaction on this endpoint.
Note

this value should always be less than or equal to the endpoint size, as specified
in the USB endpoint descriptor.

Return Values

Return Values Description

USB_HANDLE(page 266) Returns a pointer to the BDT entry associated with the transaction. The
firmware can check for completion of the transaction by using the
USBHandleBusy(page 244)() function, using the returned USB_HANDLE(
page 266) value.

Function

USB_HANDLE(page 266) USBTxOnePacket(BYTE ep, BYTE* data, WORD len)

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

256

7.2.1.3 Data Types and Constants
Enumerations

Name Description

USB_DEVICE_STATE(page 258) USB Device States as returned by USBGetDeviceState(page 239)().
Only the defintions for these states should be used. The actual value for
each state should not be relied upon as constant and may change based
on the implementation.

USB_DEVICE_STACK_EVENTS(
page 259)

USB device stack events description here - DWF

Macros

Name Description

USB_EP0_BUSY(page 260) The PIPE is busy

USB_EP0_INCLUDE_ZERO(
page 261)

include a trailing zero packet

USB_EP0_NO_DATA(page
262)

no data to send

USB_EP0_NO_OPTIONS(
page 263)

no options set

USB_EP0_RAM(page 264) Data comes from ROM

USB_EP0_ROM(page 265) Data comes from RAM

USB_HANDLE(page 266) USB_HANDLE is a pointer to an entry in the BDT. This pointer can be used to
read the length of the last transfer, the status of the last transfer, and various
other information. Insure to initialize USB_HANDLE objects to NULL so that
they are in a known state during their first usage.

Description

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

257

7.2.1.3.1 USB_DEVICE_STATE Enumeration
File

usb_device.h

C

typedef enum {
 DETACHED_STATE,
 ATTACHED_STATE,
 POWERED_STATE,
 DEFAULT_STATE,
 ADR_PENDING_STATE,
 ADDRESS_STATE,
 CONFIGURED_STATE
} USB_DEVICE_STATE;

Members

Members Description

DETACHED_STATE Detached is the state in which the device is not attached to the bus. When in
the detached state a device should not have any pull-ups attached to either the
D+ or D- line.

ATTACHED_STATE Attached is the state in which the device is attached ot the bus but the hub/port
that it is attached to is not yet configured.

POWERED_STATE Powered is the state in which the device is attached to the bus and the hub/port
that it is attached to is configured.

DEFAULT_STATE Default state is the state after the device receives a RESET command from the
host.

ADR_PENDING_STATE Address pending state is not an official state of the USB defined states. This
state is internally used to indicate that the device has received a
SET_ADDRESS command but has not received the STATUS stage of the
transfer yet. The device is should not switch addresses until after the STATUS
stage is complete.

ADDRESS_STATE Address is the state in which the device has its own specific address on the bus.

CONFIGURED_STATE Configured is the state where the device has been fully enumerated and is
operating on the bus. The device is now allowed to excute its application
specific tasks. It is also allowed to increase its current consumption to the value
specified in the configuration descriptor of the current configuration.

Description

USB Device States as returned by USBGetDeviceState(page 239)(). Only the defintions for these states should be used.
The actual value for each state should not be relied upon as constant and may change based on the implementation.

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

258

7.2.1.3.2 USB_DEVICE_STACK_EVENTS Enumeration
File

usb_device.h

C

typedef enum {
 EVENT_CONFIGURED,
 EVENT_SET_DESCRIPTOR,
 EVENT_EP0_REQUEST,
 EVENT_ATTACH,
 EVENT_TRANSFER_TERMINATED
} USB_DEVICE_STACK_EVENTS;

Members

Members Description

EVENT_CONFIGURED Notification that a SET_CONFIGURATION() command was received (device)

EVENT_SET_DESCRIPTOR A SET_DESCRIPTOR request was received (device)

EVENT_EP0_REQUEST An endpoint 0 request was received that the stack did not know how to handle.
This is most often a request for one of the class drivers. Please refer to the
class driver documenation for information related to what to do if this request is
received. (device)

EVENT_ATTACH Device-mode USB cable has been attached. This event is not used by the Host
stack. The client driver may provide an application event when a device
attaches.

EVENT_TRANSFER_TERMINATED A user transfer was terminated by the stack. This event will pass back the value
of the handle that was terminated. Compare this value against the current valid
handles to determine which transfer was terminated.

Description

USB device stack events description here - DWF

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

259

7.2.1.3.3 USB_EP0_BUSY Macro
File

usb_device.h

C

#define USB_EP0_BUSY 0x80 //The PIPE is busy

Description

The PIPE is busy

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

260

7.2.1.3.4 USB_EP0_INCLUDE_ZERO Macro
File

usb_device.h

C

#define USB_EP0_INCLUDE_ZERO 0x40 //include a trailing zero packet

Description

include a trailing zero packet

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

261

7.2.1.3.5 USB_EP0_NO_DATA Macro
File

usb_device.h

C

#define USB_EP0_NO_DATA 0x00 //no data to send

Description

no data to send

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

262

7.2.1.3.6 USB_EP0_NO_OPTIONS Macro
File

usb_device.h

C

#define USB_EP0_NO_OPTIONS 0x00 //no options set

Description

no options set

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

263

7.2.1.3.7 USB_EP0_RAM Macro
File

usb_device.h

C

#define USB_EP0_RAM 0x01 //Data comes from ROM

Description

Data comes from ROM

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

264

7.2.1.3.8 USB_EP0_ROM Macro
File

usb_device.h

C

#define USB_EP0_ROM 0x00 //Data comes from RAM

Description

Data comes from RAM

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

265

7.2.1.3.9 USB_HANDLE Macro
File

usb_device.h

C

#define USB_HANDLE void*

Description

USB_HANDLE is a pointer to an entry in the BDT. This pointer can be used to read the length of the last transfer, the status
of the last transfer, and various other information. Insure to initialize USB_HANDLE objects to NULL so that they are in a
known state during their first usage.

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

266

7.2.1.4 Macros
Macros

Name Description

DESC_CONFIG_BYTE(
page 268)

The DESC_CONFIG_BYTE() macro is implemented for convinence. The
DESC_CONFIG_BYTE() macro provides a consistant macro for use with a byte
when generating a configuratin descriptor when using either the
DESC_CONFIG_WORD(page 270)() or DESC_CONFIG_DWORD(page
269)() macros.

DESC_CONFIG_DWORD(
page 269)

The DESC_CONFIG_DWORD() macro is implemented for convinence. Since
the configuration descriptor array is a BYTE array, each entry needs to be a
BYTE in LSB format. The DESC_CONFIG_DWORD() macro breaks up a
DWORD into the appropriate BYTE entries in LSB.

DESC_CONFIG_WORD(
page 270)

The DESC_CONFIG_WORD() macro is implemented for convinence. Since the
configuration descriptor array is a BYTE array, each entry needs to be a BYTE
in LSB format. The DESC_CONFIG_WORD() macro breaks up a WORD into
the appropriate BYTE entries in LSB. Typical Usage:

Description

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

267

7.2.1.4.1 DESC_CONFIG_BYTE Macro
File

usb_device.h

C

#define DESC_CONFIG_BYTE(a) (a)

Description

The DESC_CONFIG_BYTE() macro is implemented for convinence. The DESC_CONFIG_BYTE() macro provides a
consistant macro for use with a byte when generating a configuratin descriptor when using either the
DESC_CONFIG_WORD(page 270)() or DESC_CONFIG_DWORD(page 269)() macros.

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

268

7.2.1.4.2 DESC_CONFIG_DWORD Macro
File

usb_device.h

C

#define DESC_CONFIG_DWORD(a) (a&0xFF),((a>>8)&0xFF),((a>>16)&0xFF),((a>>24)&0xFF)

Description

The DESC_CONFIG_DWORD() macro is implemented for convinence. Since the configuration descriptor array is a BYTE
array, each entry needs to be a BYTE in LSB format. The DESC_CONFIG_DWORD() macro breaks up a DWORD into the
appropriate BYTE entries in LSB.

7.2 Device/Peripheral MCHPFSUSB Library Help Device Stack

269

7.2.1.4.3 DESC_CONFIG_WORD Macro
File

usb_device.h

C

#define DESC_CONFIG_WORD(a) (a&0xFF),((a>>8)&0xFF)

Description

The DESC_CONFIG_WORD() macro is implemented for convinence. Since the configuration descriptor array is a BYTE
array, each entry needs to be a BYTE in LSB format. The DESC_CONFIG_WORD() macro breaks up a WORD into the
appropriate BYTE entries in LSB. Typical Usage:

 ROM BYTE configDescriptor1[]={
 0x09, // Size of this descriptor in bytes
 USB_DESCRIPTOR_CONFIGURATION, // CONFIGURATION descriptor type
 DESC_CONFIG_WORD(0x0022), // Total length of data for this cfg

7.2.2 Audio Function Driver

7.2 Device/Peripheral MCHPFSUSB Library Help Audio Function Driver

270

7.2.2.1 Interface Routines
Functions

Name Description

USBCheckAudioRequest(
page 272)

This routine checks the setup data packet to see if it knows how to handle it

Description

7.2 Device/Peripheral MCHPFSUSB Library Help Audio Function Driver

271

7.2.2.1.1 USBCheckAudioRequest Function
This routine checks the setup data packet to see if it knows how to handle it

File

usb_function_audio.h

C

void USBCheckAudioRequest();

Description

This routine checks the setup data packet to see if it knows how to handle it

Remarks

None

Preconditions

None

Function

void USBCheckAudioRequest(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Audio Function Driver

272

7.2.2.2 Data Types and Constants

7.2.3 CCID (Smart/Sim Card) Function Driver

7.2 Device/Peripheral MCHPFSUSB Library Help CCID (Smart/Sim Card) Function Driver

273

7.2.3.1 Interface Routines
Functions

Name Description

USBCCIDBulkInService(
page 275)

USBCCIDBulkInService handles device-to-host transaction(s). This function
should be called once per Main Program loop after the device reaches the
configured state.

USBCCIDInitEP(page 276) This function initializes the CCID function driver. This function should be called
after the SET_CONFIGURATION command.

USBCCIDSendDataToHost(
page 277)

USBCCIDSendDataToHost writes an array of data to the USB. Use this
version, is capable of transfering 0x00 (what is typically a NULL character in
any of the string transfer functions).

USBCheckCCIDRequest(
page 278)

This routine checks the setup data packet to see if it knows how to handle it

Description

7.2 Device/Peripheral MCHPFSUSB Library Help CCID (Smart/Sim Card) Function Driver

274

7.2.3.1.1 USBCCIDBulkInService Function
USBCCIDBulkInService handles device-to-host transaction(s). This function should be called once per Main Program loop
after the device reaches the configured state.

File

usb_function_ccid.h

C

void USBCCIDBulkInService();

Description

USBCCIDBulkInService handles device-to-host transaction(s). This function should be called once per Main Program loop
after the device reaches the configured state.

Typical Usage:

void main(void)
{
 USBDeviceInit();
 while(1)
 {
 USBDeviceTasks();
 if((USBGetDeviceState() < CONFIGURED_STATE) ||
 (USBIsDeviceSuspended() == TRUE))
 {
 //Either the device is not configured or we are suspended
 // so we don't want to do execute any application code
 continue; //go back to the top of the while loop
 }
 else
 {
 //Run application code.
 UserApplication();

 //Keep trying to send data to the PC as required
 USBCCIDBulkInService();
 }
 }
}

Remarks

None

Preconditions

None

Function

void USBCCIDBulkInService(void)

7.2 Device/Peripheral MCHPFSUSB Library Help CCID (Smart/Sim Card) Function Driver

275

7.2.3.1.2 USBCCIDInitEP Function
This function initializes the CCID function driver. This function should be called after the SET_CONFIGURATION command.

File

usb_function_ccid.h

C

void USBCCIDInitEP();

Description

This function initializes the CCID function driver. This function sets the default line coding (baud rate, bit parity, number of
data bits, and format). This function also enables the endpoints and prepares for the first transfer from the host.

This function should be called after the SET_CONFIGURATION command. This is most simply done by calling this function
from the USBCBInitEP() function.

Typical Usage:

 void USBCBInitEP(void)
 {
 USBCCIDInitEP();
 }

Remarks

None

Preconditions

None

Function

void USBCCIDInitEP(void)

7.2 Device/Peripheral MCHPFSUSB Library Help CCID (Smart/Sim Card) Function Driver

276

7.2.3.1.3 USBCCIDSendDataToHost Function
USBCCIDSendDataToHost writes an array of data to the USB. Use this version, is capable of transfering 0x00 (what is
typically a NULL character in any of the string transfer functions).

File

usb_function_ccid.h

C

void USBCCIDSendDataToHost(
 BYTE * pData,
 WORD len
);

Description

USBCCIDSendDataToHost writes an array of data to the USB. Use this version, is capable of transfering 0x00 (what is
typically a NULL character in any of the string transfer functions).

The transfer mechanism for device-to-host(put) is more flexible than host-to-device(get). It can handle a string of data larger
than the maximum size of bulk IN endpoint. A state machine is used to transfer a long string of data over multiple USB
transactions. USBCCIDBulkInService(page 275)() must be called periodically to keep sending blocks of data to the host.

Parameters

Parameters Description

BYTE *data pointer to a RAM array of data to be transfered to the host

WORD length the number of bytes to be transfered

Function

void USBCCIDSendDataToHost(BYTE *data, WORD length)

7.2 Device/Peripheral MCHPFSUSB Library Help CCID (Smart/Sim Card) Function Driver

277

7.2.3.1.4 USBCheckCCIDRequest Function
File

usb_function_ccid.h

C

void USBCheckCCIDRequest();

Description

This routine checks the setup data packet to see if it knows how to handle it

Remarks

None

Preconditions

None

Function

void USBCheckCCIDRequest(void)

7.2.4 CDC Function Driver

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

278

7.2.4.1 Interface Routines
Functions

Name Description

CDCInitEP(page 280) This function initializes the CDC function driver. This function should be called
after the SET_CONFIGURATION command (ex: within the context of the
USBCBInitEP() function).

CDCTxService(page 281) CDCTxService handles device-to-host transaction(s). This function should be
called once per Main Program loop after the device reaches the configured
state.

getsUSBUSART(page 282) getsUSBUSART copies a string of BYTEs received through USB CDC Bulk
OUT endpoint to a user's specified location. It is a non-blocking function. It does
not wait for data if there is no data available. Instead it returns '0' to notify the
caller that there is no data available.

putrsUSBUSART(page
283)

putrsUSBUSART writes a string of data to the USB including the null character.
Use this version, 'putrs', to transfer data literals and data located in program
memory.

putsUSBUSART(page 284) putsUSBUSART writes a string of data to the USB including the null character.
Use this version, 'puts', to transfer data from a RAM buffer.

putUSBUSART(page 285) putUSBUSART writes an array of data to the USB. Use this version, is capable
of transfering 0x00 (what is typically a NULL character in any of the string
transfer functions).

USBCheckCDCRequest(
page 286)

This routine checks the most recently received SETUP data packet to see if the
request is specific to the CDC class. If the request was a CDC specific request,
this function will take care of handling the request and responding appropriately.

Macros

Name Description

CDCSetBaudRate(page
287)

This macro is used set the baud rate reported back to the host during a get line
coding request. (optional)

CDCSetCharacterFormat(
page 288)

This macro is used manually set the character format reported back to the host
during a get line coding request. (optional)

CDCSetDataSize(page
289)

This function is used manually set the number of data bits reported back to the
host during a get line coding request. (optional)

CDCSetLineCoding(page
290)

This function is used to manually set the data reported back to the host during a
get line coding request. (optional)

CDCSetParity(page 291) This function is used manually set the parity format reported back to the host
during a get line coding request. (optional)

USBUSARTIsTxTrfReady(
page 292)

This macro is used to check if the CDC class is ready to send more data.

Description

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

279

7.2.4.1.1 CDCInitEP Function
This function initializes the CDC function driver. This function should be called after the SET_CONFIGURATION command
(ex: within the context of the USBCBInitEP() function).

File

usb_function_cdc.h

C

void CDCInitEP();

Description

This function initializes the CDC function driver. This function sets the default line coding (baud rate, bit parity, number of
data bits, and format). This function also enables the endpoints and prepares for the first transfer from the host.

This function should be called after the SET_CONFIGURATION command. This is most simply done by calling this function
from the USBCBInitEP() function.

Typical Usage:

 void USBCBInitEP(void)
 {
 CDCInitEP();
 }

Remarks

None

Preconditions

None

Function

void CDCInitEP(void)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

280

7.2.4.1.2 CDCTxService Function
CDCTxService handles device-to-host transaction(s). This function should be called once per Main Program loop after the
device reaches the configured state.

File

usb_function_cdc.h

C

void CDCTxService();

Description

CDCTxService handles device-to-host transaction(s). This function should be called once per Main Program loop after the
device reaches the configured state (after the CDCIniEP() function has already executed). This function is needed, in order
to advance the internal software state machine that takes care of sending multiple transactions worth of IN USB data to the
host, associated with CDC serial data. Failure to call CDCTxService() perioidcally will prevent data from being sent to the
USB host, over the CDC serial data interface.

Typical Usage:

void main(void)
{
 USBDeviceInit();
 while(1)
 {
 USBDeviceTasks();
 if((USBGetDeviceState() < CONFIGURED_STATE) ||
 (USBIsDeviceSuspended() == TRUE))
 {
 //Either the device is not configured or we are suspended
 // so we don't want to do execute any application code
 continue; //go back to the top of the while loop
 }
 else
 {
 //Keep trying to send data to the PC as required
 CDCTxService();

 //Run application code.
 UserApplication();
 }
 }
}

Remarks

None

Preconditions

CDCIniEP() function should have already exectuted/the device should be in the CONFIGURED_STATE.

Function

void CDCTxService(void)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

281

7.2.4.1.3 getsUSBUSART Function
getsUSBUSART copies a string of BYTEs received through USB CDC Bulk OUT endpoint to a user's specified location. It is
a non-blocking function. It does not wait for data if there is no data available. Instead it returns '0' to notify the caller that
there is no data available.

File

usb_function_cdc.h

C

BYTE getsUSBUSART(
 char * buffer,
 BYTE len
);

Returns

BYTE - Returns a byte indicating the total number of bytes that were actually received and copied into the specified buffer.
The returned value can be anything from 0 up to the len input value. A return value of 0 indicates that no new CDC bulk OUT
endpoint data was available.

Description

getsUSBUSART copies a string of BYTEs received through USB CDC Bulk OUT endpoint to a user's specified location. It is
a non-blocking function. It does not wait for data if there is no data available. Instead it returns '0' to notify the caller that
there is no data available.

Typical Usage:

 BYTE numBytes;
 BYTE buffer[64]

 numBytes = getsUSBUSART(buffer,sizeof(buffer)); //until the buffer is free.
 if(numBytes > 0)
 {
 //we received numBytes bytes of data and they are copied into
 // the "buffer" variable. We can do something with the data
 // here.
 }

Preconditions

Value of input argument 'len' should be smaller than the maximum endpoint size responsible for receiving bulk data from
USB host for CDC class. Input argument 'buffer' should point to a buffer area that is bigger or equal to the size specified by
'len'.

Parameters

Parameters Description

buffer Pointer to where received BYTEs are to be stored

len The number of BYTEs expected.

Function

BYTE getsUSBUSART(char *buffer, BYTE len)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

282

7.2.4.1.4 putrsUSBUSART Function
putrsUSBUSART writes a string of data to the USB including the null character. Use this version, 'putrs', to transfer data
literals and data located in program memory.

File

usb_function_cdc.h

C

void putrsUSBUSART(
 const ROM char * data
);

Description

putrsUSBUSART writes a string of data to the USB including the null character. Use this version, 'putrs', to transfer data
literals and data located in program memory.

Typical Usage:

 if(USBUSARTIsTxTrfReady())
 {
 putrsUSBUSART("Hello World");
 }

The transfer mechanism for device-to-host(put) is more flexible than host-to-device(get). It can handle a string of data larger
than the maximum size of bulk IN endpoint. A state machine is used to transfer a long string of data over multiple USB
transactions. CDCTxService(page 281)() must be called periodically to keep sending blocks of data to the host.

Preconditions

USBUSARTIsTxTrfReady(page 292)() must return TRUE. This indicates that the last transfer is complete and is ready to
receive a new block of data. The string of characters pointed to by 'data' must equal to or smaller than 255 BYTEs.

Parameters

Parameters Description

const ROM char *data null-terminated string of constant data. If a null character is not found, 255
BYTEs of data will be transferred to the host.

Function

void putrsUSBUSART(const ROM char *data)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

283

7.2.4.1.5 putsUSBUSART Function
putsUSBUSART writes a string of data to the USB including the null character. Use this version, 'puts', to transfer data from
a RAM buffer.

File

usb_function_cdc.h

C

void putsUSBUSART(
 char * data
);

Description

putsUSBUSART writes a string of data to the USB including the null character. Use this version, 'puts', to transfer data from
a RAM buffer.

Typical Usage:

 if(USBUSARTIsTxTrfReady())
 {
 char data[] = "Hello World";
 putsUSBUSART(data);
 }

The transfer mechanism for device-to-host(put) is more flexible than host-to-device(get). It can handle a string of data larger
than the maximum size of bulk IN endpoint. A state machine is used to transfer a long string of data over multiple USB
transactions. CDCTxService(page 281)() must be called periodically to keep sending blocks of data to the host.

Preconditions

USBUSARTIsTxTrfReady(page 292)() must return TRUE. This indicates that the last transfer is complete and is ready to
receive a new block of data. The string of characters pointed to by 'data' must equal to or smaller than 255 BYTEs.

Parameters

Parameters Description

char *data null-terminated string of constant data. If a null character is not found, 255
BYTEs of data will be transferred to the host.

Function

void putsUSBUSART(char *data)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

284

7.2.4.1.6 putUSBUSART Function
putUSBUSART writes an array of data to the USB. Use this version, is capable of transfering 0x00 (what is typically a NULL
character in any of the string transfer functions).

File

usb_function_cdc.h

C

void putUSBUSART(
 char * data,
 BYTE Length
);

Description

putUSBUSART writes an array of data to the USB. Use this version, is capable of transfering 0x00 (what is typically a NULL
character in any of the string transfer functions).

Typical Usage:

 if(USBUSARTIsTxTrfReady())
 {
 char data[] = {0x00, 0x01, 0x02, 0x03, 0x04};
 putUSBUSART(data,5);
 }

The transfer mechanism for device-to-host(put) is more flexible than host-to-device(get). It can handle a string of data larger
than the maximum size of bulk IN endpoint. A state machine is used to transfer a long string of data over multiple USB
transactions. CDCTxService(page 281)() must be called periodically to keep sending blocks of data to the host.

Preconditions

USBUSARTIsTxTrfReady(page 292)() must return TRUE. This indicates that the last transfer is complete and is ready to
receive a new block of data. The string of characters pointed to by 'data' must equal to or smaller than 255 BYTEs.

Parameters

Parameters Description

char *data pointer to a RAM array of data to be transfered to the host

BYTE length the number of bytes to be transfered (must be less than 255).

Function

void putUSBUSART(char *data, BYTE length)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

285

7.2.4.1.7 USBCheckCDCRequest Function
File

usb_function_cdc.h

C

void USBCheckCDCRequest();

Description

This routine checks the most recently received SETUP data packet to see if the request is specific to the CDC class. If the
request was a CDC specific request, this function will take care of handling the request and responding appropriately.

Remarks

This function does not change status or do anything if the SETUP packet did not contain a CDC class specific request.

Preconditions

This function should only be called after a control transfer SETUP packet has arrived from the host.

Function

void USBCheckCDCRequest(void)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

286

7.2.4.1.8 CDCSetBaudRate Macro
This macro is used set the baud rate reported back to the host during a get line coding request. (optional)

File

usb_function_cdc.h

C

#define CDCSetBaudRate(baudRate) {line_coding.dwDTERate.Val=baudRate;}

Description

This macro is used set the baud rate reported back to the host during a get line coding request.

Typical Usage:

 CDCSetBaudRate(19200);

This function is optional for CDC devices that do not actually convert the USB traffic to a hardware UART.

Remarks

None

Preconditions

None

Parameters

Parameters Description

DWORD baudRate The desired baudrate

Function

void CDCSetBaudRate(DWORD baudRate)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

287

7.2.4.1.9 CDCSetCharacterFormat Macro
This macro is used manually set the character format reported back to the host during a get line coding request. (optional)

File

usb_function_cdc.h

C

#define CDCSetCharacterFormat(charFormat) {line_coding.bCharFormat=charFormat;}

Description

This macro is used manually set the character format reported back to the host during a get line coding request.

Typical Usage:

 CDCSetCharacterFormat(NUM_STOP_BITS_1);

This function is optional for CDC devices that do not actually convert the USB traffic to a hardware UART.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE charFormat number of stop bits. Available options are:

• NUM_STOP_BITS_1(page 294) - 1 Stop bit

• NUM_STOP_BITS_1_5(page 295) - 1.5 Stop bits

• NUM_STOP_BITS_2(page 296) - 2 Stop bits

Function

void CDCSetCharacterFormat(BYTE charFormat)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

288

7.2.4.1.10 CDCSetDataSize Macro
This function is used manually set the number of data bits reported back to the host during a get line coding request.
(optional)

File

usb_function_cdc.h

C

#define CDCSetDataSize(dataBits) {line_coding.bDataBits=dataBits;}

Description

This function is used manually set the number of data bits reported back to the host during a get line coding request.

Typical Usage:

 CDCSetDataSize(8);

This function is optional for CDC devices that do not actually convert the USB traffic to a hardware UART.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE dataBits number of data bits. The options are 5, 6, 7, 8, or 16.

Function

void CDCSetDataSize(BYTE dataBits)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

289

7.2.4.1.11 CDCSetLineCoding Macro
This function is used to manually set the data reported back to the host during a get line coding request. (optional)

File

usb_function_cdc.h

C

#define CDCSetLineCoding(baud,format,parity,dataSize) {\
 CDCSetBaudRate(baud);\
 CDCSetCharacterFormat(format);\
 CDCSetParity(parity);\
 CDCSetDataSize(dataSize);\
 }

Description

This function is used to manually set the data reported back to the host during a get line coding request.

Typical Usage:

 CDCSetLineCoding(19200, NUM_STOP_BITS_1, PARITY_NONE, 8);

This function is optional for CDC devices that do not actually convert the USB traffic to a hardware UART.

Remarks

None

Preconditions

None

Parameters

Parameters Description

DWORD baud The desired baudrate

BYTE format number of stop bits. Available options are:

• NUM_STOP_BITS_1(page 294) - 1 Stop bit

• NUM_STOP_BITS_1_5(page 295) - 1.5 Stop bits

• NUM_STOP_BITS_2(page 296) - 2 Stop bits

BYTE parity Type of parity. The options are the following:

• PARITY_NONE(page 299)

• PARITY_ODD(page 300)

• PARITY_EVEN(page 297)

• PARITY_MARK(page 298)

• PARITY_SPACE(page 301)

BYTE dataSize number of data bits. The options are 5, 6, 7, 8, or 16.

Function

void CDCSetLineCoding(DWORD baud, BYTE format, BYTE parity, BYTE dataSize)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

290

7.2.4.1.12 CDCSetParity Macro
This function is used manually set the parity format reported back to the host during a get line coding request. (optional)

File

usb_function_cdc.h

C

#define CDCSetParity(parityType) {line_coding.bParityType=parityType;}

Description

This macro is used manually set the parity format reported back to the host during a get line coding request.

Typical Usage:

 CDCSetParity(PARITY_NONE);

This function is optional for CDC devices that do not actually convert the USB traffic to a hardware UART.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE parityType Type of parity. The options are the following:

• PARITY_NONE(page 299)

• PARITY_ODD(page 300)

• PARITY_EVEN(page 297)

• PARITY_MARK(page 298)

• PARITY_SPACE(page 301)

Function

void CDCSetParity(BYTE parityType)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

291

7.2.4.1.13 USBUSARTIsTxTrfReady Macro
This macro is used to check if the CDC class is ready to send more data.

File

usb_function_cdc.h

C

#define USBUSARTIsTxTrfReady (cdc_trf_state == CDC_TX_READY)

Description

This macro is used to check if the CDC class handler firmware is ready to send more data to the host over the CDC bulk IN
endpoint.

Typical Usage:

 if(USBUSARTIsTxTrfReady())
 {
 putrsUSBUSART("Hello World");
 }

Remarks

Make sure the application periodically calls the CDCTxService(page 281)() handler, or pending USB IN transfers will not
be able to advance and complete.

Preconditions

The return value of this function is only valid if the device is in a configured state (i.e. - USBDeviceGetState() returns
CONFIGURED_STATE)

Function

BOOL USBUSARTIsTxTrfReady(void)

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

292

7.2.4.2 Data Types and Constants
Macros

Name Description

NUM_STOP_BITS_1(page
294)

1 stop bit - used by CDCSetLineCoding(page 290)() and
CDCSetCharacterFormat(page 288)()

NUM_STOP_BITS_1_5(
page 295)

1.5 stop bit - used by CDCSetLineCoding(page 290)() and
CDCSetCharacterFormat(page 288)()

NUM_STOP_BITS_2(page
296)

2 stop bit - used by CDCSetLineCoding(page 290)() and
CDCSetCharacterFormat(page 288)()

PARITY_EVEN(page 297) even parity - used by CDCSetLineCoding(page 290)() and CDCSetParity(
page 291)()

PARITY_MARK(page 298) mark parity - used by CDCSetLineCoding(page 290)() and CDCSetParity(
page 291)()

PARITY_NONE(page 299) no parity - used by CDCSetLineCoding(page 290)() and CDCSetParity(
page 291)()

PARITY_ODD(page 300) odd parity - used by CDCSetLineCoding(page 290)() and CDCSetParity(
page 291)()

PARITY_SPACE(page 301) space parity - used by CDCSetLineCoding(page 290)() and CDCSetParity(
page 291)()

Description

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

293

7.2.4.2.1 NUM_STOP_BITS_1 Macro
File

usb_function_cdc.h

C

#define NUM_STOP_BITS_1 0 //1 stop bit - used by CDCSetLineCoding() and
CDCSetCharacterFormat()

Description

1 stop bit - used by CDCSetLineCoding(page 290)() and CDCSetCharacterFormat(page 288)()

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

294

7.2.4.2.2 NUM_STOP_BITS_1_5 Macro
File

usb_function_cdc.h

C

#define NUM_STOP_BITS_1_5 1 //1.5 stop bit - used by CDCSetLineCoding() and
CDCSetCharacterFormat()

Description

1.5 stop bit - used by CDCSetLineCoding(page 290)() and CDCSetCharacterFormat(page 288)()

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

295

7.2.4.2.3 NUM_STOP_BITS_2 Macro
File

usb_function_cdc.h

C

#define NUM_STOP_BITS_2 2 //2 stop bit - used by CDCSetLineCoding() and
CDCSetCharacterFormat()

Description

2 stop bit - used by CDCSetLineCoding(page 290)() and CDCSetCharacterFormat(page 288)()

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

296

7.2.4.2.4 PARITY_EVEN Macro
File

usb_function_cdc.h

C

#define PARITY_EVEN 2 //even parity - used by CDCSetLineCoding() and CDCSetParity()

Description

even parity - used by CDCSetLineCoding(page 290)() and CDCSetParity(page 291)()

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

297

7.2.4.2.5 PARITY_MARK Macro
File

usb_function_cdc.h

C

#define PARITY_MARK 3 //mark parity - used by CDCSetLineCoding() and CDCSetParity()

Description

mark parity - used by CDCSetLineCoding(page 290)() and CDCSetParity(page 291)()

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

298

7.2.4.2.6 PARITY_NONE Macro
File

usb_function_cdc.h

C

#define PARITY_NONE 0 //no parity - used by CDCSetLineCoding() and CDCSetParity()

Description

no parity - used by CDCSetLineCoding(page 290)() and CDCSetParity(page 291)()

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

299

7.2.4.2.7 PARITY_ODD Macro
File

usb_function_cdc.h

C

#define PARITY_ODD 1 //odd parity - used by CDCSetLineCoding() and CDCSetParity()

Description

odd parity - used by CDCSetLineCoding(page 290)() and CDCSetParity(page 291)()

7.2 Device/Peripheral MCHPFSUSB Library Help CDC Function Driver

300

7.2.4.2.8 PARITY_SPACE Macro
File

usb_function_cdc.h

C

#define PARITY_SPACE 4 //space parity - used by CDCSetLineCoding() and CDCSetParity()

Description

space parity - used by CDCSetLineCoding(page 290)() and CDCSetParity(page 291)()

7.2.5 HID Function Driver

7.2 Device/Peripheral MCHPFSUSB Library Help HID Function Driver

301

7.2.5.1 Interface Routines
Macros

Name Description

HIDRxHandleBusy(page
303)

Retreives the status of the buffer ownership

HIDRxPacket(page 304) Receives the specified data out the specified endpoint

HIDTxHandleBusy(page
305)

Retreives the status of the buffer ownership

HIDTxPacket(page 306) Sends the specified data out the specified endpoint

Description

7.2 Device/Peripheral MCHPFSUSB Library Help HID Function Driver

302

7.2.5.1.1 HIDRxHandleBusy Macro
Retreives the status of the buffer ownership

File

usb_function_hid.h

C

#define HIDRxHandleBusy(handle) USBHandleBusy(handle)

Description

Retreives the status of the buffer ownership. This function will indicate if the previous transfer is complete or not.

This function will take the input handle (pointer to a BDT entry) and will check the UOWN bit. If the UOWN bit is set then that
indicates that the transfer is not complete and the USB module still owns the data memory. If the UOWN bit is clear that
means that the transfer is complete and that the CPU now owns the data memory.

For more information about the BDT, please refer to the appropriate datasheet for the device in use.

Typical Usage:

if(!HIDRxHandleBusy(USBOutHandle))
{
 //The data is available in the buffer that was specified when the
 // HIDRxPacket() was called.
}

Remarks

None

Preconditions

None

Parameters

Parameters Description

USB_HANDLE handle the handle for the transfer in question. The handle is returned by the
HIDTxPacket(page 306)() and HIDRxPacket(page 304)() functions. Please
insure that USB_HANDLE(page 266) objects are initialized to NULL.

Return Values

Return Values Description

TRUE the HID handle is still busy

FALSE the HID handle is not busy and is ready to receive additional data.

Function

BOOL HIDRxHandleBusy(USB_HANDLE(page 266) handle)

7.2 Device/Peripheral MCHPFSUSB Library Help HID Function Driver

303

7.2.5.1.2 HIDRxPacket Macro
Receives the specified data out the specified endpoint

File

usb_function_hid.h

C

#define HIDRxPacket USBRxOnePacket

Description

Receives the specified data out the specified endpoint.

Typical Usage:

//Read 64-bytes from endpoint HID_EP, into the ReceivedDataBuffer array.
// Make sure to save the return handle so that we can check it later
// to determine when the transfer is complete.
USBOutHandle = HIDRxPacket(HID_EP,(BYTE*)&ReceivedDataBuffer,64);

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE ep the endpoint you want to receive the data into

BYTE* data pointer to where the data will go when it arrives

WORD len the length of the data that you wish to receive

Return Values

Return Values Description

USB_HANDLE(page 266) a handle for the transfer. This information should be kept to track the status of
the transfer

Function

USB_HANDLE(page 266) HIDRxPacket(BYTE ep, BYTE* data, WORD len)

7.2 Device/Peripheral MCHPFSUSB Library Help HID Function Driver

304

7.2.5.1.3 HIDTxHandleBusy Macro
Retreives the status of the buffer ownership

File

usb_function_hid.h

C

#define HIDTxHandleBusy(handle) USBHandleBusy(handle)

Description

Retreives the status of the buffer ownership. This function will indicate if the previous transfer is complete or not.

This function will take the input handle (pointer to a BDT entry) and will check the UOWN bit. If the UOWN bit is set then that
indicates that the transfer is not complete and the USB module still owns the data memory. If the UOWN bit is clear that
means that the transfer is complete and that the CPU now owns the data memory.

For more information about the BDT, please refer to the appropriate datasheet for the device in use.

Typical Usage:

//make sure that the last transfer isn't busy by checking the handle
if(!HIDTxHandleBusy(USBInHandle))
{
 //Send the data contained in the ToSendDataBuffer[] array out on
 // endpoint HID_EP
 USBInHandle = HIDTxPacket(HID_EP,(BYTE*)&ToSendDataBuffer[0],sizeof(ToSendDataBuffer));
}

Remarks

None

Preconditions

None.

Parameters

Parameters Description

USB_HANDLE handle the handle for the transfer in question. The handle is returned by the
HIDTxPacket(page 306)() and HIDRxPacket(page 304)() functions. Please
insure that USB_HANDLE(page 266) objects are initialized to NULL.

Return Values

Return Values Description

TRUE the HID handle is still busy

FALSE the HID handle is not busy and is ready to send additional data.

Function

BOOL HIDTxHandleBusy(USB_HANDLE(page 266) handle)

7.2 Device/Peripheral MCHPFSUSB Library Help HID Function Driver

305

7.2.5.1.4 HIDTxPacket Macro
Sends the specified data out the specified endpoint

File

usb_function_hid.h

C

#define HIDTxPacket USBTxOnePacket

Description

This function sends the specified data out the specified endpoint and returns a handle to the transfer information.

Typical Usage:

//make sure that the last transfer isn't busy by checking the handle
if(!HIDTxHandleBusy(USBInHandle))
{
 //Send the data contained in the ToSendDataBuffer[] array out on
 // endpoint HID_EP
 USBInHandle = HIDTxPacket(HID_EP,(BYTE*)&ToSendDataBuffer[0],sizeof(ToSendDataBuffer));
}

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE ep the endpoint you want to send the data out of

BYTE* data pointer to the data that you wish to send

WORD len the length of the data that you wish to send

Return Values

Return Values Description

USB_HANDLE(page 266) a handle for the transfer. This information should be kept to track the status of
the transfer

Function

USB_HANDLE(page 266) HIDTxPacket(BYTE ep, BYTE* data, WORD len)

7.2 Device/Peripheral MCHPFSUSB Library Help HID Function Driver

306

7.2.5.2 Data Types and Constants
Macros

Name Description

BOOT_INTF_SUBCLASS(
page 308)

HID Interface Class SubClass Codes

BOOT_PROTOCOL(page 309) Protocol Selection

HID_PROTOCOL_KEYBOARD(
page 310)

This is macro HID_PROTOCOL_KEYBOARD.

HID_PROTOCOL_MOUSE(
page 311)

This is macro HID_PROTOCOL_MOUSE.

HID_PROTOCOL_NONE(page
312)

HID Interface Class Protocol Codes

Description

7.2 Device/Peripheral MCHPFSUSB Library Help HID Function Driver

307

7.2.5.2.1 BOOT_INTF_SUBCLASS Macro
File

usb_function_hid.h

C

#define BOOT_INTF_SUBCLASS 0x01

Description

HID Interface Class SubClass Codes

7.2 Device/Peripheral MCHPFSUSB Library Help HID Function Driver

308

7.2.5.2.2 BOOT_PROTOCOL Macro
File

usb_function_hid.h

C

#define BOOT_PROTOCOL 0x00

Description

Protocol Selection

7.2 Device/Peripheral MCHPFSUSB Library Help HID Function Driver

309

7.2.5.2.3 HID_PROTOCOL_KEYBOARD Macro
File

usb_function_hid.h

C

#define HID_PROTOCOL_KEYBOARD 0x01

Description

This is macro HID_PROTOCOL_KEYBOARD.

7.2 Device/Peripheral MCHPFSUSB Library Help HID Function Driver

310

7.2.5.2.4 HID_PROTOCOL_MOUSE Macro
File

usb_function_hid.h

C

#define HID_PROTOCOL_MOUSE 0x02

Description

This is macro HID_PROTOCOL_MOUSE.

7.2 Device/Peripheral MCHPFSUSB Library Help HID Function Driver

311

7.2.5.2.5 HID_PROTOCOL_NONE Macro
File

usb_function_hid.h

C

#define HID_PROTOCOL_NONE 0x00

Description

HID Interface Class Protocol Codes

7.2.6 MSD Function Driver

7.2 Device/Peripheral MCHPFSUSB Library Help MSD Function Driver

312

7.2.6.1 Interface Routines
Functions

Name Description

MSDTasks(page 314) This is function MSDTasks.

USBCheckMSDRequest(
page 315)

USBMSDInit(page 316) This is function USBMSDInit.

Description

7.2 Device/Peripheral MCHPFSUSB Library Help MSD Function Driver

313

7.2.6.1.1 MSDTasks Function
File

usb_function_msd.h

C

BYTE MSDTasks();

Description

This is function MSDTasks.

7.2 Device/Peripheral MCHPFSUSB Library Help MSD Function Driver

314

7.2.6.1.2 USBCheckMSDRequest Function
File

usb_function_msd.h

C

void USBCheckMSDRequest();

Section

Public Prototypes

7.2 Device/Peripheral MCHPFSUSB Library Help MSD Function Driver

315

7.2.6.1.3 USBMSDInit Function
File

usb_function_msd.h

C

void USBMSDInit();

Description

This is function USBMSDInit.

7.2 Device/Peripheral MCHPFSUSB Library Help MSD Function Driver

316

7.2.6.2 Data Types and Constants
Types

Name Description

LUN_FUNCTIONS(page
318)

LUN_FUNCTIONS is a structure of function pointers that tells the stack where
to find each of the physical layer functions it is looking for. This structure needs
to be defined for any project for PIC24F or PIC32.

Description

7.2 Device/Peripheral MCHPFSUSB Library Help MSD Function Driver

317

7.2.6.2.1 LUN_FUNCTIONS Type
LUN_FUNCTIONS is a structure of function pointers that tells the stack where to find each of the physical layer functions it is
looking for. This structure needs to be defined for any project for PIC24F or PIC32.

File

usb_function_msd.h

C

typedef struct LUN_FUNCTIONS@1 LUN_FUNCTIONS;

Description

LUN_FUNCTIONS is a structure of function pointers that tells the stack where to find each of the physical layer functions it is
looking for. This structure needs to be defined for any project for PIC24F or PIC32.

Typical Usage:

 LUN_FUNCTIONS LUN[MAX_LUN + 1] =
 {
 {
 &MDD_SDSPI_MediaInitialize,
 &MDD_SDSPI_ReadCapacity,
 &MDD_SDSPI_ReadSectorSize,
 &MDD_SDSPI_MediaDetect,
 &MDD_SDSPI_SectorRead,
 &MDD_SDSPI_WriteProtectState,
 &MDD_SDSPI_SectorWrite
 }
 };

In the above code we are passing the address of the SDSPI functions to the corresponding member of the
LUN_FUNCTIONS structure. In the above case we have created an array of LUN_FUNCTIONS structures so that it is
possible to have multiple physical layers by merely increasing the MAX_LUN variable and by adding one more set of entries
in the array. Please take caution to insure that each function is in the the correct location in the structure. Incorrect alignment
will cause the USB stack to call the incorrect function for a given command.

See the MDD File System Library for additional information about the available physical media, their requirements, and how
to use their associated functions.

7.2.7 Personal Healthcare Device Class (PHDC) Function
Driver

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

318

7.2.7.1 Interface Routines
Functions

Name Description

PHDAppInit(page 320) This function is used to initialize the PHD stack.

PHDSendAppBufferPointer(
page 321)

This function is used to send measurement data to the PHD Manager.

PHDConnect(page 322) This function is used to connect to the PHD Manager.

PHDDisConnect(page 323) This function is used to disconnect from the PHD Manager.

PHDSendMeasuredData(page
324)

This function is used to send measurement data to the PHD Manager.

PHDTimeoutHandler(page 325) This function is used to handle all timeout.

USBDevicePHDCInit(page 326) This function initializes the PHDC function driver. This function should be
called after the SET_CONFIGURATION command.

USBDevicePHDCReceiveData(
page 327)

USBDevicePHDCReceiveData copies a string of BYTEs received through
USB PHDC Bulk OUT endpoint to a user's specified location. It is a
non-blocking function. It does not wait for data if there is no data available.
Instead it returns '0' to notify the caller that there is no data available.

USBDevicePHDCSendData(
page 328)

USBDevicePHDCSendData writes an array of data to the USB.

USBDevicePHDCTxRXService(
page 329)

USBDevicePHDCTxRXService handles device-to-host transaction(s) and
host-to-device transaction(s). This function should be called once per
Main Program loop after the device reaches the configured state.

USBDevicePHDCCheckRequest(
page 330)

This routine checks the setup data packet to see if it is class specific
request or vendor specific request and handles it

USBDevicePHDCUpdateStatus(
page 331)

USBDevicePHDCUpdateStatus Function Gets the current status of an
Endpoint and holds the status in variable phdcEpDataBitmap. The Status
is sent to the host upon the "Get Data Status" request from the host.

Description

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

319

7.2.7.1.1 PHDAppInit Function
This function is used to initialize the PHD stack.

File

usb_function_phdc_com_model.h

C

void PHDAppInit(
 PHDC_APP_CB
);

Side Effects

None

Returns

None

Description

This function initializes all the application related items. The input to the function is address of the callback function. This
callback function which will be called by PHD stack when there is a change in Agent's connection status.

Remarks

None

Preconditions

None

Parameters

Parameters Description

PHDC_APP_CB callback Pointer to application Call Back Function.

Function

void PHDAppInit(PHDC_APP_CB callback)

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

320

7.2.7.1.2 PHDSendAppBufferPointer Function
This function is used to send measurement data to the PHD Manager.

File

usb_function_phdc_com_model.h

C

void PHDSendAppBufferPointer(
 UINT8 * pAppBuffer
);

Side Effects

None

Returns

None

Description

This function passes the application buffer pointer to the PHD stack. The PHD stack uses this pointer send and receive data
through the transport layer.

Remarks

None

Parameters

Parameters Description

UINT8 *pAppBuffer Pointer to Application Buffer.

Function

void PHDSendAppBufferPointer(UINT8 * pAppBuffer)

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

321

7.2.7.1.3 PHDConnect Function
This function is used to connect to the PHD Manager.

File

usb_function_phdc_com_model.h

C

void PHDConnect();

Side Effects

None

Returns

None

Description

This function initiates connection to the PHD Manager by sending an Association request to manager. The Agent doesn't get
connected to the Manager immediately after calling this function. Upon receiving the association request from an Agent, the
PHD Manager responds with an association response. The association response tells whether Manager accepting the
request or rejecting it. The Association response from the Manager is handled by the PHD stack. The PHD stack calls a
callback function (void(* PHDC_APP_CB)(UINT8)) to the application with status of the connection. The Manager should
respond to the Agent within the specified timeout of ASSOCIATION_REQUEST_TIMEOUT. The Agent should send the
Association request once more if no response is received from Manager and ASSOCIATION_REQUEST_TIMEOUT is
expired. This function starts a Timer for the Association Timeout request. The timeout is handled by the
PHDTimeoutHandler(page 325)() function.

Remarks

None

Preconditions

The agent should be in PHD_INITIALIZED state.

Function

void PHDConnect(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

322

7.2.7.1.4 PHDDisConnect Function
This function is used to disconnect from the PHD Manager.

File

usb_function_phdc_com_model.h

C

void PHDDisConnect();

Side Effects

None

Returns

None

Description

This function initiates disconnection of the Agent from the PHD Manager by sending an Release request to manager. The
Agent doesn't get disconnected from the Manager immediately after calling this function. The PHD Manager sends back a
release response to the Agent. The Agent responds back with an Abort Message and the Agent moves to DISCONNECTED
state. The PHD stack calls a callback function (void(* PHDC_APP_CB)(UINT8)) to the application with status of the
connection. This function disables all timeout.

Remarks

None

Preconditions

None.

Function

void PHDDisConnect(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

323

7.2.7.1.5 PHDSendMeasuredData Function
This function is used to send measurement data to the PHD Manager.

File

usb_function_phdc_com_model.h

C

void PHDSendMeasuredData();

Side Effects

None

Returns

None

Description

This function sends measurement data to manager. Before calling this function the caller should fill the Application buffer
with the data to send. The Agent expects a Confirmation from the Manager for the data sent. This confirmation should arrive
at the Agent within a specified time of CONFIRM_TIMEOUT. The function starts a Timer to see if the Confirmation from the
Manager arrives within specified time. The timeout is handled by the PHDTimeoutHandler(page 325)() function.

Remarks

None

Preconditions

Before calling this function the caller should fill the Application buffer with the data to send.

Function

void PHDSendMeasuredData(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

324

7.2.7.1.6 PHDTimeoutHandler Function
This function is used to handle all timeout.

File

usb_function_phdc_com_model.h

C

void PHDTimeoutHandler();

Side Effects

None

Returns

None

Description

This function handles all timers. This function should be called once in every milli Second.

Remarks

If USB is used at the Transport layer then the USB SOF handler can call this function.

Preconditions

None

Function

void PHDTimeoutHandler(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

325

7.2.7.1.7 USBDevicePHDCInit Function
This function initializes the PHDC function driver. This function should be called after the SET_CONFIGURATION command.

File

usb_function_phdc.h

C

void USBDevicePHDCInit(
 USB_PHDC_CB
);

Description

This function initializes the PHDC function driver. This function sets the default line coding (baud rate, bit parity, number of
data bits, and format). This function also enables the endpoints and prepares for the first transfer from the host.

This function should be called after the SET_CONFIGURATION command. This is most simply done by calling this function
from the USBCBInitEP() function.

Typical Usage:

 void USBCBInitEP(void)
 {
 PHDCInitEP();
 }

Remarks

None

Preconditions

None

Function

void PHDCInitEP(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

326

7.2.7.1.8 USBDevicePHDCReceiveData Function
USBDevicePHDCReceiveData copies a string of BYTEs received through USB PHDC Bulk OUT endpoint to a user's
specified location. It is a non-blocking function. It does not wait for data if there is no data available. Instead it returns '0' to
notify the caller that there is no data available.

File

usb_function_phdc.h

C

UINT8 USBDevicePHDCReceiveData(
 UINT8 qos,
 UINT8 * buffer,
 UINT16 len
);

Description

USBDevicePHDCReceiveData copies a string of BYTEs received through USB PHDC Bulk OUT endpoint to a user's
specified location. It is a non-blocking function. It does not wait for data if there is no data available. Instead it returns '0' to
notify the caller that there is no data available.

Typical Usage:

 BYTE numBytes;
 BYTE buffer[64]

 numBytes = USBDevicePHDCReceiveData(buffer,sizeof(buffer)); //until the buffer is free.
 if(numBytes > 0)
 {
 //we received numBytes bytes of data and they are copied into
 // the "buffer" variable. We can do something with the data
 // here.
 }

Preconditions

Value of input argument 'len' should be smaller than the maximum endpoint size responsible for receiving bulk data from
USB host for PHDC class. Input argument 'buffer' should point to a buffer area that is bigger or equal to the size specified by
'len'.

Parameters

Parameters Description

qos quality of service

buffer Pointer to where received BYTEs are to be stored

len The number of BYTEs expected.

Function

UINT8 USBDevicePHDCReceiveData(UINT8 qos, UINT8 *buffer, UINT16 len)

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

327

7.2.7.1.9 USBDevicePHDCSendData Function
USBDevicePHDCSendData writes an array of data to the USB.

File

usb_function_phdc.h

C

void USBDevicePHDCSendData(
 UINT8 qos,
 UINT8 * data,
 UINT16 length,
 BOOL memtype
);

Description

USBDevicePHDCSendData writes an array of data to the USB.

Typical Usage:

 if(USBUSARTIsTxTrfReady())
 {
 char data[] = {0x00, 0x01, 0x02, 0x03, 0x04};
 USBDevicePHDCSendData(1,data,5);
 }

The transfer mechanism for device-to-host(put) is more flexible than host-to-device(get). It can handle a string of data larger
than the maximum size of bulk IN endpoint. A state machine is used to transfer a long string of data over multiple USB
transactions. USBDevicePHDCTxRXService(page 329)() must be called periodically to keep sending blocks of data to the
host.

Preconditions

USBUSARTIsTxTrfReady(page 292)() must return TRUE. This indicates that the last transfer is complete and is ready to
receive a new block of data.

Parameters

Parameters Description

qos Quality of service information

*data pointer to a RAM array of data to be transfered to the host

length the number of bytes to be transfered.

Function

void USBDevicePHDCSendData(UINT8 qos, UINT8 *data, UINT8 Length)

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

328

7.2.7.1.10 USBDevicePHDCTxRXService Function
USBDevicePHDCTxRXService handles device-to-host transaction(s) and host-to-device transaction(s). This function should
be called once per Main Program loop after the device reaches the configured state.

File

usb_function_phdc.h

C

void USBDevicePHDCTxRXService(
 USTAT_FIELDS* event
);

Description

USBDevicePHDCTxRXService handles device-to-host transaction(s) and host-to-device transaction(s). This function should
be called once per Main Program loop after the device reaches the configured state.

Typical Usage:

void main(void)
{
 USBDeviceInit();
 while(1)
 {
 USBDeviceTasks();
 if((USBGetDeviceState() < CONFIGURED_STATE) ||
 (USBIsDeviceSuspended() == TRUE))
 {
 //Either the device is not configured or we are suspended
 // so we don't want to do execute any application code
 continue; //go back to the top of the while loop
 }
 else
 {
 //Keep trying to send data to the PC as required
 USBDevicePHDCTxRXService();

 //Run application code.
 UserApplication();
 }
 }
}

Remarks

None

Preconditions

None

Function

void USBDevicePHDCTxRXService(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

329

7.2.7.1.11 USBDevicePHDCCheckRequest Function
File

usb_function_phdc.h

C

void USBDevicePHDCCheckRequest();

Description

This routine checks the setup data packet to see if it is class specific request or vendor specific request and handles it

Remarks

None

Preconditions

None

Function

void USBDevicePHDCCheckRequest(void)

7.2 Device/Peripheral MCHPFSUSB Library Help Personal Healthcare Device Class

330

7.2.7.1.12 USBDevicePHDCUpdateStatus Function
USBDevicePHDCUpdateStatus Function Gets the current status of an Endpoint and holds the status in variable
phdcEpDataBitmap. The Status is sent to the host upon the "Get Data Status" request from the host.

File

usb_function_phdc.h

C

void USBDevicePHDCUpdateStatus(
 WORD EndpointNo,
 BIT Status
);

Description

USBDevicePHDCUpdateStatus Function helps to handle the "Get Data Status" PHDC specfic request received from the
Host as mentioned in the section 7.1.2 of the Personal Healthcare Devices Specification. This function Gets the current
status of an Endpoint and holds the status in variable phdcEpDataBitmap.

Remarks

None

Preconditions

None

Parameters

Parameters Description

WORD EndpointNo The number of the endpoint, for which the status is requested.

BIT Status Current status of the Endpoint.

Function

void USBDevicePHDCUpdateStatus (WORD EndpointNo, BIT Status)

7.2.8 Vendor Class (Generic) Function Driver

7.2 Device/Peripheral MCHPFSUSB Library Help Vendor Class (Generic) Function Driver

331

7.2.8.1 Interface Routines
Macros

Name Description

USBGenRead(page 333) Receives the specified data out the specified endpoint

USBGenWrite(page 334) Sends the specified data out the specified endpoint

Description

7.2 Device/Peripheral MCHPFSUSB Library Help Vendor Class (Generic) Function Driver

332

7.2.8.1.1 USBGenRead Macro
Receives the specified data out the specified endpoint

File

usb_function_generic.h

C

#define USBGenRead(ep,data,len) USBRxOnePacket(ep,data,len)

Description

Receives the specified data out the specified endpoint.

Typical Usage:

//Read 64-bytes from endpoint USBGEN_EP_NUM, into the OUTPacket array.
// Make sure to save the return handle so that we can check it later
// to determine when the transfer is complete.
if(!USBHandleBusy(USBOutHandle))
{
 USBOutHandle = USBGenRead(USBGEN_EP_NUM,(BYTE*)&OUTPacket,64);
}

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE ep the endpoint you want to receive the data into

BYTE* data pointer to where the data will go when it arrives

WORD len the length of the data that you wish to receive

Return Values

Return Values Description

USB_HANDLE(page 266) a handle for the transfer. This information should be kept to track the status of
the transfer

Function

USB_HANDLE(page 266) USBGenRead(BYTE ep, BYTE* data, WORD len)

7.2 Device/Peripheral MCHPFSUSB Library Help Vendor Class (Generic) Function Driver

333

7.2.8.1.2 USBGenWrite Macro
Sends the specified data out the specified endpoint

File

usb_function_generic.h

C

#define USBGenWrite(ep,data,len) USBTxOnePacket(ep,data,len)

Description

This function sends the specified data out the specified endpoint and returns a handle to the transfer information.

Typical Usage:

//make sure that the last transfer isn't busy by checking the handle
if(!USBHandleBusy(USBGenericInHandle))
{
 //Send the data contained in the INPacket[] array out on
 // endpoint USBGEN_EP_NUM
 USBGenericInHandle = USBGenWrite(USBGEN_EP_NUM,(BYTE*)&INPacket[0],sizeof(INPacket));
}

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE ep the endpoint you want to send the data out of

BYTE* data pointer to the data that you wish to send

WORD len the length of the data that you wish to send

Return Values

Return Values Description

USB_HANDLE(page 266) a handle for the transfer. This information should be kept to track the status of
the transfer

Function

USB_HANDLE(page 266) USBGenWrite(BYTE ep, BYTE* data, WORD len)

7.3 Embedded Host API
These are the various client drivers that are available for use with the USB Embedded Host driver.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

334

7.3.1 Embedded Host Stack

The USB Embedded Host driver provides low-level USB functionality for all host client drivers.

Description

The USB Embedded Host driver provides low-level USB functionality for all host client drivers. This layer is responsible for
enumerating devices, managing data transfers, and detecting device detach.

Typically, only host client drivers will interact with this layer. Applications can be configured to receive some events from this
layer, such as EVENT_REQUEST_POWER and EVENT_RELEASE_POWER.

See AN1140 USB Embedded Host Stack for more information about this layer. See AN1141 USB Embedded Host Stack
Programmer's Guide for more information about creating a client driver that uses this layer.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

335

7.3.1.1 Interface Routines
Functions

Name Description

USB_HOST_APP_EVENT_HANDLER(
page 337)

This is a typedef to use when defining the application level events
handler.

USBHostClearEndpointErrors(page
338)

This function clears an endpoint's internal error condition.

USBHostDeviceSpecificClientDriver(
page 339)

This function indicates if the specified device has explicit client
driver support specified in the TPL.

USBHostDeviceStatus(page 340) This function returns the current status of a device.

USBHostInit(page 345) This function initializes the variables of the USB host stack.

USBHostRead(page 346) This function initiates a read from the attached device.

USBHostResetDevice(page 348) This function resets an attached device.

USBHostResumeDevice(page 349) This function issues a RESUME to the attached device.

USBHostSetDeviceConfiguration(page
350)

This function changes the device's configuration.

USBHostSetNAKTimeout(page 352) This function specifies NAK timeout capability.

USBHostSuspendDevice(page 353) This function suspends a device.

USBHostTerminateTransfer(page 354) This function terminates the current transfer for the given endpoint.

USBHostTransferIsComplete(page
355)

This function initiates whether or not the last endpoint transaction is
complete.

USBHostVbusEvent(page 357) This function handles Vbus events that are detected by the
application.

USBHostWrite(page 358) This function initiates a write to the attached device.

Macros

Name Description

USBHostGetCurrentConfigurationDescriptor(
page 341)

This function returns a pointer to the current configuration
descriptor of the requested device.

USBHostGetDeviceDescriptor(page 342) This function returns a pointer to the device descriptor of the
requested device.

USBHostGetStringDescriptor(page 343) This routine initiates a request to obtains the requested string
descriptor.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

336

7.3.1.1.1 USB_HOST_APP_EVENT_HANDLER Function
This is a typedef to use when defining the application level events handler.

File

usb_host.h

C

BOOL USB_HOST_APP_EVENT_HANDLER(
 BYTE address,
 USB_EVENT event,
 void * data,
 DWORD size
);

Description

This function is implemented by the application. The function name can be anything - the macro
USB_HOST_APP_EVENT_HANDLER must be set in usb_config.h to the name of the application function.

In the application layer, this function is responsible for handling all application-level events that are generated by the stack.
See the enumeration USB_EVENT for a complete list of all events that can occur. Note that some of these events are
intended for client drivers (e.g. EVENT_TRANSFER), while some are intended for for the application layer (e.g.
EVENT_UNSUPPORTED_DEVICE).

If the application can handle the event successfully, the function should return TRUE. For example, if the function receives
the event EVENT_VBUS_REQUEST_POWER and the system can allocate that much power to an attached device, the
function should return TRUE. If, however, the system cannot allocate that much power to an attached device, the function
should return FALSE.

Remarks

If this function is not provided by the application, then all application events are assumed to function without error.

Preconditions

None

Parameters

Parameters Description

BYTE address Address of the USB device generating the event

USB_EVENT event Event that occurred

void *data Optional pointer to data for the event

DWORD size Size of the data pointed to by *data

Return Values

Return Values Description

TRUE Event was processed successfully

FALSE Event was not processed successfully

Function

BOOL USB_HOST_APP_EVENT_HANDLER (BYTE address, USB_EVENT event,

void *data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

337

7.3.1.1.2 USBHostClearEndpointErrors Function
This function clears an endpoint's internal error condition.

File

usb_host.h

C

BYTE USBHostClearEndpointErrors(
 BYTE deviceAddress,
 BYTE endpoint
);

Description

This function is called to clear the internal error condition of a device's endpoint. It should be called after the application has
dealt with the error condition on the device. This routine clears internal status only; it does not interact with the device.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Address of device

BYTE endpoint Endpoint to clear error condition

Return Values

Return Values Description

USB_SUCCESS Errors cleared

USB_UNKNOWN_DEVICE Device not found

USB_ENDPOINT_NOT_FOUND Specified endpoint not found

Function

BYTE USBHostClearEndpointErrors(BYTE deviceAddress, BYTE endpoint)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

338

7.3.1.1.3 USBHostDeviceSpecificClientDriver Function
This function indicates if the specified device has explicit client driver support specified in the TPL.

File

usb_host.h

C

BOOL USBHostDeviceSpecificClientDriver(
 BYTE deviceAddress
);

Description

This function indicates if the specified device has explicit client driver support specified in the TPL. It is used in client drivers'
USB_CLIENT_INIT(page 366) routines to indicate that the client driver should be used even though the class, subclass,
and protocol values may not match those normally required by the class. For example, some printing devices do not fulfill all
of the requirements of the printer class, so their class, subclass, and protocol fields indicate a custom driver rather than the
printer class. But the printer class driver can still be used, with minor limitations.

Remarks

This function is used so client drivers can allow certain devices to enumerate. For example, some printer devices indicate a
custom class rather than the printer class, even though the device has only minor limitations from the full printer class. The
printer client driver will fail to initialize the device if it does not indicate printer class support in its interface descriptor. The
printer client driver could allow any device with an interface that matches the printer class endpoint configuration, but both
printer and mass storage devices utilize one bulk IN and one bulk OUT endpoint. So a mass storage device would be
erroneously initialized as a printer device. This function allows a client driver to know that the client driver support was
specified explicitly in the TPL, so for this particular device only, the class, subclass, and protocol fields can be safely ignored.

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Address of device

Return Values

Return Values Description

TRUE This device is listed in the TPL by VID andPID, and has explicit client driver
support.

FALSE This device is not listed in the TPL by VID and PID.

Function

BOOL USBHostDeviceSpecificClientDriver(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

339

7.3.1.1.4 USBHostDeviceStatus Function
This function returns the current status of a device.

File

usb_host.h

C

BYTE USBHostDeviceStatus(
 BYTE deviceAddress
);

Description

This function returns the current status of a device. If the device is in a holding state due to an error, the error is returned.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

Return Values

Return Values Description

USB_DEVICE_ATTACHED Device is attached and running

USB_DEVICE_DETACHED No device is attached

USB_DEVICE_ENUMERATING Device is enumerating

USB_HOLDING_OUT_OF_MEMORY Not enough heap space available

USB_HOLDING_UNSUPPORTED_DEVICE Invalid configuration or unsupported class

USB_HOLDING_UNSUPPORTED_HUB Hubs are not supported

USB_HOLDING_INVALID_CONFIGURATION Invalid configuration requested

USB_HOLDING_PROCESSING_CAPACITY Processing requirement excessive

USB_HOLDING_POWER_REQUIREMENT Power requirement excessive

USB_HOLDING_CLIENT_INIT_ERROR Client driver failed to initialize

USB_DEVICE_SUSPENDED Device is suspended

Other Device is holding in an error state. The return value indicates the error.

Function

BYTE USBHostDeviceStatus(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

340

7.3.1.1.5 USBHostGetCurrentConfigurationDescriptor Macro
File

usb_host.h

C

#define USBHostGetCurrentConfigurationDescriptor(deviceAddress) (
pCurrentConfigurationDescriptor)

Returns

BYTE * - Pointer to the Configuration Descriptor.

Description

This function returns a pointer to the current configuration descriptor of the requested device.

Remarks

This will need to be expanded to a full function when multiple device support is added.

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Address of device

Function

BYTE * USBHostGetCurrentConfigurationDescriptor(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

341

7.3.1.1.6 USBHostGetDeviceDescriptor Macro
File

usb_host.h

C

#define USBHostGetDeviceDescriptor(deviceAddress) (pDeviceDescriptor)

Returns

BYTE * - Pointer to the Device Descriptor.

Description

This function returns a pointer to the device descriptor of the requested device.

Remarks

This will need to be expanded to a full function when multiple device support is added.

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Address of device

Function

BYTE * USBHostGetDeviceDescriptor(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

342

7.3.1.1.7 USBHostGetStringDescriptor Macro
This routine initiates a request to obtains the requested string descriptor.

File

usb_host.h

C

#define USBHostGetStringDescriptor(deviceAddress, stringNumber, LangID, stringDescriptor,
stringLength, clientDriverID) \
 USBHostIssueDeviceRequest(deviceAddress, USB_SETUP_DEVICE_TO_HOST |
USB_SETUP_TYPE_STANDARD | USB_SETUP_RECIPIENT_DEVICE, \
 USB_REQUEST_GET_DESCRIPTOR, (USB_DESCRIPTOR_STRING << 8) |
stringNumber, \
 LangID, stringLength, stringDescriptor, USB_DEVICE_REQUEST_GET,
clientDriverID)

Description

This routine initiates a request to obtains the requested string descriptor. If the request cannot be started, the routine returns
an error. Otherwise, the request is started, and the requested string descriptor is stored in the designated location.

Example Usage:

USBHostGetStringDescriptor(
 deviceAddress,
 stringDescriptorNum,
 LangID,
 stringDescriptorBuffer,
 sizeof(stringDescriptorBuffer),
 0xFF
);

while(1)
{
 if(USBHostTransferIsComplete(deviceAddress , 0, &errorCode, &byteCount))
 {
 if(errorCode)
 {
 //There was an error reading the string, bail out of loop
 }
 else
 {
 //String is located in specified buffer, do something with it.

 //The length of the string is both in the byteCount variable
 // as well as the first byte of the string itself
 }
 break;
 }
 USBTasks();
}

Remarks

The returned string descriptor will be in the exact format as obtained from the device. The length of the entire descriptor will
be in the first byte, and the descriptor type will be in the second. The string itself is represented in UNICODE. Refer to the
USB 2.0 Specification for more information about the format of string descriptors.

Preconditions

None

Parameters

Parameters Description

deviceAddress Address of the device

stringNumber Index of the desired string descriptor

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

343

LangID The Language ID of the string to read (should be 0 if trying to read the
language ID list

*stringDescriptor Pointer to where to store the string.

stringLength Maximum length of the returned string.

clientDriverID Client driver to return the completion event to.

Return Values

Return Values Description

USB_SUCCESS The request was started successfully.

USB_UNKNOWN_DEVICE Device not found

USB_INVALID_STATE We must be in a normal running state.

USB_ENDPOINT_BUSY The endpoint is currently processing a request.

Function

BYTE USBHostGetStringDescriptor (BYTE deviceAddress, BYTE stringNumber,

BYTE LangID, BYTE *stringDescriptor, BYTE stringLength,

BYTE clientDriverID)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

344

7.3.1.1.8 USBHostInit Function
This function initializes the variables of the USB host stack.

File

usb_host.h

C

BOOL USBHostInit(
 unsigned long flags
);

Description

This function initializes the variables of the USB host stack. It does not initialize the hardware. The peripheral itself is
initialized in one of the state machine states. Therefore, USBHostTasks() should be called soon after this function.

Remarks

If the endpoint list is empty, an entry is created in the endpoint list for EP0. If the list is not empty, free all allocated memory
other than the EP0 node. This allows the routine to be called multiple times by the application.

Preconditions

None

Parameters

Parameters Description

flags reserved

Return Values

Return Values Description

TRUE Initialization successful

FALSE Could not allocate memory.

Function

BOOL USBHostInit(unsigned long flags)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

345

7.3.1.1.9 USBHostRead Function
This function initiates a read from the attached device.

File

usb_host.h

C

BYTE USBHostRead(
 BYTE deviceAddress,
 BYTE endpoint,
 BYTE * data,
 DWORD size
);

Description

This function initiates a read from the attached device.

If the endpoint is isochronous, special conditions apply. The pData and size parameters have slightly different meanings,
since multiple buffers are required. Once started, an isochronous transfer will continue with no upper layer intervention until
USBHostTerminateTransfer(page 354)() is called. The ISOCHRONOUS_DATA_BUFFERS structure should not be
manipulated until the transfer is terminated.

To clarify parameter usage and to simplify casting, use the macro USBHostReadIsochronous() when reading from an
isochronous endpoint.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE endpoint Endpoint number

BYTE *pData Pointer to where to store the data. If the endpoint is isochronous, this points to
an ISOCHRONOUS_DATA_BUFFERS structure, with multiple data buffer
pointers.

DWORD size Number of data bytes to read. If the endpoint is isochronous, this is the number
of data buffer pointers pointed to by pData.

Return Values

Return Values Description

USB_SUCCESS Read started successfully.

USB_UNKNOWN_DEVICE Device with the specified address not found.

USB_INVALID_STATE We are not in a normal running state.

USB_ENDPOINT_ILLEGAL_TYPE Must use USBHostControlRead to read from a control endpoint.

USB_ENDPOINT_ILLEGAL_DIRECTION Must read from an IN endpoint.

USB_ENDPOINT_STALLED Endpoint is stalled. Must be cleared by the application.

USB_ENDPOINT_ERROR Endpoint has too many errors. Must be cleared by the application.

USB_ENDPOINT_BUSY A Read is already in progress.

USB_ENDPOINT_NOT_FOUND Invalid endpoint.

Function

BYTE USBHostRead(BYTE deviceAddress, BYTE endpoint, BYTE *pData,

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

346

DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

347

7.3.1.1.10 USBHostResetDevice Function
This function resets an attached device.

File

usb_host.h

C

BYTE USBHostResetDevice(
 BYTE deviceAddress
);

Description

This function places the device back in the RESET state, to issue RESET signaling. It can be called only if the state machine
is not in the DETACHED state.

Remarks

In order to do a full clean-up, the state is set back to STATE_DETACHED rather than a reset state. The ATTACH interrupt
will automatically be triggered when the module is re-enabled, and the proper reset will be performed.

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

Return Values

Return Values Description

USB_SUCCESS Success

USB_UNKNOWN_DEVICE Device not found

USB_ILLEGAL_REQUEST Device cannot RESUME unless it is suspended

Function

BYTE USBHostResetDevice(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

348

7.3.1.1.11 USBHostResumeDevice Function
This function issues a RESUME to the attached device.

File

usb_host.h

C

BYTE USBHostResumeDevice(
 BYTE deviceAddress
);

Description

This function issues a RESUME to the attached device. It can called only if the state machine is in the suspend state.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

Return Values

Return Values Description

USB_SUCCESS Success

USB_UNKNOWN_DEVICE Device not found

USB_ILLEGAL_REQUEST Device cannot RESUME unless it is suspended

Function

BYTE USBHostResumeDevice(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

349

7.3.1.1.12 USBHostSetDeviceConfiguration Function
This function changes the device's configuration.

File

usb_host.h

C

BYTE USBHostSetDeviceConfiguration(
 BYTE deviceAddress,
 BYTE configuration
);

Description

This function is used by the application to change the device's Configuration. This function must be used instead of
USBHostIssueDeviceRequest(), because the endpoint definitions may change.

To see when the reconfiguration is complete, use the USBHostDeviceStatus(page 340)() function. If configuration is still in
progress, this function will return USB_DEVICE_ENUMERATING.

Remarks

If an invalid configuration is specified, this function cannot return an error. Instead, the event
USB_UNSUPPORTED_DEVICE will the sent to the application layer and the device will be placed in a holding state with a
USB_HOLDING_UNSUPPORTED_DEVICE error returned by USBHostDeviceStatus(page 340)().

Preconditions

The host state machine should be in the running state, and no reads or writes should be in progress.

Example

rc = USBHostSetDeviceConfiguration(attachedDevice, configuration);
if (rc)
{
 // Error - cannot set configuration.
}
else
{
 while (USBHostDeviceStatus(attachedDevice) == USB_DEVICE_ENUMERATING)
 {
 USBHostTasks();
 }
}
if (USBHostDeviceStatus(attachedDevice) != USB_DEVICE_ATTACHED)
{
 // Error - cannot set configuration.
}

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE configuration Index of the new configuration

Return Values

Return Values Description

USB_SUCCESS Process of changing the configuration was started successfully.

USB_UNKNOWN_DEVICE Device not found

USB_INVALID_STATE This function cannot be called during enumeration or while performing a device
request.

USB_BUSY No IN or OUT transfers may be in progress.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

350

Function

BYTE USBHostSetDeviceConfiguration(BYTE deviceAddress, BYTE configuration)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

351

7.3.1.1.13 USBHostSetNAKTimeout Function
This function specifies NAK timeout capability.

File

usb_host.h

C

BYTE USBHostSetNAKTimeout(
 BYTE deviceAddress,
 BYTE endpoint,
 WORD flags,
 WORD timeoutCount
);

Description

This function is used to set whether or not an endpoint on a device should time out a transaction based on the number of
NAKs received, and if so, how many NAKs are allowed before the timeout.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE endpoint Endpoint number to configure

WORD flags Bit 0:

• 0 = disable NAK timeout

• 1 = enable NAK timeout

WORD timeoutCount Number of NAKs allowed before a timeout

Return Values

Return Values Description

USB_SUCCESS NAK timeout was configured successfully.

USB_UNKNOWN_DEVICE Device not found.

USB_ENDPOINT_NOT_FOUND The specified endpoint was not found.

Function

BYTE USBHostSetNAKTimeout(BYTE deviceAddress, BYTE endpoint, WORD flags,

WORD timeoutCount)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

352

7.3.1.1.14 USBHostSuspendDevice Function
This function suspends a device.

File

usb_host.h

C

BYTE USBHostSuspendDevice(
 BYTE deviceAddress
);

Description

This function put a device into an IDLE state. It can only be called while the state machine is in normal running mode. After
3ms, the attached device should go into SUSPEND mode.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device to suspend

Return Values

Return Values Description

USB_SUCCESS Success

USB_UNKNOWN_DEVICE Device not found

USB_ILLEGAL_REQUEST Cannot suspend unless device is in normal run mode

Function

BYTE USBHostSuspendDevice(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

353

7.3.1.1.15 USBHostTerminateTransfer Function
This function terminates the current transfer for the given endpoint.

File

usb_host.h

C

void USBHostTerminateTransfer(
 BYTE deviceAddress,
 BYTE endpoint
);

Returns

None

Description

This function terminates the current transfer for the given endpoint. It can be used to terminate reads or writes that the
device is not responding to. It is also the only way to terminate an isochronous transfer.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE endpoint Endpoint number

Function

void USBHostTerminateTransfer(BYTE deviceAddress, BYTE endpoint)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

354

7.3.1.1.16 USBHostTransferIsComplete Function
This function initiates whether or not the last endpoint transaction is complete.

File

usb_host.h

C

BOOL USBHostTransferIsComplete(
 BYTE deviceAddress,
 BYTE endpoint,
 BYTE * errorCode,
 DWORD * byteCount
);

Description

This function initiates whether or not the last endpoint transaction is complete. If it is complete, an error code and the number
of bytes transferred are returned.

For isochronous transfers, byteCount is not valid. Instead, use the returned byte counts for each EVENT_TRANSFER event
that was generated during the transfer.

Remarks

Possible values for errorCode are:

• USB_SUCCESS - Transfer successful

• USB_UNKNOWN_DEVICE - Device not attached

• USB_ENDPOINT_STALLED - Endpoint STALL'd

• USB_ENDPOINT_ERROR_ILLEGAL_PID - Illegal PID returned

• USB_ENDPOINT_ERROR_BIT_STUFF

• USB_ENDPOINT_ERROR_DMA

• USB_ENDPOINT_ERROR_TIMEOUT

• USB_ENDPOINT_ERROR_DATA_FIELD

• USB_ENDPOINT_ERROR_CRC16

• USB_ENDPOINT_ERROR_END_OF_FRAME

• USB_ENDPOINT_ERROR_PID_CHECK

• USB_ENDPOINT_ERROR - Other error

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE endpoint Endpoint number

BYTE *errorCode Error code indicating the status of the transfer. Only valid if the transfer is
complete.

DWORD *byteCount The number of bytes sent or received. Invalid for isochronous transfers.

Return Values

Return Values Description

TRUE Transfer is complete.

FALSE Transfer is not complete.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

355

Function

BOOL USBHostTransferIsComplete(BYTE deviceAddress, BYTE endpoint,

BYTE *errorCode, DWORD *byteCount)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

356

7.3.1.1.17 USBHostVbusEvent Function
This function handles Vbus events that are detected by the application.

File

usb_host.h

C

BYTE USBHostVbusEvent(
 USB_EVENT vbusEvent,
 BYTE hubAddress,
 BYTE portNumber
);

Description

This function handles Vbus events that are detected by the application. Since Vbus management is application dependent,
the application is responsible for monitoring Vbus and detecting overcurrent conditions and removal of the overcurrent
condition. If the application detects an overcurrent condition, it should call this function with the event
EVENT_VBUS_OVERCURRENT with the address of the hub and port number that has the condition. When a port returns to
normal operation, the application should call this function with the event EVENT_VBUS_POWER_AVAILABLE so the stack
knows that it can allow devices to attach to that port.

Remarks

None

Preconditions

None

Parameters

Parameters Description

USB_EVENT vbusEvent Vbus event that occured. Valid events:

• EVENT_VBUS_OVERCURRENT

• EVENT_VBUS_POWER_AVAILABLE

BYTE hubAddress Address of the hub device (USB_ROOT_HUB for the root hub)

BYTE portNumber Number of the physical port on the hub (0 - based)

Return Values

Return Values Description

USB_SUCCESS Event handled

USB_ILLEGAL_REQUEST Invalid event, hub, or port

Function

BYTE USBHostVbusEvent(USB_EVENT vbusEvent, BYTE hubAddress,

BYTE portNumber)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

357

7.3.1.1.18 USBHostWrite Function
This function initiates a write to the attached device.

File

usb_host.h

C

BYTE USBHostWrite(
 BYTE deviceAddress,
 BYTE endpoint,
 BYTE * data,
 DWORD size
);

Description

This function initiates a write to the attached device. The data buffer pointed to by *data must remain valid during the entire
time that the write is taking place; the data is not buffered by the stack.

If the endpoint is isochronous, special conditions apply. The pData and size parameters have slightly different meanings,
since multiple buffers are required. Once started, an isochronous transfer will continue with no upper layer intervention until
USBHostTerminateTransfer(page 354)() is called. The ISOCHRONOUS_DATA_BUFFERS structure should not be
manipulated until the transfer is terminated.

To clarify parameter usage and to simplify casting, use the macro USBHostWriteIsochronous() when writing to an
isochronous endpoint.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE endpoint Endpoint number

BYTE *data Pointer to where the data is stored. If the endpoint is isochronous, this points to
an ISOCHRONOUS_DATA_BUFFERS structure, with multiple data buffer
pointers.

DWORD size Number of data bytes to send. If the endpoint is isochronous, this is the number
of data buffer pointers pointed to by pData.

Return Values

Return Values Description

USB_SUCCESS Write started successfully.

USB_UNKNOWN_DEVICE Device with the specified address not found.

USB_INVALID_STATE We are not in a normal running state.

USB_ENDPOINT_ILLEGAL_TYPE Must use USBHostControlWrite to write to a control endpoint.

USB_ENDPOINT_ILLEGAL_DIRECTION Must write to an OUT endpoint.

USB_ENDPOINT_STALLED Endpoint is stalled. Must be cleared by the application.

USB_ENDPOINT_ERROR Endpoint has too many errors. Must be cleared by the application.

USB_ENDPOINT_BUSY A Write is already in progress.

USB_ENDPOINT_NOT_FOUND Invalid endpoint.

Function

BYTE USBHostWrite(BYTE deviceAddress, BYTE endpoint, BYTE *data,

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

358

DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

359

7.3.1.2 Data Types and Constants
Macros

Name Description

USB_NUM_BULK_NAKS(page 368) Define how many NAK's are allowed during a bulk transfer before
erroring.

USB_NUM_COMMAND_TRIES(
page 369)

During enumeration, define how many times each command will be
tried before giving up and resetting the device.

USB_NUM_CONTROL_NAKS(page
370)

Define how many NAK's are allowed during a control transfer before
erroring.

USB_NUM_ENUMERATION_TRIES(
page 371)

Define how many times the host will try to enumerate the device
before giving up and setting the state to DETACHED.

USB_NUM_INTERRUPT_NAKS(
page 372)

Define how many NAK's are allowed during an interrupt OUT transfer
before erroring. Interrupt IN transfers that are NAK'd are terminated
without error.

TPL_SET_CONFIG(page 373) Bitmask for setting the configuration.

TPL_CLASS_DRV(page 374) Bitmask for class driver support.

TPL_ALLOW_HNP(page 375) Bitmask for Host Negotiation Protocol.

Structures

Name Description

_CLIENT_DRIVER_TABLE(
page 362)

Client Driver Table Structure
This structure is used to define an entry in the client-driver table. Each entry
provides the information that the Host layer needs to manage a particular USB
client driver, including pointers to the interface routines that the Client Driver
must implement.

_HOST_TRANSFER_DATA(
page 363)

Host Transfer Information
This structure is used when the event handler is used to notify the upper layer
of transfer completion.

_USB_TPL(page 365) Targeted Peripheral List
This structure is used to define the devices that this host can support. If the
host is a USB Embedded Host or Dual Role Device that does not support
OTG, the TPL may contain both specific devices and generic classes. If the
host supports OTG, then the TPL may contain ONLY specific devices.

CLIENT_DRIVER_TABLE(
page 362)

Client Driver Table Structure
This structure is used to define an entry in the client-driver table. Each entry
provides the information that the Host layer needs to manage a particular USB
client driver, including pointers to the interface routines that the Client Driver
must implement.

HOST_TRANSFER_DATA(
page 363)

Host Transfer Information
This structure is used when the event handler is used to notify the upper layer
of transfer completion.

USB_TPL(page 365) Targeted Peripheral List
This structure is used to define the devices that this host can support. If the
host is a USB Embedded Host or Dual Role Device that does not support
OTG, the TPL may contain both specific devices and generic classes. If the
host supports OTG, then the TPL may contain ONLY specific devices.

Types

Name Description

USB_CLIENT_INIT(page 366) This is a typedef to use when defining a client driver initialization handler.

USB_CLIENT_EVENT_HANDLER(
page 367)

This is a typedef to use when defining a client driver event handler.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

360

Unions

Name Description

TRANSFER_ATTRIBUTES(
page 364)

This is type TRANSFER_ATTRIBUTES.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

361

7.3.1.2.1 CLIENT_DRIVER_TABLE Structure
File

usb_host.h

C

typedef struct _CLIENT_DRIVER_TABLE {
 USB_CLIENT_INIT Initialize;
 USB_CLIENT_EVENT_HANDLER EventHandler;
 USB_CLIENT_EVENT_HANDLER DataEventHandler;
 DWORD flags;
} CLIENT_DRIVER_TABLE;

Members

Members Description

USB_CLIENT_INIT Initialize; Initialization routine

USB_CLIENT_EVENT_HANDLER
EventHandler;

Event routine

USB_CLIENT_EVENT_HANDLER
DataEventHandler;

Data Event routine

DWORD flags; Initialization flags

Description

Client Driver Table Structure

This structure is used to define an entry in the client-driver table. Each entry provides the information that the Host layer
needs to manage a particular USB client driver, including pointers to the interface routines that the Client Driver must
implement.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

362

7.3.1.2.2 HOST_TRANSFER_DATA Structure
File

usb_host.h

C

typedef struct _HOST_TRANSFER_DATA {
 DWORD dataCount;
 BYTE * pUserData;
 BYTE bEndpointAddress;
 BYTE bErrorCode;
 TRANSFER_ATTRIBUTES bmAttributes;
 BYTE clientDriver;
} HOST_TRANSFER_DATA;

Members

Members Description

DWORD dataCount; Count of bytes transferred.

BYTE * pUserData; Pointer to transfer data.

BYTE bEndpointAddress; Transfer endpoint.

BYTE bErrorCode; Transfer error code.

TRANSFER_ATTRIBUTES bmAttributes; INTERNAL USE ONLY - Endpoint transfer attributes.

BYTE clientDriver; INTERNAL USE ONLY - Client driver index for sending the event.

Description

Host Transfer Information

This structure is used when the event handler is used to notify the upper layer of transfer completion.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

363

7.3.1.2.3 TRANSFER_ATTRIBUTES Union
File

usb_host.h

C

typedef union {
 BYTE val;
 struct {
 BYTE bfTransferType : 2;
 BYTE bfSynchronizationType : 2;
 BYTE bfUsageType : 2;
 }
} TRANSFER_ATTRIBUTES;

Members

Members Description

BYTE bfTransferType : 2; See USB_TRANSFER_TYPE_* for values.

BYTE bfSynchronizationType : 2; For isochronous endpoints only.

BYTE bfUsageType : 2; For isochronous endpoints only.

Description

This is type TRANSFER_ATTRIBUTES.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

364

7.3.1.2.4 USB_TPL Structure
File

usb_host.h

C

typedef struct _USB_TPL {
 union {
 DWORD val;
 struct {
 WORD idVendor;
 WORD idProduct;
 }
 struct {
 BYTE bClass;
 BYTE bSubClass;
 BYTE bProtocol;
 }
 } device;
 BYTE bConfiguration;
 BYTE ClientDriver;
 union {
 BYTE val;
 struct {
 BYTE bfAllowHNP : 1;
 BYTE bfIsClassDriver : 1;
 BYTE bfSetConfiguration : 1;
 }
 } flags;
} USB_TPL;

Members

Members Description

WORD idVendor; Vendor ID

WORD idProduct; Product ID

BYTE bClass; Class ID

BYTE bSubClass; SubClass ID

BYTE bProtocol; Protocol ID

BYTE bConfiguration; Initial device configuration

BYTE ClientDriver; Index of client driver in the Client Driver table

BYTE bfAllowHNP : 1; Is HNP allowed?

BYTE bfIsClassDriver : 1; Client driver is a class-level driver

BYTE bfSetConfiguration : 1; bConfiguration is valid

Description

Targeted Peripheral List

This structure is used to define the devices that this host can support. If the host is a USB Embedded Host or Dual Role
Device that does not support OTG, the TPL may contain both specific devices and generic classes. If the host supports
OTG, then the TPL may contain ONLY specific devices.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

365

7.3.1.2.5 USB_CLIENT_INIT Type
This is a typedef to use when defining a client driver initialization handler.

File

usb_host.h

C

typedef BOOL (* USB_CLIENT_INIT)(BYTE address, DWORD flags, BYTE clientDriverID);

Description

This routine is a call out from the host layer to a USB client driver. It is called when the system has been configured as a
USB host and a new device has been attached to the bus. Its purpose is to initialize and activate the client driver.

Remarks

There may be multiple client drivers. If so, the USB host layer will call the initialize routine for each of the clients that are in
the selected configuration.

Preconditions

The device has been configured.

Parameters

Parameters Description

BYTE address Device's address on the bus

DWORD flags Initialization flags

BYTE clientDriverID ID to send when issuing a Device Request via USBHostIssueDeviceRequest()
or USBHostSetDeviceConfiguration(page 350)().

Return Values

Return Values Description

TRUE Successful

FALSE Not successful

Function

BOOL (*USB_CLIENT_INIT) (BYTE address, DWORD flags, BYTE clientDriverID)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

366

7.3.1.2.6 USB_CLIENT_EVENT_HANDLER Type
This is a typedef to use when defining a client driver event handler.

File

usb_host.h

C

typedef BOOL (* USB_CLIENT_EVENT_HANDLER)(BYTE address, USB_EVENT event, void *data, DWORD
size);

Description

This data type defines a pointer to a call-back function that must be implemented by a client driver if it needs to be aware of
events on the USB. When an event occurs, the Host layer will call the client driver via this pointer to handle the event.
Events are identified by the "event" parameter and may have associated data. If the client driver was able to handle the
event, it should return TRUE. If not (or if additional processing is required), it should return FALSE.

Remarks

The application may also implement an event handling routine if it requires knowledge of events. To do so, it must implement
a routine that matches this function signature and define the USB_HOST_APP_EVENT_HANDLER(page 337) macro as
the name of that function.

Preconditions

The client must have been initialized.

Parameters

Parameters Description

BYTE address Address of device where event occurred

USB_EVENT event Identifies the event that occured

void *data Pointer to event-specific data

DWORD size Size of the event-specific data

Return Values

Return Values Description

TRUE The event was handled

FALSE The event was not handled

Function

BOOL (*USB_CLIENT_EVENT_HANDLER) (BYTE address, USB_EVENT event,

void *data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

367

7.3.1.2.7 USB_NUM_BULK_NAKS Macro
File

usb_host.h

C

#define USB_NUM_BULK_NAKS 10000 // Define how many NAK's are allowed

Description

Define how many NAK's are allowed during a bulk transfer before erroring.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

368

7.3.1.2.8 USB_NUM_COMMAND_TRIES Macro
File

usb_host.h

C

#define USB_NUM_COMMAND_TRIES 3 // During enumeration, define how many

Description

During enumeration, define how many times each command will be tried before giving up and resetting the device.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

369

7.3.1.2.9 USB_NUM_CONTROL_NAKS Macro
File

usb_host.h

C

#define USB_NUM_CONTROL_NAKS 20 // Define how many NAK's are allowed

Description

Define how many NAK's are allowed during a control transfer before erroring.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

370

7.3.1.2.10 USB_NUM_ENUMERATION_TRIES Macro
File

usb_host.h

C

#define USB_NUM_ENUMERATION_TRIES 3 // Define how many times the host will try

Description

Define how many times the host will try to enumerate the device before giving up and setting the state to DETACHED.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

371

7.3.1.2.11 USB_NUM_INTERRUPT_NAKS Macro
File

usb_host.h

C

#define USB_NUM_INTERRUPT_NAKS 3 // Define how many NAK's are allowed

Description

Define how many NAK's are allowed during an interrupt OUT transfer before erroring. Interrupt IN transfers that are NAK'd
are terminated without error.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

372

7.3.1.2.12 TPL_SET_CONFIG Macro
File

usb_host.h

C

#define TPL_SET_CONFIG 0x04 // Bitmask for setting the configuration.

Description

Bitmask for setting the configuration.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

373

7.3.1.2.13 TPL_CLASS_DRV Macro
File

usb_host.h

C

#define TPL_CLASS_DRV 0x02 // Bitmask for class driver support.

Description

Bitmask for class driver support.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

374

7.3.1.2.14 TPL_ALLOW_HNP Macro
File

usb_host.h

C

#define TPL_ALLOW_HNP 0x01 // Bitmask for Host Negotiation Protocol.

Description

Bitmask for Host Negotiation Protocol.

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

375

7.3.1.3 Macros
Macros

Name Description

INIT_CL_SC_P(page 377) Set class support in the TPL (non-OTG only).

INIT_VID_PID(page 378) Set VID/PID support in the TPL.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

376

7.3.1.3.1 INIT_CL_SC_P Macro
File

usb_host.h

C

#define INIT_CL_SC_P(c,s,p) {((c)|((s)<<8)|((p)<<16))} // Set class support in the TPL
(non-OTG only).

Description

Set class support in the TPL (non-OTG only).

7.3 Embedded Host API MCHPFSUSB Library Help Embedded Host Stack

377

7.3.1.3.2 INIT_VID_PID Macro
File

usb_host.h

C

#define INIT_VID_PID(v,p) {((v)|((p)<<16))} // Set VID/PID support in the TPL.

Description

Set VID/PID support in the TPL.

7.3.2 Audio Client Driver

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

378

7.3.2.1 Interface Routines
Functions

Name Description

USBHostAudioV1DataEventHandler(page
380)

This function is the data event handler for this client driver.

USBHostAudioV1EventHandler(page 381) This function is the event handler for this client driver.

USBHostAudioV1Initialize(page 382) This function is the initialization routine for this client driver.

USBHostAudioV1ReceiveAudioData(page
383)

This function starts the reception of streaming, isochronous
audio data.

USBHostAudioV1SetInterfaceFullBandwidth(
page 384)

This function sets the full bandwidth interface.

USBHostAudioV1SetInterfaceZeroBandwidth(
page 385)

This function sets the zero bandwidth interface.

USBHostAudioV1SetSamplingFrequency(
page 386)

This function sets the sampling frequency for the device.

USBHostAudioV1SupportedFrequencies(
page 388)

This function returns a pointer to the list of supported
frequencies.

USBHostAudioV1TerminateTransfer(page
390)

This function terminates an audio stream.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

379

7.3.2.1.1 USBHostAudioV1DataEventHandler Function
This function is the data event handler for this client driver.

File

usb_host_audio_v1.h

C

BOOL USBHostAudioV1DataEventHandler(
 BYTE address,
 USB_EVENT event,
 void * data,
 DWORD size
);

Description

This function is the data event handler for this client driver. It is called by the host layer when isochronous data events occur.

Remarks

The client driver does not need to process the data. Just pass the event up to the application layer.

Preconditions

The device has been initialized.

Parameters

Parameters Description

BYTE address Address of the device

USB_EVENT event Event that has occurred

void *data Pointer to data pertinent to the event

WORD size Size of the data

Return Values

Return Values Description

TRUE Event was handled

FALSE Event was not handled

Function

BOOL USBHostAudioV1DataEventHandler(BYTE address, USB_EVENT event,

void *data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

380

7.3.2.1.2 USBHostAudioV1EventHandler Function
This function is the event handler for this client driver.

File

usb_host_audio_v1.h

C

BOOL USBHostAudioV1EventHandler(
 BYTE address,
 USB_EVENT event,
 void * data,
 DWORD size
);

Description

This function is the event handler for this client driver. It is called by the host layer when various events occur.

Remarks

None

Preconditions

The device has been initialized.

Parameters

Parameters Description

BYTE address Address of the device

USB_EVENT event Event that has occurred

void *data Pointer to data pertinent to the event

WORD size Size of the data

Return Values

Return Values Description

TRUE Event was handled

FALSE Event was not handled

Function

BOOL USBHostAudioV1EventHandler(BYTE address, USB_EVENT event,

void *data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

381

7.3.2.1.3 USBHostAudioV1Initialize Function
This function is the initialization routine for this client driver.

File

usb_host_audio_v1.h

C

BOOL USBHostAudioV1Initialize(
 BYTE address,
 DWORD flags,
 BYTE clientDriverID
);

Description

This function is the initialization routine for this client driver. It is called by the host layer when the USB device is being
enumerated.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE address Address of the new device

DWORD flags Initialization flags

BYTE clientDriverID ID to send when issuing a Device Request via USBHostIssueDeviceRequest()
or USBHostSetDeviceConfiguration(page 350)().

Return Values

Return Values Description

TRUE We can support the device.

FALSE We cannot support the device.

Function

BOOL USBHostAudioV1Initialize(BYTE address, DWORD flags, BYTE clientDriverID)

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

382

7.3.2.1.4 USBHostAudioV1ReceiveAudioData Function
This function starts the reception of streaming, isochronous audio data.

File

usb_host_audio_v1.h

C

BYTE USBHostAudioV1ReceiveAudioData(
 BYTE deviceAddress,
 ISOCHRONOUS_DATA * pIsochronousData
);

Description

This function starts the reception of streaming, isochronous audio data.

Remarks

Some devices require other operations between setting the full bandwidth interface and starting the streaming audio data.
Therefore, these two functions are broken out separately.

Preconditions

USBHostAudioV1SetInterfaceFullBandwidth(page 384)() must be called to set the device to its full bandwidth interface.

Parameters

Parameters Description

BYTE deviceAddress Device address

ISOCHRONOUS_DATA
*pIsochronousData

Pointer to an ISOCHRONOUS_DATA structure, containing information for the
application and the host driver for the isochronous transfer.

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_AUDIO_DEVICE_NOT_FOUND No device with specified address

USB_AUDIO_DEVICE_BUSY Device is already receiving audio data or setting an interface.

Others See USBHostIssueDeviceRequest() errors.

Function

BYTE USBHostAudioV1ReceiveAudioData(BYTE deviceAddress,

ISOCHRONOUS_DATA *pIsochronousData)

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

383

7.3.2.1.5 USBHostAudioV1SetInterfaceFullBandwidth Function
This function sets the full bandwidth interface.

File

usb_host_audio_v1.h

C

BYTE USBHostAudioV1SetInterfaceFullBandwidth(
 BYTE deviceAddress
);

Description

This function sets the full bandwidth interface. This function should be called before calling
USBHostAudioV1ReceiveAudioData(page 383)() to receive the audio stream. Upon completion, the event
EVENT_AUDIO_INTERFACE_SET(page 395) will be generated.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_AUDIO_DEVICE_NOT_FOUND No device with specified address

USB_AUDIO_DEVICE_BUSY Device is already receiving audio data or setting an interface.

Others See USBHostIssueDeviceRequest() errors.

Function

BYTE USBHostAudioV1SetInterfaceFullBandwidth(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

384

7.3.2.1.6 USBHostAudioV1SetInterfaceZeroBandwidth Function
This function sets the zero bandwidth interface.

File

usb_host_audio_v1.h

C

BYTE USBHostAudioV1SetInterfaceZeroBandwidth(
 BYTE deviceAddress
);

Description

This function sets the full bandwidth interface. This function can be called after calling
USBHostAudioV1TerminateTransfer(page 390)() to terminate the audio stream. Upon completion, the event
EVENT_AUDIO_INTERFACE_SET(page 395) will be generated.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_AUDIO_DEVICE_NOT_FOUND No device with the specified address.

Others See USBHostIssueDeviceRequest()

Function

BYTE USBHostAudioV1SetInterfaceZeroBandwidth(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

385

7.3.2.1.7 USBHostAudioV1SetSamplingFrequency Function
This function sets the sampling frequency for the device.

File

usb_host_audio_v1.h

C

BYTE USBHostAudioV1SetSamplingFrequency(
 BYTE deviceAddress,
 BYTE * frequency
);

Description

This function sets the sampling frequency for the device. If the exact frequency is not supported by the device, the device will
round it to the closest supported value.

IMPORTANT: If the request is initiated successfully, the frequency value must remain valid until the
EVENT_AUDIO_FREQUENCY_SET(page 394) event is received. Therefore, this value cannot be a local (stack) variable.
The application can either use a global variable for this value, or it can use the function
USBHostAudioV1SupportedFrequencies(page 388)() to obtain a pointer to the number and list of supported frequencies,
and pass a pointer to the desired frequency in this list.

Remarks

If a global variable is used to old the frequency, it can be declared as a DWORD. Since PIC Microcontrollers are little endian
machines, a pointer to the DWORD can be used as the frequency parameter:

DWORD desiredFrequency = 44100; // Hertz

rc = USBHostAudioV1SetSamplingFrequency(deviceAddress, (BYTE *)(&desiredFrequency));

Preconditions

None

Example

BYTE numFrequencies;
BYTE *ptr;

ptr = USBHostAudioV1SupportedFrequencies(deviceAddress);
if (ptr)
{
 numFrequencies = *ptr;
 ptr++;
 if (numFrequencies == 0)
 {
 // Continuous sampling, minimum and maximum are specified.
 DWORD minFrequency;
 DWORD maxFrequency;

 minFrequency = *ptr + (*(ptr+1) << 8) + (*(ptr+2) << 16);
 ptr += 3;
 maxFrequency = *ptr + (*(ptr+1) << 8) + (*(ptr+2) << 16);
 if ((minFrequency <= desiredFrequency) && (desiredFrequency <= maxFrequency))
 {
 rc = USBHostAudioV1SetSamplingFrequency(deviceAddress, &desiredFrequency);
 }
 else
 {
 // Desired frequency out of range
 }
 }
 else
 {
 // Discrete sampling frequencies are specified.
 DWORD frequency;

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

386

 while (numFrequencies)
 {
 frequency = *ptr + (*(ptr+1) << 8) + (*(ptr+2) << 16);
 if (frequency == desiredFrequency)
 {
 rc = USBHostAudioV1SetSamplingFrequency(deviceAddress, ptr);
 continue;
 }
 numFrequencies--;
 ptr += 3;
 }
 if (numFrequencies == 0)
 {
 // Desired frequency not found.
 }
 }
}

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE *frequency Pointer to three bytes that specify the desired

sampling frequency. NOTE If the request is initiated successfully, this location must remain valid until the
EVENT_AUDIO_FREQUENCY_SET(page 394) event is received.

Return Values

Return Values Description

USB_SUCCESS Request started successfully

Others See USBHostIssueDeviceRequest() errors.

Function

BYTE USBHostAudioV1SetSamplingFrequency(BYTE deviceAddress, BYTE *frequency)

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

387

7.3.2.1.8 USBHostAudioV1SupportedFrequencies Function
This function returns a pointer to the list of supported frequencies.

File

usb_host_audio_v1.h

C

BYTE * USBHostAudioV1SupportedFrequencies(
 BYTE deviceAddress
);

Returns

This function returns a BYTE pointer to the list of supported frequencies. The first byte of this list is the number of supported
frequencies. Each supported frequency is then listed, with three bytes for each frequency.

Description

This function returns a pointer to the list of supported frequencies. It is intended to be used with the function
USBHostAudioV1SetSamplingFrequency(page 386)() to set the device's sampling frequency.

Remarks

None

Preconditions

None

Example

BYTE numFrequencies;
BYTE *ptr;

ptr = USBHostAudioV1SupportedFrequencies(deviceAddress);
if (ptr)
{
 numFrequencies = *ptr;
 ptr++;
 if (numFrequencies == 0)
 {
 // Continuous sampling, minimum and maximum are specified.
 DWORD minFrequency;
 DWORD maxFrequency;

 minFrequency = *ptr + (*(ptr+1) << 8) + (*(ptr+2) << 16);
 ptr += 3;
 maxFrequency = *ptr + (*(ptr+1) << 8) + (*(ptr+2) << 16);
 if ((minFrequency <= desiredFrequency) && (desiredFrequency <= maxFrequency))
 {
 rc = USBHostAudioV1SetSamplingFrequency(deviceAddress, &desiredFrequency);
 }
 else
 {
 // Desired frequency out of range
 }
 }
 else
 {
 // Discrete sampling frequencies are specified.
 DWORD frequency;

 while (numFrequencies)
 {
 frequency = *ptr + (*(ptr+1) << 8) + (*(ptr+2) << 16);
 if (frequency == desiredFrequency)
 {
 rc = USBHostAudioV1SetSamplingFrequency(deviceAddress, ptr);
 continue;

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

388

 }
 numFrequencies--;
 ptr += 3;
 }
 if (numFrequencies == 0)
 {
 // Desired frequency not found.
 }
 }
}

Parameters

Parameters Description

BYTE deviceAddress Device address

Function

BYTE * USBHostAudioV1SupportedFrequencies(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

389

7.3.2.1.9 USBHostAudioV1TerminateTransfer Function
This function terminates an audio stream.

File

usb_host_audio_v1.h

C

void USBHostAudioV1TerminateTransfer(
 BYTE deviceAddress
);

Returns

None

Description

This function terminates an audio stream. It does not change the device's selected interface. The application may wish to
call USBHostAudioV1SetInterfaceZeroBandwidth(page 385)() after this function to set the device to the zero bandwidth
interface.

Between terminating one audio stream and starting another, the application should call USBHostIsochronousBuffersReset()
to reset the data buffers. This is done from the application layer rather than from this function, so the application can process
all received audio data.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

Function

void USBHostAudioV1TerminateTransfer(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

390

7.3.2.2 Data Types and Constants
Macros

Name Description

EVENT_AUDIO_ATTACH(page 392) An audio device has attached. The returned data pointer points to a
USB_AUDIO_V1_DEVICE_ID structure.

EVENT_AUDIO_DETACH(page 393) An audio device has detached. The returned data pointer points to
a byte with the previous address of the detached device.

EVENT_AUDIO_FREQUENCY_SET(
page 394)

This event is returned after the sampling frequency is set via
USBHostAudioV1SetSamplingFrequency(page 386)(). The
returned data pointer points to a HOST_TRANSFER_DATA(page
363) structure, with the error code for this request.

EVENT_AUDIO_INTERFACE_SET(
page 395)

This event is returned after the full or zero bandwidth interface has
been set. The returned data pointer is NULL, but the size is the
error code from the transfer.

EVENT_AUDIO_NONE(page 396) No event occured (NULL event).

EVENT_AUDIO_OFFSET(page 397) If the application has not defined an offset for audio events, set it to
0.

EVENT_AUDIO_STREAM_RECEIVED(
page 398)

An audio stream data packet has been received. The returned data
pointer points to a HOST_TRANSFER_DATA(page 363)
structure, with information about the most recent transfer. One
event will be returned for each transfer, so the application will know
how much data was actually received in each transfer. If there was
a bus error, both the returned data pointer and the size will be zero.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

391

7.3.2.2.1 EVENT_AUDIO_ATTACH Macro
File

usb_host_audio_v1.h

C

#define EVENT_AUDIO_ATTACH EVENT_AUDIO_BASE + EVENT_AUDIO_OFFSET + 1

Description

An audio device has attached. The returned data pointer points to a USB_AUDIO_V1_DEVICE_ID structure.

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

392

7.3.2.2.2 EVENT_AUDIO_DETACH Macro
File

usb_host_audio_v1.h

C

#define EVENT_AUDIO_DETACH EVENT_AUDIO_BASE + EVENT_AUDIO_OFFSET + 2

Description

An audio device has detached. The returned data pointer points to a byte with the previous address of the detached device.

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

393

7.3.2.2.3 EVENT_AUDIO_FREQUENCY_SET Macro
File

usb_host_audio_v1.h

C

#define EVENT_AUDIO_FREQUENCY_SET EVENT_AUDIO_BASE + EVENT_AUDIO_OFFSET + 4

Description

This event is returned after the sampling frequency is set via USBHostAudioV1SetSamplingFrequency(page 386)(). The
returned data pointer points to a HOST_TRANSFER_DATA(page 363) structure, with the error code for this request.

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

394

7.3.2.2.4 EVENT_AUDIO_INTERFACE_SET Macro
File

usb_host_audio_v1.h

C

#define EVENT_AUDIO_INTERFACE_SET EVENT_AUDIO_BASE + EVENT_AUDIO_OFFSET + 5

Description

This event is returned after the full or zero bandwidth interface has been set. The returned data pointer is NULL, but the size
is the error code from the transfer.

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

395

7.3.2.2.5 EVENT_AUDIO_NONE Macro
File

usb_host_audio_v1.h

C

#define EVENT_AUDIO_NONE EVENT_AUDIO_BASE + EVENT_AUDIO_OFFSET + 0

Description

No event occured (NULL event).

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

396

7.3.2.2.6 EVENT_AUDIO_OFFSET Macro
File

usb_host_audio_v1.h

C

#define EVENT_AUDIO_OFFSET 0

Description

If the application has not defined an offset for audio events, set it to 0.

7.3 Embedded Host API MCHPFSUSB Library Help Audio Client Driver

397

7.3.2.2.7 EVENT_AUDIO_STREAM_RECEIVED Macro
File

usb_host_audio_v1.h

C

#define EVENT_AUDIO_STREAM_RECEIVED EVENT_AUDIO_BASE + EVENT_AUDIO_OFFSET + 3

Description

An audio stream data packet has been received. The returned data pointer points to a HOST_TRANSFER_DATA(page
363) structure, with information about the most recent transfer. One event will be returned for each transfer, so the
application will know how much data was actually received in each transfer. If there was a bus error, both the returned data
pointer and the size will be zero.

7.3.3 Audio MIDI Client Driver

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

398

7.3.3.1 Interface Functions
Functions

Name Description

USBHostMIDIRead(page 403) This function will attempt to read length number of bytes from the
attached MIDI device located at handle, and will save the contents to ram
located at buffer.

USBHostMIDITransferIsComplete(
page 406)

This routine indicates whether or not the last transfer over endpointIndex
is complete.

USBHostMIDIWrite(page 407) This function will attempt to write length number of bytes from memory at
location buffer to the attached MIDI device located at handle.

Macros

Name Description

USBHostMIDIDeviceDetached(
page 400)

This interface is used to check if the device has been detached from the
bus.

USBHostMIDIEndpointDirection(
page 401)

This function retrieves the endpoint direction of the endpoint at
endpointIndex for device that's located at handle.

USBHostMIDINumberOfEndpoints(
page 402)

This function retrieves the number of endpoints for the device that's
located at handle.

USBHostMIDISizeOfEndpoint(
page 404)

This function retrieves the endpoint size of the endpoint at
endpointIndex for device that's located at handle.

USBHostMIDITransferIsBusy(
page 405)

This interface is used to check if the client driver is currently busy
transferring data over endponitIndex for the device at handle.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

399

7.3.3.1.1 USBHostMIDIDeviceDetached Macro
File

usb_host_midi.h

C

#define USBHostMIDIDeviceDetached(a) ((((a)==NULL) ? FALSE : TRUE)

Description

This interface is used to check if the device has been detached from the bus.

Remarks

None

Preconditions

None

Example

if (USBHostMIDIDeviceDetached(deviceAddress))
{
 // Handle detach
}

Parameters

Parameters Description

void* handle Pointer to a structure containing the Device Info

Return Values

Return Values Description

TRUE The device has been detached, or an invalid handle is given.

FALSE The device is attached

Function

BOOL USBHostMIDIDeviceDetached(void* handle)

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

400

7.3.3.1.2 USBHostMIDIEndpointDirection Macro
File

usb_host_midi.h

C

#define USBHostMIDIEndpointDirection(a,b) (((MIDI_DEVICE*)a)->endpoints[b].endpointAddress
& 0x80) ? IN : OUT

Returns

MIDI_ENDPOINT_DIRECTION - Returns the direction of the endpoint (IN or OUT)

Description

This function retrieves the endpoint direction of the endpoint at endpointIndex for device that's located at handle.

Remarks

None

Preconditions

The device must be connected and enumerated.

Parameters

Parameters Description

void* handle Pointer to a structure containing the Device Info

BYTE endpointIndex the index of the endpoint whose direction is requested

Function

MIDI_ENDPOINT_DIRECTION USBHostMIDIEndpointDirection(void* handle, BYTE endpointIndex)

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

401

7.3.3.1.3 USBHostMIDINumberOfEndpoints Macro
File

usb_host_midi.h

C

#define USBHostMIDINumberOfEndpoints(a) ((MIDI_DEVICE*)a)->numEndpoints

Returns

BYTE - Returns the number of endpoints for the device at handle.

Description

This function retrieves the number of endpoints for the device that's located at handle.

Remarks

None

Preconditions

The device must be connected and enumerated.

Parameters

Parameters Description

void* handle Pointer to a structure containing the Device Info

Function

BYTE USBHostMIDINumberOfEndpoints(void* handle)

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

402

7.3.3.1.4 USBHostMIDIRead Function
File

usb_host_midi.h

C

BYTE USBHostMIDIRead(
 void* handle,
 BYTE endpointIndex,
 void * buffer,
 WORD length
);

Description

This function will attempt to read length number of bytes from the attached MIDI device located at handle, and will save the
contents to ram located at buffer.

Remarks

None

Preconditions

The device must be connected and enumerated. The array at *buffer should have at least length number of bytes available.

Example

if (!USBHostMIDITransferIsBusy(deviceHandle, currentEndpoint)
{
 USBHostMIDIRead(deviceHandle, currentEndpoint, &buffer, sizeof(buffer));
}

Parameters

Parameters Description

void* handle Pointer to a structure containing the Device Info

BYTE endpointIndex the index of the endpoint whose direction is requested

void* buffer Pointer to the data buffer

WORD length Number of bytes to be read

Return Values

Return Values Description

USB_SUCCESS The Read was started successfully

(USB error code) The Read was not started. See USBHostRead(page 346)() for a list of errors.

Function

BYTE USBHostMIDIRead(void* handle, BYTE endpointIndex, void *buffer, WORD length)

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

403

7.3.3.1.5 USBHostMIDISizeOfEndpoint Macro
File

usb_host_midi.h

C

#define USBHostMIDISizeOfEndpoint(a,b) ((MIDI_DEVICE*)a)->endpoints[b].endpointSize

Returns

DWORD - Returns the number of bytes for the endpoint (4 - 64 bytes per USB spec)

Description

This function retrieves the endpoint size of the endpoint at endpointIndex for device that's located at handle.

Remarks

None

Preconditions

The device must be connected and enumerated.

Parameters

Parameters Description

void* handle Pointer to a structure containing the Device Info

BYTE endpointIndex the index of the endpoint whose direction is requested

Function

DWORD USBHostMIDISizeOfEndpoint(void* handle, BYTE endpointIndex)

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

404

7.3.3.1.6 USBHostMIDITransferIsBusy Macro
This interface is used to check if the client driver is currently busy transferring data over endponitIndex for the device at
handle.

File

usb_host_midi.h

C

#define USBHostMIDITransferIsBusy(a,b) ((MIDI_DEVICE*)a)->endpoints[b].busy

Description

This interface is used to check if the client driver is currently busy receiving or sending data from the device at the endpoint
with number endpointIndex. This function is intended for use with transfer events. With polling, the function
USBHostMIDITransferIsComplete(page 406)() should be used.

Remarks

None

Preconditions

The device must be connected and enumerated.

Example

if (!USBHostMIDITransferIsBusy(handle, endpointIndex))
{
 USBHostMIDIRead(handle, endpointIndex, &buffer, sizeof(buffer));
}

Parameters

Parameters Description

void* handle Pointer to a structure containing the Device Info

BYTE endpointIndex the index of the endpoint whose direction is requested

Return Values

Return Values Description

TRUE The device is receiving data or an invalid handle is given.

FALSE The device is not receiving data

Function

BOOL USBHostMIDITransferIsBusy(void* handle, BYTE endpointIndex)

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

405

7.3.3.1.7 USBHostMIDITransferIsComplete Function
This routine indicates whether or not the last transfer over endpointIndex is complete.

File

usb_host_midi.h

C

BOOL USBHostMIDITransferIsComplete(
 void* handle,
 BYTE endpointIndex,
 BYTE * errorCode,
 DWORD * byteCount
);

Description

This routine indicates whether or not the last transfer over endpointIndex is complete. If it is, then the returned errorCode
and byteCount are valid, and reflect the error code and the number of bytes received.

This function is intended for use with polling. With transfer events, the function USBHostMIDITransferIsBusy(page 405)()
should be used.

Remarks

None

Preconditions

None

Parameters

Parameters Description

void* handle Pointer to a structure containing the Device Info

BYTE endpointIndex index of endpoint in endpoints array

BYTE *errorCode Error code of the last transfer, if complete

DWORD *byteCount Bytes transferred during the last transfer, if complete

Return Values

Return Values Description

TRUE The IN transfer is complete. errorCode and byteCount are valid.

FALSE The IN transfer is not complete. errorCode and byteCount are invalid.

Function

BOOL USBHostMIDITransferIsComplete(void* handle, BYTE endpointIndex,

BYTE *errorCode, DWORD *byteCount);

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

406

7.3.3.1.8 USBHostMIDIWrite Function
File

usb_host_midi.h

C

BYTE USBHostMIDIWrite(
 void* handle,
 BYTE endpointIndex,
 void * buffer,
 WORD length
);

Description

This function will attempt to write length number of bytes from memory at location buffer to the attached MIDI device located
at handle.

Remarks

None

Preconditions

The device must be connected and enumerated. The array at *buffer should have at least length number of bytes available.

Example

if (!USBHostMIDITransferIsBusy(deviceHandle, currentEndpoint)
{
 USBHostMIDIWrite(deviceAddress, &buffer, sizeof(buffer));
}

Parameters

Parameters Description

handle Pointer to a structure containing the Device Info

endpointIndex Index of the endpoint

buffer Pointer to the data being transferred

length Size of the data being transferred

Return Values

Return Values Description

USB_SUCCESS The Write was started successfully

(USB error code) The Write was not started. See USBHostWrite(page 358)() for a list of errors.

Function

BYTE USBHostMIDIWrite(void* handle, BYTE endpointIndex, void *buffer, WORD length)

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

407

7.3.3.2 Data Types and Constants
Macros

Name Description

EVENT_MIDI_ATTACH(page 409) This event indicates that a MIDI device has been attached. When
USB_HOST_APP_EVENT_HANDLER(page 337) is called with this
event, *data points to a MIDI_DEVICE_ID structure, and size is the size
of the MIDI_DEVICE_ID structure.

EVENT_MIDI_DETACH(page 410) This event indicates that the specified device has been detached from
the USB. When USB_HOST_APP_EVENT_HANDLER(page 337) is
called with this event, *data points to a BYTE that contains the device
address, and size is the size of a BYTE.

EVENT_MIDI_OFFSET(page 411) This is an optional offset for the values of the generated events. If
necessary, the application can use a non-zero offset for the MIDI events
to resolve conflicts in event number.

EVENT_MIDI_TRANSFER_DONE(
page 412)

This event indicates that a previous write/read request has completed.
These events are enabled if USB Embedded Host transfer events are
enabled (USB_ENABLE_TRANSFER_EVENT is defined). When
USB_HOST_APP_EVENT_HANDLER(page 337) is called with this
event, *data points to the buffer that completed transmission, and size is
the actual number of bytes that were written to the device.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

408

7.3.3.2.1 EVENT_MIDI_ATTACH Macro
File

usb_host_midi.h

C

#define EVENT_MIDI_ATTACH (EVENT_AUDIO_BASE+EVENT_MIDI_OFFSET+0)

Description

This event indicates that a MIDI device has been attached. When USB_HOST_APP_EVENT_HANDLER(page 337) is
called with this event, *data points to a MIDI_DEVICE_ID structure, and size is the size of the MIDI_DEVICE_ID structure.

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

409

7.3.3.2.2 EVENT_MIDI_DETACH Macro
File

usb_host_midi.h

C

#define EVENT_MIDI_DETACH (EVENT_AUDIO_BASE+EVENT_MIDI_OFFSET+1)

Description

This event indicates that the specified device has been detached from the USB. When
USB_HOST_APP_EVENT_HANDLER(page 337) is called with this event, *data points to a BYTE that contains the device
address, and size is the size of a BYTE.

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

410

7.3.3.2.3 EVENT_MIDI_OFFSET Macro
File

usb_host_midi.h

C

#define EVENT_MIDI_OFFSET 0

Description

This is an optional offset for the values of the generated events. If necessary, the application can use a non-zero offset for
the MIDI events to resolve conflicts in event number.

7.3 Embedded Host API MCHPFSUSB Library Help Audio MIDI Client Driver

411

7.3.3.2.4 EVENT_MIDI_TRANSFER_DONE Macro
File

usb_host_midi.h

C

#define EVENT_MIDI_TRANSFER_DONE (EVENT_AUDIO_BASE+EVENT_MIDI_OFFSET+2)

Description

This event indicates that a previous write/read request has completed. These events are enabled if USB Embedded Host
transfer events are enabled (USB_ENABLE_TRANSFER_EVENT is defined). When
USB_HOST_APP_EVENT_HANDLER(page 337) is called with this event, *data points to the buffer that completed
transmission, and size is the actual number of bytes that were written to the device.

7.3.4 Android Accessory Client Driver

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

412

7.3.4.1 Interface Routines
Functions

Name Description

AndroidAppIsReadComplete(
page 414)

Check to see if the last read to the Android device was completed

AndroidAppIsWriteComplete(
page 415)

Check to see if the last write to the Android device was completed

AndroidAppRead(page 416) Attempts to read information from the specified Android device

AndroidAppStart(page 417) Sets the accessory information and initializes the client driver information after
the initial power cycles.

AndroidAppWrite(page 418) Sends data to the Android device specified by the passed in handle.

AndroidTasks(page 419) Tasks function that keeps the Android client driver moving

Description

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

413

7.3.4.1.1 AndroidAppIsReadComplete Function
Check to see if the last read to the Android device was completed

File

usb_host_android.h

C

BOOL AndroidAppIsReadComplete(
 void* handle,
 BYTE* errorCode,
 DWORD* size
);

Description

Check to see if the last read to the Android device was completed. If complete, returns the amount of data that was sent and
the corresponding error code for the transmission.

Remarks

Possible values for errorCode are:

• USB_SUCCESS - Transfer successful

• USB_UNKNOWN_DEVICE - Device not attached

• USB_ENDPOINT_STALLED - Endpoint STALL'd

• USB_ENDPOINT_ERROR_ILLEGAL_PID - Illegal PID returned

• USB_ENDPOINT_ERROR_BIT_STUFF

• USB_ENDPOINT_ERROR_DMA

• USB_ENDPOINT_ERROR_TIMEOUT

• USB_ENDPOINT_ERROR_DATA_FIELD

• USB_ENDPOINT_ERROR_CRC16

• USB_ENDPOINT_ERROR_END_OF_FRAME

• USB_ENDPOINT_ERROR_PID_CHECK

• USB_ENDPOINT_ERROR - Other error

Preconditions

Transfer has previously been requested from an Android device.

Parameters

Parameters Description

void* handle the handle passed to the device in the EVENT_ANDROID_ATTACH(page
424) event

BYTE* errorCode a pointer to the location where the resulting error code should be written

DWORD* size a pointer to the location where the resulting size information should be written

Return Values

Return Values Description

TRUE Transfer is complete.

FALSE Transfer is not complete.

Function

BOOL AndroidAppIsReadComplete(void* handle, BYTE* errorCode, DWORD* size)

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

414

7.3.4.1.2 AndroidAppIsWriteComplete Function
Check to see if the last write to the Android device was completed

File

usb_host_android.h

C

BOOL AndroidAppIsWriteComplete(
 void* handle,
 BYTE* errorCode,
 DWORD* size
);

Description

Check to see if the last write to the Android device was completed. If complete, returns the amount of data that was sent and
the corresponding error code for the transmission.

Remarks

Possible values for errorCode are:

• USB_SUCCESS - Transfer successful

• USB_UNKNOWN_DEVICE - Device not attached

• USB_ENDPOINT_STALLED - Endpoint STALL'd

• USB_ENDPOINT_ERROR_ILLEGAL_PID - Illegal PID returned

• USB_ENDPOINT_ERROR_BIT_STUFF

• USB_ENDPOINT_ERROR_DMA

• USB_ENDPOINT_ERROR_TIMEOUT

• USB_ENDPOINT_ERROR_DATA_FIELD

• USB_ENDPOINT_ERROR_CRC16

• USB_ENDPOINT_ERROR_END_OF_FRAME

• USB_ENDPOINT_ERROR_PID_CHECK

• USB_ENDPOINT_ERROR - Other error

Preconditions

Transfer has previously been sent to Android device.

Parameters

Parameters Description

void* handle the handle passed to the device in the EVENT_ANDROID_ATTACH(page
424) event

BYTE* errorCode a pointer to the location where the resulting error code should be written

DWORD* size a pointer to the location where the resulting size information should be written

Return Values

Return Values Description

TRUE Transfer is complete.

FALSE Transfer is not complete.

Function

BOOL AndroidAppIsWriteComplete(void* handle, BYTE* errorCode, DWORD* size)

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

415

7.3.4.1.3 AndroidAppRead Function
Attempts to read information from the specified Android device

File

usb_host_android.h

C

BYTE AndroidAppRead(
 void* handle,
 BYTE* data,
 DWORD size
);

Description

Attempts to read information from the specified Android device. This function does not block. Data availability is checked via
the AndroidAppIsReadComplete(page 414)() function.

Remarks

None

Preconditions

A read request is not already in progress and an Android device is attached.

Parameters

Parameters Description

void* handle the handle passed to the device in the EVENT_ANDROID_ATTACH(page
424) event

BYTE* data a pointer to the location of where the data should be stored. This location
should be accessible by the USB module

DWORD size the amount of data to read.

Return Values

Return Values Description

USB_SUCCESS Read started successfully.

USB_UNKNOWN_DEVICE Device with the specified address not found.

USB_INVALID_STATE We are not in a normal running state.

USB_ENDPOINT_ILLEGAL_TYPE Must use USBHostControlRead to read from a control endpoint.

USB_ENDPOINT_ILLEGAL_DIRECTION Must read from an IN endpoint.

USB_ENDPOINT_STALLED Endpoint is stalled. Must be cleared by the application.

USB_ENDPOINT_ERROR Endpoint has too many errors. Must be cleared by the application.

USB_ENDPOINT_BUSY A Read is already in progress.

USB_ENDPOINT_NOT_FOUND Invalid endpoint.

USB_ERROR_BUFFER_TOO_SMALL(
page 427)

The buffer passed to the read function was smaller than the endpoint size being
used (buffer must be larger than or equal to the endpoint size).

Function

BYTE AndroidAppRead(void* handle, BYTE* data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

416

7.3.4.1.4 AndroidAppStart Function
Sets the accessory information and initializes the client driver information after the initial power cycles.

File

usb_host_android.h

C

void AndroidAppStart(
 ANDROID_ACCESSORY_INFORMATION* accessoryInfo
);

Description

Sets the accessory information and initializes the client driver information after the initial power cycles. Since this resets all
device information this function should be used only after a compete system reset. This should not be called while the USB
is active or while connected to a device.

Remarks

None

Preconditions

USB module should not be in operation

Parameters

Parameters Description

ANDROID_ACCESSORY_INFORMATION
*info

the information about the Android accessory

Function

void AndroidAppStart(ANDROID_ACCESSORY_INFORMATION(page 421) *info)

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

417

7.3.4.1.5 AndroidAppWrite Function
Sends data to the Android device specified by the passed in handle.

File

usb_host_android.h

C

BYTE AndroidAppWrite(
 void* handle,
 BYTE* data,
 DWORD size
);

Description

Sends data to the Android device specified by the passed in handle.

Remarks

None

Preconditions

Transfer is not already in progress. USB module is initialized and Android device has attached.

Parameters

Parameters Description

void* handle the handle passed to the device in the EVENT_ANDROID_ATTACH(page
424) event

BYTE* data the data to send to the Android device

DWORD size the size of the data that needs to be sent

Return Values

Return Values Description

USB_SUCCESS Write started successfully.

USB_UNKNOWN_DEVICE Device with the specified address not found.

USB_INVALID_STATE We are not in a normal running state.

USB_ENDPOINT_ILLEGAL_TYPE Must use USBHostControlWrite to write to a control endpoint.

USB_ENDPOINT_ILLEGAL_DIRECTION Must write to an OUT endpoint.

USB_ENDPOINT_STALLED Endpoint is stalled. Must be cleared by the application.

USB_ENDPOINT_ERROR Endpoint has too many errors. Must be cleared by the application.

USB_ENDPOINT_BUSY A Write is already in progress.

USB_ENDPOINT_NOT_FOUND Invalid endpoint.

Function

BYTE AndroidAppWrite(void* handle, BYTE* data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

418

7.3.4.1.6 AndroidTasks Function
Tasks function that keeps the Android client driver moving

File

usb_host_android.h

C

void AndroidTasks();

Description

Tasks function that keeps the Android client driver moving. Keeps the driver processing requests and handling events. This
function should be called periodically (the same frequency as USBHostTasks() would be helpful).

Remarks

This function should be called periodically to keep the Android driver moving.

Preconditions

AndroidAppStart(page 417)() function has been called before the first calling of this function

Function

void AndroidTasks(void)

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

419

7.3.4.2 Data Type and Constants
Structures

Name Description

ANDROID_ACCESSORY_INFORMATION(
page 421)

This structure contains the informatin that is required to
successfully create a link between the Android device and the
accessory. This information must match the information entered
in the accessory filter in the Android application in order for the
Android application to access the device. An instance of this
structure should be passed into the AndroidAppStart(page
417)() at initialization.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

420

7.3.4.2.1 ANDROID_ACCESSORY_INFORMATION Structure
File

usb_host_android.h

C

typedef struct {
 char* manufacturer;
 BYTE manufacturer_size;
 char* model;
 BYTE model_size;
 char* description;
 BYTE description_size;
 char* version;
 BYTE version_size;
 char* URI;
 BYTE URI_size;
 char* serial;
 BYTE serial_size;
} ANDROID_ACCESSORY_INFORMATION;

Members

Members Description

char* manufacturer; String: manufacturer name

BYTE manufacturer_size; length of manufacturer string

char* model; String: model name

BYTE model_size; length of model name string

char* description; String: description of the accessory

BYTE description_size; length of the description string

char* version; String: version number

BYTE version_size; length of the version number string

char* URI; String: URI for the accessory (most commonly a URL)

BYTE URI_size; length of the URI string

char* serial; String: serial number of the device

BYTE serial_size; length of the serial number string

Description

This structure contains the informatin that is required to successfully create a link between the Android device and the
accessory. This information must match the information entered in the accessory filter in the Android application in order for
the Android application to access the device. An instance of this structure should be passed into the AndroidAppStart(
page 417)() at initialization.

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

421

7.3.4.3 Macros
Macros

Name Description

ANDROID_BASE_OFFSET(page 423) Defines the event offset for the Android specific events. If
not defined, then a default of 0 is used.

EVENT_ANDROID_ATTACH(page 424) This event is thrown when an Android device is attached
and successfully entered into accessory mode already. The
data portion of this event is the handle that is required to
communicate to the device and should be saved so that it
can be passed to all of the transfer functions. Always use
this definition in the code and never put a static value as
the value of this event may change based on various build
options.

EVENT_ANDROID_DETACH(page 425) This event is thrown when an Android device is removed.
The data portion of the event is the handle of the device
that has been removed. Always use this definition in the
code and never put a static value as the value of this event
may change based on various build options.

NUM_ANDROID_DEVICES_SUPPORTED(
page 426)

Defines the number of concurrent Android devices this
implementation is allowed to talk to. This definition is only
used for implementations where the accessory is the host
and the Android device is the slave. This is also most often
defined to be 1. If this is not defined by the user, a default
of 1 is used.
This option is only used when compiling the source version
of the library. This value is set to 1 for pre-compiled
versions of the library.

USB_ERROR_BUFFER_TOO_SMALL(page
427)

Error code indicating that the buffer passed to the read
function was too small. Since the USB host can't control
how much data it will receive in a single packet, the user
must provide a buffer that is at least the size of the endpoint
of the attached device. If a buffer is passed in that is too
small, the read will not start and this error is returned to the
user.

ANDROID_INIT_FLAG_BYPASS_PROTOCOL(
page 428)

This defintion is used in the usbClientDrvTable[] in the flags
field in order to bypass the Android accessory initialization
phase. This should be used only when a device is known to
already be in accessory mode (in protocol v1 if the VID/PID
are already matching the accessory mode VID/PID). In
some cases an Android device doesn't exit accessory mode
and thus those other protocol commands will not work. This
flag must be used to save those devices

Description

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

422

7.3.4.3.1 ANDROID_BASE_OFFSET Macro
File

usb_host_android.h

C

#define ANDROID_BASE_OFFSET 0

Description

Defines the event offset for the Android specific events. If not defined, then a default of 0 is used.

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

423

7.3.4.3.2 EVENT_ANDROID_ATTACH Macro
File

usb_host_android.h

C

#define EVENT_ANDROID_ATTACH ANDROID_EVENT_BASE + 0

Description

This event is thrown when an Android device is attached and successfully entered into accessory mode already. The data
portion of this event is the handle that is required to communicate to the device and should be saved so that it can be
passed to all of the transfer functions. Always use this definition in the code and never put a static value as the value of this
event may change based on various build options.

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

424

7.3.4.3.3 EVENT_ANDROID_DETACH Macro
File

usb_host_android.h

C

#define EVENT_ANDROID_DETACH ANDROID_EVENT_BASE + 1

Description

This event is thrown when an Android device is removed. The data portion of the event is the handle of the device that has
been removed. Always use this definition in the code and never put a static value as the value of this event may change
based on various build options.

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

425

7.3.4.3.4 NUM_ANDROID_DEVICES_SUPPORTED Macro
File

usb_host_android.h

C

#define NUM_ANDROID_DEVICES_SUPPORTED 1

Description

Defines the number of concurrent Android devices this implementation is allowed to talk to. This definition is only used for
implementations where the accessory is the host and the Android device is the slave. This is also most often defined to be 1.
If this is not defined by the user, a default of 1 is used.

This option is only used when compiling the source version of the library. This value is set to 1 for pre-compiled versions of
the library.

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

426

7.3.4.3.5 USB_ERROR_BUFFER_TOO_SMALL Macro
File

usb_host_android.h

C

#define USB_ERROR_BUFFER_TOO_SMALL USB_ERROR_CLASS_DEFINED + 0

Description

Error code indicating that the buffer passed to the read function was too small. Since the USB host can't control how much
data it will receive in a single packet, the user must provide a buffer that is at least the size of the endpoint of the attached
device. If a buffer is passed in that is too small, the read will not start and this error is returned to the user.

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

427

7.3.4.3.6 ANDROID_INIT_FLAG_BYPASS_PROTOCOL Macro
File

usb_host_android.h

C

#define ANDROID_INIT_FLAG_BYPASS_PROTOCOL 0x00000001

Description

This defintion is used in the usbClientDrvTable[] in the flags field in order to bypass the Android accessory initialization
phase. This should be used only when a device is known to already be in accessory mode (in protocol v1 if the VID/PID are
already matching the accessory mode VID/PID). In some cases an Android device doesn't exit accessory mode and thus
those other protocol commands will not work. This flag must be used to save those devices

7.3 Embedded Host API MCHPFSUSB Library Help Android Accessory Client Driver

428

7.3.4.4 Internal Members

7.3.5 CDC Client Driver

This is a CDC client driver for use with the USB Embedded Host driver.

Description

Communication Device Class (CDC) Host

CDC - Overview

Several type of communication can benefit from USB. Communication Device Class specification provides common
specification for communication devices. There are three classes that make up the definition for communications devices:

* Communications Device Class

* Communications Interface Class

* Data Interface Class.

The Communications Device Class is a device-level definition and is used by the host to properly identify a communications
device that may present several different types of interfaces.

The Communications Interface Class defines a general-purpose mechanism that can be used to enable all types of
communications services on the Universal Serial Bus (USB). This interface consist of two elements, a management element
and a notification element. The management element configures and controls the device, it consist of endpoint 0. Notification
element is optional and is used to handle transport events. In the current stack notification element is not implemented.

The Data Interface Class defines a general-purpose mechanism to enable bulk or isochronous transfer on the USB when the
data does not meet the requirements for any other class. This interface is used to transmit/receive data to/from the device.
The type of endpoints belonging to a Data Class interface are restricted to being either isochronous or bulk, and are
expected to exist in pairs of the same type (one In and one Out). Current version of the stack is tested for Bulk transfers.

Class-Specific Codes

This section lists the codes for the Communications Device Class, Communications Interface Class and Data Interface
Class, including subclasses and protocols supported in the current version of the stack. The current version of the stack
supports RS232 emulation over USB. Below is the list of codes to support this functionality.

The following table defines the Communications Device Class code:

Code Class

0x02 Communications Device Class

Communication Interface Codes

The following table defines the Communications Class code:

Code Class

0x02 Communications Interface Class

CDC specification mentions various subclass , current version of the Microchip CDC host stack supports below mentioned
subclasses. The following table defines the currently supported Subclass codes for the Communications Interface Class:

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

429

Code SubClass

0x02 Abstract Control Model

The following table defines supported Communications Class Protocol Codes:

Code Protocol

0x01 AT Commands: V.250 etc.

Data Interface Code

The following table defines the Data Interface Class code:

Code Class

0x0A Data Interface Class

No specific Subclass and Protocol codes are required to achieve RS232 functionality over USB.

Communication and Data Transfer Handling

Communication Management : The CDC client deriver takes care of enumerating the device connected on the bus. The
application must define Line Coding parameters in file usb_config.h . USBConfig utility can be used to set these parameters.
If the connected device complies with the setting then the device is successfully attached else the device is not attached
onto the bus. If the application needs to change the setting dynamically after the device has been successfully enumerated ,
interface function USBHostCDC_Api_ACM_Request(page 432)()can be used to do so. Following standard requests are
currently implemented:

Request Summary

SendEncapsulatedCommand Issues a command in the format of the supported control protocol.

GetEncapsulatedResponse Requests a response in the format of the supported control protocol.

SetLineCoding Configures DTE rate, stop-bits, parity, and number-of-character bits.

GetLineCoding Requests current DTE rate, stop-bits, parity, and number-of-character bits.

SetControlLineState [V24] signal used to tell the DCE device the DTE device is now present.

Data transfers : Once the device is attached the application is ready to start data transfers. Usually two endpoints one in
each direction are supported by the device.

* To receive data from the device the application must set up a IN request at the rate depending on the baudrate settings.
Application can use a timer interrupt to precisely set up the request. Function USBHostCDC_Api_Get_IN_Data(page
433)()is used to setup the request. Maximum of 64 bytes can be received in single transfer.

* To transmit data to the device application must set up a OUT request. Function USBHostCDC_Api_Send_OUT_Data()is
used to setup out request. Any amount of data can be transferred to the device. The Client driver takes care of sending the
data in 64 bytes packet.

* USBHostCDC_ApiTransferIsComplete(page 434)() is used to poll for the status of previous transfer.

* USBHostCDC_ApiDeviceDetect() is used to get the status of the device. If the device is ready for new transfer then the
function returns TRUE.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

430

7.3.5.1 Interface Routines
Functions

Name Description

USBHostCDC_Api_ACM_Request(
page 432)

This function can be used by application code to dynamically access
ACM specific requests. This function should be used only if
apllication intends to modify for example the Baudrate from previouly
configured rate. Data transmitted/received to/from device is a array
of bytes. Application must take extra care of understanding the data
format before using this function.

USBHostCDC_Api_Get_IN_Data(
page 433)

This function is called by application to receive Input data over
DATA interface. This function setsup the request to receive data
from the device.

USBHostCDC_ApiTransferIsComplete(
page 434)

This function is called by application to poll for transfer status. This
function returns true in the transfer is over. To check whether the
transfer was successfull or not , application must check the error
code returned by reference.

USBHostCDCDeviceStatus(page 435) This function determines the status of a CDC device.

USBHostCDCEventHandler(page 436) This function is the event handler for this client driver.

USBHostCDCInitAddress(page 437) This function intializes the address of the attached CDC device.

USBHostCDCInitialize(page 438) This function is the initialization routine for this client driver.

USBHostCDCResetDevice(page 440) This function starts a CDC reset.

USBHostCDCTransfer(page 442) This function starts a CDC transfer.

USBHostCDCTransferIsComplete(
page 443)

This function indicates whether or not the last transfer is complete.

Macros

Name Description

USBHostCDCRead_DATA(
page 439)

This function intiates a read request from a attached CDC device.

USBHostCDCSend_DATA(
page 441)

This function intiates a write request to a attached CDC device.

Description

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

431

7.3.5.1.1 USBHostCDC_Api_ACM_Request Function
File

usb_host_cdc_interface.h

C

BYTE USBHostCDC_Api_ACM_Request(
 BYTE requestType,
 BYTE size,
 BYTE* data
);

Description

This function can be used by application code to dynamically access ACM specific requests. This function should be used
only if apllication intends to modify for example the Baudrate from previouly configured rate. Data transmitted/received
to/from device is a array of bytes. Application must take extra care of understanding the data format before using this
function.

Remarks

None

Preconditions

Device must be enumerated and attached successfully.

Parameters

Parameters Description

BYTE size Number bytes to be transferred.

BYTE *data Pointer to data being transferred.

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_CDC_DEVICE_NOT_FOUND(
page 481)

No device with specified address

USB_CDC_DEVICE_BUSY(page 477) Device not in proper state for performing a transfer

USB_CDC_COMMAND_FAILED(page
471)

Request is not supported.

USB_CDC_ILLEGAL_REQUEST(page
498)

Requested ID is invalid.

Function

BYTE USBHostCDC_Api_ACM_Request(BYTE requestType, BYTE size, BYTE* data)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

432

7.3.5.1.2 USBHostCDC_Api_Get_IN_Data Function
File

usb_host_cdc_interface.h

C

BOOL USBHostCDC_Api_Get_IN_Data(
 BYTE no_of_bytes,
 BYTE* data
);

Description

This function is called by application to receive Input data over DATA interface. This function setsup the request to receive
data from the device.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE no_of_bytes Number of Bytes expected from the device.

BYTE* data Pointer to application receive data buffer.

Return Values

Return Values Description

TRUE Transfer request is placed successfully.

FALSE Transfer request failed.

Function

BOOL USBHostCDC_Api_Get_IN_Data(BYTE no_of_bytes, BYTE* data)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

433

7.3.5.1.3 USBHostCDC_ApiTransferIsComplete Function
File

usb_host_cdc_interface.h

C

BOOL USBHostCDC_ApiTransferIsComplete(
 BYTE* errorCodeDriver,
 BYTE* byteCount
);

Description

This function is called by application to poll for transfer status. This function returns true in the transfer is over. To check
whether the transfer was successfull or not , application must check the error code returned by reference.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE *errorCodeDriver returns.

BYTE *byteCount Number of bytes transferred.

Return Values

Return Values Description

TRUE Transfer is has completed.

FALSE Transfer is pending.

Function

BOOL USBHostCDC_ApiTransferIsComplete(BYTE* errorCodeDriver,BYTE* byteCount)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

434

7.3.5.1.4 USBHostCDCDeviceStatus Function
This function determines the status of a CDC device.

File

usb_host_cdc.h

C

BYTE USBHostCDCDeviceStatus(
 BYTE deviceAddress
);

Description

This function determines the status of a CDC device.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress address of device to query

Return Values

Return Values Description

USB_CDC_DEVICE_NOT_FOUND(page 481) Illegal device address, or the device is not an CDC

USB_CDC_INITIALIZING(page 499) CDC is attached and in the process of initializing

USB_PROCESSING_REPORT_DESCRIPTOR(
page 623)

CDC device is detected and report descriptor is being parsed

USB_CDC_NORMAL_RUNNING(page 506) CDC Device is running normal, ready to send and receive reports

USB_CDC_DEVICE_HOLDING(page 479) Device is holding due to error

USB_CDC_DEVICE_DETACHED(page 478) CDC detached.

Function

BYTE USBHostCDCDeviceStatus(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

435

7.3.5.1.5 USBHostCDCEventHandler Function
This function is the event handler for this client driver.

File

usb_host_cdc.h

C

BOOL USBHostCDCEventHandler(
 BYTE address,
 USB_EVENT event,
 void * data,
 DWORD size
);

Description

This function is the event handler for this client driver. It is called by the host layer when various events occur.

Remarks

None

Preconditions

The device has been initialized.

Parameters

Parameters Description

BYTE address Address of the device

USB_EVENT event Event that has occurred

void *data Pointer to data pertinent to the event

DWORD size Size of the data

Return Values

Return Values Description

TRUE Event was handled

FALSE Event was not handled

Function

BOOL USBHostCDCEventHandler(BYTE address, USB_EVENT event,

void *data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

436

7.3.5.1.6 USBHostCDCInitAddress Function
This function intializes the address of the attached CDC device.

File

usb_host_cdc.h

C

BOOL USBHostCDCInitAddress(
 BYTE address,
 DWORD flags,
 BYTE clientDriverID
);

Description

This function intializes the address of the attached CDC device. Once the device is enumerated without any errors, the CDC
client call this function. For all the transfer requesets this address is used to indentify the CDC device.

Remarks

None

Preconditions

The device has been enumerated without any errors.

Parameters

Parameters Description

BYTE address Address of the new device

DWORD flags Initialization flags

BYTE clientDriverID Client driver identification for device requests

Return Values

Return Values Description

TRUE We can support the device.

FALSE We cannot support the device.

Function

BOOL USBHostCDCInitAddress(BYTE address, DWORD flags, BYTE clientDriverID)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

437

7.3.5.1.7 USBHostCDCInitialize Function
This function is the initialization routine for this client driver.

File

usb_host_cdc.h

C

BOOL USBHostCDCInitialize(
 BYTE address,
 DWORD flags,
 BYTE clientDriverID
);

Description

This function is the initialization routine for this client driver. It is called by the host layer when the USB device is being
enumerated.For a CDC device we need to look into CDC descriptor, interface descriptor and endpoint descriptor.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE address Address of the new device

DWORD flags Initialization flags

BYTE clientDriverID Client driver identification for device requests

Return Values

Return Values Description

TRUE We can support the device.

FALSE We cannot support the device.

Function

BOOL USBHostCDCInitialize(BYTE address, DWORD flags, BYTE clientDriverID)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

438

7.3.5.1.8 USBHostCDCRead_DATA Macro
This function intiates a read request from a attached CDC device.

File

usb_host_cdc.h

C

#define USBHostCDCRead_DATA(address,interface,size,data,endpointData) \
 USBHostCDCTransfer(address,0,1,interface, size,data,endpointData)

Description

This function starts a CDC read transfer.

Remarks

None

Preconditions

None

Parameters

Parameters Description

address Device address

interface interface number of the requested transfer

size Number of bytes to be read from the device

data address of location where received data is to be stored

endpointDATA endpoint details on which the transfer is requested

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_CDC_DEVICE_NOT_FOUND(
page 481)

No device with specified address

USB_CDC_DEVICE_BUSY(page 477) Device not in proper state for performing a transfer

Function

USBHostCDCRead_DATA(address,interface,size,data,endpointData)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

439

7.3.5.1.9 USBHostCDCResetDevice Function
This function starts a CDC reset.

File

usb_host_cdc.h

C

BYTE USBHostCDCResetDevice(
 BYTE deviceAddress
);

Description

This function starts a CDC reset. A reset can be issued only if the device is attached and not being initialized.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

Return Values

Return Values Description

USB_SUCCESS Reset started

USB_MSD_DEVICE_NOT_FOUND(
page 661)

No device with specified address

USB_MSD_ILLEGAL_REQUEST(page
664)

Device is in an illegal state for reset

Function

BYTE USBHostCDCResetDevice(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

440

7.3.5.1.10 USBHostCDCSend_DATA Macro
This function intiates a write request to a attached CDC device.

File

usb_host_cdc.h

C

#define USBHostCDCSend_DATA(address,interface,size,data,endpointData) \
 USBHostCDCTransfer(address,0,0,interface, size,data,endpointData)

Description

This function starts a CDC write transfer.

Remarks

None

Preconditions

None

Parameters

Parameters Description

address Device address

interface interface number of the requested transfer

size Number of bytes to be transfered to the device

data address of location where the data to be transferred is stored

endpointDATA endpoint details on which the transfer is requested

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_CDC_DEVICE_NOT_FOUND(
page 481)

No device with specified address

USB_CDC_DEVICE_BUSY(page 477) Device not in proper state for performing a transfer

Function

USBHostCDCSend_DATA(address,interface,size,data,endpointData)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

441

7.3.5.1.11 USBHostCDCTransfer Function
This function starts a CDC transfer.

File

usb_host_cdc.h

C

BYTE USBHostCDCTransfer(
 BYTE deviceAddress,
 BYTE request,
 BYTE direction,
 BYTE interfaceNum,
 WORD size,
 BYTE * data,
 BYTE endpointDATA
);

Description

This function starts a CDC transfer. A read/write wrapper is provided in application interface file to access this function.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE request Request type for Communication Interface

BYTE direction 1=read, 0=write

BYTE interfaceNum interface number of the requested transfer

BYTE size Byte size of the data buffer

BYTE *data Pointer to the data buffer

BYTE endpointDATA endpoint details on which the transfer is requested

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_CDC_DEVICE_NOT_FOUND(
page 481)

No device with specified address

USB_CDC_DEVICE_BUSY(page 477) Device not in proper state for performing a transfer

Function

USBHostCDCTransfer(BYTE deviceAddress, BYTE direction, BYTE reportid, BYTE size, BYTE *data)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

442

7.3.5.1.12 USBHostCDCTransferIsComplete Function
This function indicates whether or not the last transfer is complete.

File

usb_host_cdc.h

C

BOOL USBHostCDCTransferIsComplete(
 BYTE deviceAddress,
 BYTE * errorCode,
 BYTE * byteCount
);

Description

This function indicates whether or not the last transfer is complete. If the functions returns TRUE, the returned byte count
and error code are valid. Since only one transfer can be performed at once and only one endpoint can be used, we only
need to know the device address.

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE *errorCode Error code from last transfer

DWORD *byteCount Number of bytes transferred

Return Values

Return Values Description

TRUE Transfer is complete, errorCode is valid

FALSE Transfer is not complete, errorCode is not valid

Function

BOOL USBHostCDCTransferIsComplete(BYTE deviceAddress,

BYTE *errorCode, DWORD *byteCount)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

443

7.3.5.2 Data Types and Constants
Macros

Name Description

DEVICE_CLASS_CDC(page 457) CDC Interface Class Code

EVENT_CDC_COMM_READ_DONE(page 458) A CDC Communication Read transfer has
completed

EVENT_CDC_COMM_WRITE_DONE(page 459) A CDC Communication Write transfer has
completed

EVENT_CDC_DATA_READ_DONE(page 460) A CDC Data Read transfer has completed

EVENT_CDC_DATA_WRITE_DONE(page 461) A CDC Data Write transfer has completed

EVENT_CDC_NAK_TIMEOUT(page 462) CDC device NAK timeout has occurred

EVENT_CDC_NONE(page 463) No event occured (NULL event)

EVENT_CDC_OFFSET(page 464) If the application has not defined an offset
for CDC events, set it to 0.

EVENT_CDC_RESET(page 465) CDC reset complete

USB_CDC_ABSTRACT_CONTROL_MODEL(page 466) Abstract Control Model

USB_CDC_ATM_NETWORKING_CONTROL_MODEL(page
467)

ATM Networking Control Model

USB_CDC_CAPI_CONTROL_MODEL(page 468) CAPI Control Model

USB_CDC_CLASS_ERROR(page 469) CDC Class Error Codes

USB_CDC_COMM_INTF(page 470) Communication Interface Class Code

USB_CDC_COMMAND_FAILED(page 471) Command failed at the device.

USB_CDC_COMMAND_PASSED(page 472) Command was successful.

USB_CDC_CONTROL_LINE_LENGTH(page 473) Number of bytes Control line transfer

USB_CDC_CS_ENDPOINT(page 474) This is macro USB_CDC_CS_ENDPOINT.

USB_CDC_CS_INTERFACE(page 475) Functional Descriptor Details Type Values
for the bDscType Field

USB_CDC_DATA_INTF(page 476) Data Interface Class Codes

USB_CDC_DEVICE_BUSY(page 477) A transfer is currently in progress.

USB_CDC_DEVICE_DETACHED(page 478) Device is detached.

USB_CDC_DEVICE_HOLDING(page 479) Device is holding due to error

USB_CDC_DEVICE_MANAGEMENT(page 480) Device Management

USB_CDC_DEVICE_NOT_FOUND(page 481) Device with the specified address is not
available.

USB_CDC_DIRECT_LINE_CONTROL_MODEL(page 482) Direct Line Control Model

USB_CDC_DSC_FN_ACM(page 483) ACM - Abstract Control Management

USB_CDC_DSC_FN_CALL_MGT(page 484) This is macro
USB_CDC_DSC_FN_CALL_MGT.

USB_CDC_DSC_FN_COUNTRY_SELECTION(page 485) This is macro
USB_CDC_DSC_FN_COUNTRY_SELECTI
ON.

USB_CDC_DSC_FN_DLM(page 486) DLM - Direct Line Managment

USB_CDC_DSC_FN_HEADER(page 487) bDscSubType in Functional Descriptors

USB_CDC_DSC_FN_RPT_CAPABILITIES(page 488) This is macro
USB_CDC_DSC_FN_RPT_CAPABILITIES.

USB_CDC_DSC_FN_TEL_OP_MODES(page 489) This is macro
USB_CDC_DSC_FN_TEL_OP_MODES.

USB_CDC_DSC_FN_TELEPHONE_RINGER(page 490) This is macro
USB_CDC_DSC_FN_TELEPHONE_RINGE
R.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

444

USB_CDC_DSC_FN_UNION(page 491) This is macro USB_CDC_DSC_FN_UNION.

USB_CDC_DSC_FN_USB_TERMINAL(page 492) This is macro
USB_CDC_DSC_FN_USB_TERMINAL.

USB_CDC_ETHERNET_EMULATION_MODEL(page 493) Ethernet Emulation Model

USB_CDC_ETHERNET_NETWORKING_CONTROL_MODEL(
page 494)

Ethernet Networking Control Model

USB_CDC_GET_COMM_FEATURE(page 495) Returns the current settings for the
communications feature.

USB_CDC_GET_ENCAPSULATED_REQUEST(page 496) Requests a response in the format of the
supported control protocol.

USB_CDC_GET_LINE_CODING(page 497) Requests current DTE rate, stop-bits, parity,
and number-of-character bits.

USB_CDC_ILLEGAL_REQUEST(page 498) Cannot perform requested operation.

USB_CDC_INITIALIZING(page 499) Device is initializing.

USB_CDC_INTERFACE_ERROR(page 500) The interface layer cannot support the
device.

USB_CDC_LINE_CODING_LENGTH(page 501) Number of bytes Line Coding transfer

USB_CDC_MOBILE_DIRECT_LINE_MODEL(page 502) Mobile Direct Line Model

USB_CDC_MULTI_CHANNEL_CONTROL_MODEL(page
503)

Multi-Channel Control Model

USB_CDC_NO_PROTOCOL(page 504) No class specific protocol required For
more.... see Table 7 in USB CDC
Specification 1.2

USB_CDC_NO_REPORT_DESCRIPTOR(page 505) No report descriptor found

USB_CDC_NORMAL_RUNNING(page 506) Device is running and available for data
transfers.

USB_CDC_OBEX(page 507) OBEX

USB_CDC_PHASE_ERROR(page 508) Command had a phase error at the device.

USB_CDC_REPORT_DESCRIPTOR_BAD(page 509) Report Descriptor for not proper

USB_CDC_RESET_ERROR(page 510) An error occurred while resetting the device.

USB_CDC_RESETTING_DEVICE(page 511) Device is being reset.

USB_CDC_SEND_BREAK(page 512) Sends special carrier modulation used to
specify [V24] style break.

USB_CDC_SEND_ENCAPSULATED_COMMAND(page 513) Issues a command in the format of the
supported control protocol.

USB_CDC_SET_COMM_FEATURE(page 514) Controls the settings for a particular
communications feature.

USB_CDC_SET_CONTROL_LINE_STATE(page 515) V24] signal used to tell the DCE device the
DTE device is now present.

USB_CDC_SET_LINE_CODING(page 516) Configures DTE rate, stop-bits, parity, and
number-of-character bits.

USB_CDC_TELEPHONE_CONTROL_MODEL(page 517) Telephone Control Model

USB_CDC_V25TER(page 518) Common AT commands ("Hayes(TM)")

USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL(
page 519)

Wireless Handset Control Model

Structures

Name Description

_COMM_INTERFACE_DETAILS(
page 447)

This structure stores communication interface details of the attached
CDC device

_DATA_INTERFACE_DETAILS(
page 448)

This structure stores data interface details of the attached CDC device

_USB_CDC_ACM_FN_DSC(page
449)

Abstract Control Management Functional Descriptor

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

445

_USB_CDC_CALL_MGT_FN_DSC(
page 450)

Call Management Functional Descriptor

_USB_CDC_DEVICE_INFO(page
452)

This structure is used to hold information about an attached CDC device

_USB_CDC_HEADER_FN_DSC(
page 454)

Header Functional Descriptor

_USB_CDC_UNION_FN_DSC(
page 456)

Union Functional Descriptor

COMM_INTERFACE_DETAILS(
page 447)

This structure stores communication interface details of the attached
CDC device

DATA_INTERFACE_DETAILS(
page 448)

This structure stores data interface details of the attached CDC device

USB_CDC_ACM_FN_DSC(page
449)

Abstract Control Management Functional Descriptor

USB_CDC_CALL_MGT_FN_DSC(
page 450)

Call Management Functional Descriptor

USB_CDC_DEVICE_INFO(page
452)

This structure is used to hold information about an attached CDC device

USB_CDC_HEADER_FN_DSC(
page 454)

Header Functional Descriptor

USB_CDC_UNION_FN_DSC(page
456)

Union Functional Descriptor

Unions

Name Description

_USB_CDC_CONTROL_SIGNAL_BITMAP(
page 451)

This is type USB_CDC_CONTROL_SIGNAL_BITMAP.

_USB_CDC_LINE_CODING(page 455) This is type USB_CDC_LINE_CODING.

USB_CDC_CONTROL_SIGNAL_BITMAP(
page 451)

This is type USB_CDC_CONTROL_SIGNAL_BITMAP.

USB_CDC_LINE_CODING(page 455) This is type USB_CDC_LINE_CODING.

Description

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

446

7.3.5.2.1 COMM_INTERFACE_DETAILS Structure
File

usb_host_cdc.h

C

typedef struct _COMM_INTERFACE_DETAILS {
 BYTE interfaceNum;
 BYTE noOfEndpoints;
 USB_CDC_HEADER_FN_DSC Header_Fn_Dsc;
 USB_CDC_ACM_FN_DSC ACM_Fn_Desc;
 USB_CDC_UNION_FN_DSC Union_Fn_Desc;
 USB_CDC_CALL_MGT_FN_DSC Call_Mgt_Fn_Desc;
 WORD endpointMaxDataSize;
 WORD endpointInDataSize;
 WORD endpointOutDataSize;
 BYTE endpointPollInterval;
 BYTE endpointType;
 BYTE endpointIN;
 BYTE endpointOUT;
} COMM_INTERFACE_DETAILS;

Members

Members Description

BYTE interfaceNum; communication interface number

BYTE noOfEndpoints; Number endpoints for communication interface Functional Descriptor Details

USB_CDC_HEADER_FN_DSC
Header_Fn_Dsc;

Header Function Descriptor

USB_CDC_ACM_FN_DSC
ACM_Fn_Desc;

Abstract Control Model Function Descriptor

USB_CDC_UNION_FN_DSC
Union_Fn_Desc;

Union Function Descriptor

USB_CDC_CALL_MGT_FN_DSC
Call_Mgt_Fn_Desc;

Call Management Function Descriptor Endpoint Descriptor Details

WORD endpointMaxDataSize; Max data size for a interface.

WORD endpointInDataSize; Max data size for a interface.

WORD endpointOutDataSize; Max data size for a interface.

BYTE endpointPollInterval; Polling rate of corresponding interface.

BYTE endpointType; Endpoint type - either Isochronous or Bulk

BYTE endpointIN; IN endpoint for comm interface.

BYTE endpointOUT; IN endpoint for comm interface.

Description

This structure stores communication interface details of the attached CDC device

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

447

7.3.5.2.2 DATA_INTERFACE_DETAILS Structure
File

usb_host_cdc.h

C

typedef struct _DATA_INTERFACE_DETAILS {
 BYTE interfaceNum;
 BYTE noOfEndpoints;
 WORD endpointInDataSize;
 WORD endpointOutDataSize;
 BYTE endpointType;
 BYTE endpointIN;
 BYTE endpointOUT;
} DATA_INTERFACE_DETAILS;

Members

Members Description

BYTE interfaceNum; Data interface number

BYTE noOfEndpoints; number of endpoints associated with data interface

WORD endpointInDataSize; Max data size for a interface.

WORD endpointOutDataSize; Max data size for a interface.

BYTE endpointType; Endpoint type - either Isochronous or Bulk

BYTE endpointIN; IN endpoint for comm interface.

BYTE endpointOUT; IN endpoint for comm interface.

Description

This structure stores data interface details of the attached CDC device

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

448

7.3.5.2.3 USB_CDC_ACM_FN_DSC Structure
File

usb_host_cdc.h

C

typedef struct _USB_CDC_ACM_FN_DSC {
 BYTE bFNLength;
 BYTE bDscType;
 BYTE bDscSubType;
 BYTE bmCapabilities;
} USB_CDC_ACM_FN_DSC;

Members

Members Description

BYTE bFNLength; Size of this functional descriptor, in bytes.

BYTE bDscType; CS_INTERFACE

BYTE bDscSubType; Abstract Control Management functional descriptor subtype as defined in
[USBCDC1.2].

BYTE bmCapabilities; The capabilities that this configuration supports. (A bit value of zero means that
the request is not supported.)

Description

Abstract Control Management Functional Descriptor

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

449

7.3.5.2.4 USB_CDC_CALL_MGT_FN_DSC Structure
File

usb_host_cdc.h

C

typedef struct _USB_CDC_CALL_MGT_FN_DSC {
 BYTE bFNLength;
 BYTE bDscType;
 BYTE bDscSubType;
 BYTE bmCapabilities;
 BYTE bDataInterface;
} USB_CDC_CALL_MGT_FN_DSC;

Members

Members Description

BYTE bFNLength; Size of this functional descriptor, in bytes.

BYTE bDscType; CS_INTERFACE

BYTE bDscSubType; Call Management functional descriptor subtype, as defined in [USBCDC1.2].

BYTE bmCapabilities; The capabilities that this configuration supports:

BYTE bDataInterface; Interface number of Data Class interface optionally used for call management.

Description

Call Management Functional Descriptor

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

450

7.3.5.2.5 USB_CDC_CONTROL_SIGNAL_BITMAP Union
File

usb_host_cdc.h

C

typedef union _USB_CDC_CONTROL_SIGNAL_BITMAP {
 BYTE _byte;
 struct {
 unsigned DTE_PRESENT : 1;
 unsigned CARRIER_CONTROL : 1;
 }
} USB_CDC_CONTROL_SIGNAL_BITMAP;

Members

Members Description

unsigned DTE_PRESENT : 1; 0] Not Present [1] Present

unsigned CARRIER_CONTROL : 1; 0] Deactivate [1] Activate

Description

This is type USB_CDC_CONTROL_SIGNAL_BITMAP.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

451

7.3.5.2.6 USB_CDC_DEVICE_INFO Structure
File

usb_host_cdc.h

C

typedef struct _USB_CDC_DEVICE_INFO {
 BYTE* userData;
 WORD reportSize;
 WORD remainingBytes;
 WORD bytesTransferred;
 union {
 struct {
 BYTE bfDirection : 1;
 BYTE bfReset : 1;
 BYTE bfClearDataIN : 1;
 BYTE bfClearDataOUT : 1;
 }
 BYTE val;
 } flags;
 BYTE driverSupported;
 BYTE deviceAddress;
 BYTE errorCode;
 BYTE state;
 BYTE returnState;
 BYTE noOfInterfaces;
 BYTE interface;
 BYTE endpointDATA;
 BYTE commRequest;
 BYTE clientDriverID;
 COMM_INTERFACE_DETAILS commInterface;
 DATA_INTERFACE_DETAILS dataInterface;
} USB_CDC_DEVICE_INFO;

Members

Members Description

BYTE* userData; Data pointer to application buffer.

WORD reportSize; Total length of user data

WORD remainingBytes; Number bytes remaining to be transferrerd in case user data length is more
than 64 bytes

WORD bytesTransferred; Number of bytes transferred to/from the user's data buffer.

BYTE bfDirection : 1; Direction of current transfer (0=OUT, 1=IN).

BYTE bfReset : 1; Flag indicating to perform CDC Reset.

BYTE bfClearDataIN : 1; Flag indicating to clear the IN endpoint.

BYTE bfClearDataOUT : 1; Flag indicating to clear the OUT endpoint.

BYTE driverSupported; If CDC driver supports requested Class,Subclass & Protocol.

BYTE deviceAddress; Address of the device on the bus.

BYTE errorCode; Error code of last error.

BYTE state; State machine state of the device.

BYTE returnState; State to return to after performing error handling.

BYTE noOfInterfaces; Total number of interfaces in the device.

BYTE interface; Interface number of current transfer.

BYTE endpointDATA; Endpoint to use for the current transfer.

BYTE commRequest; Current Communication code

BYTE clientDriverID; Client driver ID for device requests.

COMM_INTERFACE_DETAILS
commInterface;

This structure stores communication interface details.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

452

DATA_INTERFACE_DETAILS
dataInterface;

This structure stores data interface details.

Description

This structure is used to hold information about an attached CDC device

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

453

7.3.5.2.7 USB_CDC_HEADER_FN_DSC Structure
File

usb_host_cdc.h

C

typedef struct _USB_CDC_HEADER_FN_DSC {
 BYTE bFNLength;
 BYTE bDscType;
 BYTE bDscSubType;
 BYTE bcdCDC[2];
} USB_CDC_HEADER_FN_DSC;

Members

Members Description

BYTE bFNLength; Size of this functional descriptor, in bytes.

BYTE bDscType; CS_INTERFACE

BYTE bDscSubType; Header. This is defined in [USBCDC1.2], which defines this as a header.

BYTE bcdCDC[2]; USB Class Definitions for Communications Devices Specification release
number in binary-coded decimal.

Description

Header Functional Descriptor

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

454

7.3.5.2.8 USB_CDC_LINE_CODING Union
File

usb_host_cdc.h

C

typedef union _USB_CDC_LINE_CODING {
 struct {
 BYTE _byte[USB_CDC_LINE_CODING_LENGTH];
 }
 struct {
 DWORD_VAL dwDTERate;
 BYTE bCharFormat;
 BYTE bParityType;
 BYTE bDataBits;
 }
} USB_CDC_LINE_CODING;

Members

Members Description

DWORD_VAL dwDTERate; Data terminal rate, in bits per second.

BYTE bCharFormat; Stop bits 0:1 Stop bit, 1:1.5 Stop bits, 2:2 Stop bits

BYTE bParityType; Parity 0:None, 1:Odd, 2:Even, 3:Mark, 4:Space

BYTE bDataBits; Data bits (5, 6, 7, 8 or 16)

Description

This is type USB_CDC_LINE_CODING.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

455

7.3.5.2.9 USB_CDC_UNION_FN_DSC Structure
File

usb_host_cdc.h

C

typedef struct _USB_CDC_UNION_FN_DSC {
 BYTE bFNLength;
 BYTE bDscType;
 BYTE bDscSubType;
 BYTE bMasterIntf;
 BYTE bSaveIntf0;
} USB_CDC_UNION_FN_DSC;

Members

Members Description

BYTE bFNLength; Size of this functional descriptor, in bytes.

BYTE bDscType; CS_INTERFACE

BYTE bDscSubType; Union Descriptor Functional Descriptor subtype as defined in [USBCDC1.2].

BYTE bMasterIntf; Interface number of the control (Communications Class) interface

BYTE bSaveIntf0; Interface number of the subordinate (Data Class) interface

Description

Union Functional Descriptor

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

456

7.3.5.2.10 DEVICE_CLASS_CDC Macro
File

usb_host_cdc.h

C

#define DEVICE_CLASS_CDC 0x02 // CDC Interface Class Code

Description

CDC Interface Class Code

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

457

7.3.5.2.11 EVENT_CDC_COMM_READ_DONE Macro
File

usb_host_cdc.h

C

#define EVENT_CDC_COMM_READ_DONE EVENT_CDC_BASE + EVENT_CDC_OFFSET + 2 // A CDC
Communication Read transfer has completed

Description

A CDC Communication Read transfer has completed

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

458

7.3.5.2.12 EVENT_CDC_COMM_WRITE_DONE Macro
File

usb_host_cdc.h

C

#define EVENT_CDC_COMM_WRITE_DONE EVENT_CDC_BASE + EVENT_CDC_OFFSET + 3 // A CDC
Communication Write transfer has completed

Description

A CDC Communication Write transfer has completed

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

459

7.3.5.2.13 EVENT_CDC_DATA_READ_DONE Macro
File

usb_host_cdc.h

C

#define EVENT_CDC_DATA_READ_DONE EVENT_CDC_BASE + EVENT_CDC_OFFSET + 4 // A CDC Data Read
transfer has completed

Description

A CDC Data Read transfer has completed

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

460

7.3.5.2.14 EVENT_CDC_DATA_WRITE_DONE Macro
File

usb_host_cdc.h

C

#define EVENT_CDC_DATA_WRITE_DONE EVENT_CDC_BASE + EVENT_CDC_OFFSET + 5 // A CDC Data
Write transfer has completed

Description

A CDC Data Write transfer has completed

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

461

7.3.5.2.15 EVENT_CDC_NAK_TIMEOUT Macro
File

usb_host_cdc.h

C

#define EVENT_CDC_NAK_TIMEOUT EVENT_CDC_BASE + EVENT_CDC_OFFSET + 7 // CDC device NAK
timeout has occurred

Description

CDC device NAK timeout has occurred

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

462

7.3.5.2.16 EVENT_CDC_NONE Macro
File

usb_host_cdc.h

C

#define EVENT_CDC_NONE EVENT_CDC_BASE + EVENT_CDC_OFFSET + 0 // No event occured (NULL
event)

Description

No event occured (NULL event)

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

463

7.3.5.2.17 EVENT_CDC_OFFSET Macro
File

usb_host_cdc.h

C

#define EVENT_CDC_OFFSET 0

Description

If the application has not defined an offset for CDC events, set it to 0.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

464

7.3.5.2.18 EVENT_CDC_RESET Macro
File

usb_host_cdc.h

C

#define EVENT_CDC_RESET EVENT_CDC_BASE + EVENT_CDC_OFFSET + 6 // CDC reset complete

Description

CDC reset complete

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

465

7.3.5.2.19 USB_CDC_ABSTRACT_CONTROL_MODEL Macro
File

usb_host_cdc.h

C

#define USB_CDC_ABSTRACT_CONTROL_MODEL 0x02 // Abstract Control Model

Description

Abstract Control Model

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

466

7.3.5.2.20 USB_CDC_ATM_NETWORKING_CONTROL_MODEL Macro
File

usb_host_cdc.h

C

#define USB_CDC_ATM_NETWORKING_CONTROL_MODEL 0x07 // ATM Networking Control Model

Description

ATM Networking Control Model

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

467

7.3.5.2.21 USB_CDC_CAPI_CONTROL_MODEL Macro
File

usb_host_cdc.h

C

#define USB_CDC_CAPI_CONTROL_MODEL 0x05 // CAPI Control Model

Description

CAPI Control Model

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

468

7.3.5.2.22 USB_CDC_CLASS_ERROR Macro
File

usb_host_cdc.h

C

#define USB_CDC_CLASS_ERROR USB_ERROR_CLASS_DEFINED

Description

CDC Class Error Codes

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

469

7.3.5.2.23 USB_CDC_COMM_INTF Macro
File

usb_host_cdc.h

C

#define USB_CDC_COMM_INTF 0x02 // Communication Interface Class Code

Description

Communication Interface Class Code

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

470

7.3.5.2.24 USB_CDC_COMMAND_FAILED Macro
File

usb_host_cdc.h

C

#define USB_CDC_COMMAND_FAILED (USB_CDC_CLASS_ERROR | 0x01) // Command failed at the device.

Description

Command failed at the device.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

471

7.3.5.2.25 USB_CDC_COMMAND_PASSED Macro
File

usb_host_cdc.h

C

#define USB_CDC_COMMAND_PASSED USB_SUCCESS // Command was successful.

Description

Command was successful.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

472

7.3.5.2.26 USB_CDC_CONTROL_LINE_LENGTH Macro
File

usb_host_cdc.h

C

#define USB_CDC_CONTROL_LINE_LENGTH 0x00 // Number of bytes Control line transfer

Description

Number of bytes Control line transfer

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

473

7.3.5.2.27 USB_CDC_CS_ENDPOINT Macro
File

usb_host_cdc.h

C

#define USB_CDC_CS_ENDPOINT 0x25

Description

This is macro USB_CDC_CS_ENDPOINT.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

474

7.3.5.2.28 USB_CDC_CS_INTERFACE Macro
File

usb_host_cdc.h

C

#define USB_CDC_CS_INTERFACE 0x24

Description

Functional Descriptor Details Type Values for the bDscType Field

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

475

7.3.5.2.29 USB_CDC_DATA_INTF Macro
File

usb_host_cdc.h

C

#define USB_CDC_DATA_INTF 0x0A

Description

Data Interface Class Codes

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

476

7.3.5.2.30 USB_CDC_DEVICE_BUSY Macro
File

usb_host_cdc.h

C

#define USB_CDC_DEVICE_BUSY (USB_CDC_CLASS_ERROR | 0x04) // A transfer is currently in
progress.

Description

A transfer is currently in progress.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

477

7.3.5.2.31 USB_CDC_DEVICE_DETACHED Macro
File

usb_host_cdc.h

C

#define USB_CDC_DEVICE_DETACHED 0x50 // Device is detached.

Description

Device is detached.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

478

7.3.5.2.32 USB_CDC_DEVICE_HOLDING Macro
File

usb_host_cdc.h

C

#define USB_CDC_DEVICE_HOLDING 0x54 // Device is holding due to error

Description

Device is holding due to error

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

479

7.3.5.2.33 USB_CDC_DEVICE_MANAGEMENT Macro
File

usb_host_cdc.h

C

#define USB_CDC_DEVICE_MANAGEMENT 0x09 // Device Management

Description

Device Management

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

480

7.3.5.2.34 USB_CDC_DEVICE_NOT_FOUND Macro
File

usb_host_cdc.h

C

#define USB_CDC_DEVICE_NOT_FOUND (USB_CDC_CLASS_ERROR | 0x03) // Device with the specified
address is not available.

Description

Device with the specified address is not available.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

481

7.3.5.2.35 USB_CDC_DIRECT_LINE_CONTROL_MODEL Macro
File

usb_host_cdc.h

C

#define USB_CDC_DIRECT_LINE_CONTROL_MODEL 0x01 // Direct Line Control Model

Description

Direct Line Control Model

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

482

7.3.5.2.36 USB_CDC_DSC_FN_ACM Macro
File

usb_host_cdc.h

C

#define USB_CDC_DSC_FN_ACM 0x02 // ACM - Abstract Control Management

Description

ACM - Abstract Control Management

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

483

7.3.5.2.37 USB_CDC_DSC_FN_CALL_MGT Macro
File

usb_host_cdc.h

C

#define USB_CDC_DSC_FN_CALL_MGT 0x01

Description

This is macro USB_CDC_DSC_FN_CALL_MGT.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

484

7.3.5.2.38 USB_CDC_DSC_FN_COUNTRY_SELECTION Macro
File

usb_host_cdc.h

C

#define USB_CDC_DSC_FN_COUNTRY_SELECTION 0x07

Description

This is macro USB_CDC_DSC_FN_COUNTRY_SELECTION.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

485

7.3.5.2.39 USB_CDC_DSC_FN_DLM Macro
File

usb_host_cdc.h

C

#define USB_CDC_DSC_FN_DLM 0x03 // DLM - Direct Line Managment

Description

DLM - Direct Line Managment

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

486

7.3.5.2.40 USB_CDC_DSC_FN_HEADER Macro
File

usb_host_cdc.h

C

#define USB_CDC_DSC_FN_HEADER 0x00

Description

bDscSubType in Functional Descriptors

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

487

7.3.5.2.41 USB_CDC_DSC_FN_RPT_CAPABILITIES Macro
File

usb_host_cdc.h

C

#define USB_CDC_DSC_FN_RPT_CAPABILITIES 0x05

Description

This is macro USB_CDC_DSC_FN_RPT_CAPABILITIES.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

488

7.3.5.2.42 USB_CDC_DSC_FN_TEL_OP_MODES Macro
File

usb_host_cdc.h

C

#define USB_CDC_DSC_FN_TEL_OP_MODES 0x08

Description

This is macro USB_CDC_DSC_FN_TEL_OP_MODES.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

489

7.3.5.2.43 USB_CDC_DSC_FN_TELEPHONE_RINGER Macro
File

usb_host_cdc.h

C

#define USB_CDC_DSC_FN_TELEPHONE_RINGER 0x04

Description

This is macro USB_CDC_DSC_FN_TELEPHONE_RINGER.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

490

7.3.5.2.44 USB_CDC_DSC_FN_UNION Macro
File

usb_host_cdc.h

C

#define USB_CDC_DSC_FN_UNION 0x06

Description

This is macro USB_CDC_DSC_FN_UNION.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

491

7.3.5.2.45 USB_CDC_DSC_FN_USB_TERMINAL Macro
File

usb_host_cdc.h

C

#define USB_CDC_DSC_FN_USB_TERMINAL 0x09

Description

This is macro USB_CDC_DSC_FN_USB_TERMINAL.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

492

7.3.5.2.46 USB_CDC_ETHERNET_EMULATION_MODEL Macro
File

usb_host_cdc.h

C

#define USB_CDC_ETHERNET_EMULATION_MODEL 0x0C // Ethernet Emulation Model

Description

Ethernet Emulation Model

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

493

7.3.5.2.47 USB_CDC_ETHERNET_NETWORKING_CONTROL_MODEL Macro
File

usb_host_cdc.h

C

#define USB_CDC_ETHERNET_NETWORKING_CONTROL_MODEL 0x06 // Ethernet Networking Control Model

Description

Ethernet Networking Control Model

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

494

7.3.5.2.48 USB_CDC_GET_COMM_FEATURE Macro
File

usb_host_cdc.h

C

#define USB_CDC_GET_COMM_FEATURE 0x03 // Returns the current settings for the
communications feature.

Description

Returns the current settings for the communications feature.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

495

7.3.5.2.49 USB_CDC_GET_ENCAPSULATED_REQUEST Macro
File

usb_host_cdc.h

C

#define USB_CDC_GET_ENCAPSULATED_REQUEST 0x01 // Requests a response in the format of
the supported control protocol.

Description

Requests a response in the format of the supported control protocol.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

496

7.3.5.2.50 USB_CDC_GET_LINE_CODING Macro
File

usb_host_cdc.h

C

#define USB_CDC_GET_LINE_CODING 0x21 // Requests current DTE rate, stop-bits, parity,
and number-of-character bits.

Description

Requests current DTE rate, stop-bits, parity, and number-of-character bits.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

497

7.3.5.2.51 USB_CDC_ILLEGAL_REQUEST Macro
File

usb_host_cdc.h

C

#define USB_CDC_ILLEGAL_REQUEST (USB_CDC_CLASS_ERROR | 0x0B) // Cannot perform requested
operation.

Description

Cannot perform requested operation.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

498

7.3.5.2.52 USB_CDC_INITIALIZING Macro
File

usb_host_cdc.h

C

#define USB_CDC_INITIALIZING 0x51 // Device is initializing.

Description

Device is initializing.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

499

7.3.5.2.53 USB_CDC_INTERFACE_ERROR Macro
File

usb_host_cdc.h

C

#define USB_CDC_INTERFACE_ERROR (USB_CDC_CLASS_ERROR | 0x06) // The interface layer cannot
support the device.

Description

The interface layer cannot support the device.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

500

7.3.5.2.54 USB_CDC_LINE_CODING_LENGTH Macro
File

usb_host_cdc.h

C

#define USB_CDC_LINE_CODING_LENGTH 0x07 // Number of bytes Line Coding transfer

Description

Number of bytes Line Coding transfer

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

501

7.3.5.2.55 USB_CDC_MOBILE_DIRECT_LINE_MODEL Macro
File

usb_host_cdc.h

C

#define USB_CDC_MOBILE_DIRECT_LINE_MODEL 0x0A // Mobile Direct Line Model

Description

Mobile Direct Line Model

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

502

7.3.5.2.56 USB_CDC_MULTI_CHANNEL_CONTROL_MODEL Macro
File

usb_host_cdc.h

C

#define USB_CDC_MULTI_CHANNEL_CONTROL_MODEL 0x04 // Multi-Channel Control Model

Description

Multi-Channel Control Model

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

503

7.3.5.2.57 USB_CDC_NO_PROTOCOL Macro
File

usb_host_cdc.h

C

#define USB_CDC_NO_PROTOCOL 0x00 // No class specific protocol required

Description

No class specific protocol required For more.... see Table 7 in USB CDC Specification 1.2

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

504

7.3.5.2.58 USB_CDC_NO_REPORT_DESCRIPTOR Macro
File

usb_host_cdc.h

C

#define USB_CDC_NO_REPORT_DESCRIPTOR (USB_CDC_CLASS_ERROR | 0x05) // No report descriptor
found

Description

No report descriptor found

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

505

7.3.5.2.59 USB_CDC_NORMAL_RUNNING Macro
File

usb_host_cdc.h

C

#define USB_CDC_NORMAL_RUNNING 0x53 // Device is running and available for data
transfers.

Description

Device is running and available for data transfers.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

506

7.3.5.2.60 USB_CDC_OBEX Macro
File

usb_host_cdc.h

C

#define USB_CDC_OBEX 0x0B // OBEX

Description

OBEX

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

507

7.3.5.2.61 USB_CDC_PHASE_ERROR Macro
File

usb_host_cdc.h

C

#define USB_CDC_PHASE_ERROR (USB_CDC_CLASS_ERROR | 0x02) // Command had a phase error at
the device.

Description

Command had a phase error at the device.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

508

7.3.5.2.62 USB_CDC_REPORT_DESCRIPTOR_BAD Macro
File

usb_host_cdc.h

C

#define USB_CDC_REPORT_DESCRIPTOR_BAD (USB_CDC_CLASS_ERROR | 0x05) // Report Descriptor for
not proper

Description

Report Descriptor for not proper

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

509

7.3.5.2.63 USB_CDC_RESET_ERROR Macro
File

usb_host_cdc.h

C

#define USB_CDC_RESET_ERROR (USB_CDC_CLASS_ERROR | 0x0A) // An error occurred while
resetting the device.

Description

An error occurred while resetting the device.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

510

7.3.5.2.64 USB_CDC_RESETTING_DEVICE Macro
File

usb_host_cdc.h

C

#define USB_CDC_RESETTING_DEVICE 0x55 // Device is being reset.

Description

Device is being reset.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

511

7.3.5.2.65 USB_CDC_SEND_BREAK Macro
File

usb_host_cdc.h

C

#define USB_CDC_SEND_BREAK 0x23 // Sends special carrier modulation used to specify
[V24] style break.

Description

Sends special carrier modulation used to specify [V24] style break.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

512

7.3.5.2.66 USB_CDC_SEND_ENCAPSULATED_COMMAND Macro
File

usb_host_cdc.h

C

#define USB_CDC_SEND_ENCAPSULATED_COMMAND 0x00 // Issues a command in the format of the
supported control protocol.

Description

Issues a command in the format of the supported control protocol.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

513

7.3.5.2.67 USB_CDC_SET_COMM_FEATURE Macro
File

usb_host_cdc.h

C

#define USB_CDC_SET_COMM_FEATURE 0x02 // Controls the settings for a particular
communications feature.

Description

Controls the settings for a particular communications feature.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

514

7.3.5.2.68 USB_CDC_SET_CONTROL_LINE_STATE Macro
File

usb_host_cdc.h

C

#define USB_CDC_SET_CONTROL_LINE_STATE 0x22 // [V24] signal used to tell the DCE device
the DTE device is now present.

Description

V24] signal used to tell the DCE device the DTE device is now present.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

515

7.3.5.2.69 USB_CDC_SET_LINE_CODING Macro
File

usb_host_cdc.h

C

#define USB_CDC_SET_LINE_CODING 0x20 // Configures DTE rate, stop-bits, parity, and
number-of-character bits.

Description

Configures DTE rate, stop-bits, parity, and number-of-character bits.

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

516

7.3.5.2.70 USB_CDC_TELEPHONE_CONTROL_MODEL Macro
File

usb_host_cdc.h

C

#define USB_CDC_TELEPHONE_CONTROL_MODEL 0x03 // Telephone Control Model

Description

Telephone Control Model

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

517

7.3.5.2.71 USB_CDC_V25TER Macro
File

usb_host_cdc.h

C

#define USB_CDC_V25TER 0x01 // Common AT commands ("Hayes(TM)")

Description

Common AT commands ("Hayes(TM)")

7.3 Embedded Host API MCHPFSUSB Library Help CDC Client Driver

518

7.3.5.2.72 USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL Macro
File

usb_host_cdc.h

C

#define USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL 0x08 // Wireless Handset Control Model

Description

Wireless Handset Control Model

7.3.6 Charger Client Driver

This Client Driver gives an application the ability to charge the rechargeable batteries of many USB devices.

Description

USB devices that obey the USB specification will only draw 100mA from the bus until they are enumerated and less than
2.5mA when the bus is idle. In some situations this is not sufficient for a quick charge of the batteries. These devices often
have a mode where they request more than 100mA but require permission from the host before drawing that current. This
client driver simply allows a device to enumerate for the purpose of allowing this charging rate.

This client driver can be utilized for any device where the VID and PID are known. But the stack also contains a provision to
allow a client driver to be used for any VID and PID by specifying a VID of 0xFFFF and a PID of 0xFFFF in the TPL. BE
SURE THAT THIS IS THE LAST ENTRY IN THE TPL.

Chargers and devices can also follow the USB Battery Charging specification
(http://www.usb.org/developers/devclass_docs/batt_charging_1_0.zip). Not all devices implement this specification,
however, so some devices will not be able to charge with chargers using this specification.

7.3 Embedded Host API MCHPFSUSB Library Help Charger Client Driver

519

7.3.6.1 Interface Routines
Functions

Name Description

USBHostChargerDeviceDetached(
page 521)

This interface is used to check if the devich has been detached from
the bus.

USBHostChargerEventHandler(
page 522)

This routine is called by the Host layer to notify the charger client of
events that occur.

USBHostChargerGetDeviceAddress(
page 523)

This interface is used get the address of a specific generic device on
the USB.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Charger Client Driver

520

7.3.6.1.1 USBHostChargerDeviceDetached Function
File

usb_host_charger.h

C

BOOL USBHostChargerDeviceDetached(
 BYTE deviceAddress
);

Description

This interface is used to check if the devich has been detached from the bus.

Remarks

None

Preconditions

None

Example

if (USBHostChargerDeviceDetached(deviceAddress))
{
 // Handle detach
}

Parameters

Parameters Description

deviceAddress USB Address of the device.

Return Values

Return Values Description

TRUE The device has been detached, or an invalid deviceAddress is given.

FALSE The device is attached

Function

BOOL USBHostChargerDeviceDetached(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Charger Client Driver

521

7.3.6.1.2 USBHostChargerEventHandler Function
This routine is called by the Host layer to notify the charger client of events that occur.

File

usb_host_charger.h

C

BOOL USBHostChargerEventHandler(
 BYTE address,
 USB_EVENT event,
 void * data,
 DWORD size
);

Description

This routine is called by the Host layer to notify the charger client of events that occur. If the event is recognized, it is
handled and the routine returns TRUE. Otherwise, it is ignored and the routine returns FALSE.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE address Address of device with the event

USB_EVENT event The bus event that occured

void *data Pointer to event-specific data

DWORD size Size of the event-specific data

Return Values

Return Values Description

TRUE The event was handled

FALSE The event was not handled

Function

BOOL USBHostChargerEventHandler (BYTE address, USB_EVENT event,

void *data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Charger Client Driver

522

7.3.6.1.3 USBHostChargerGetDeviceAddress Function
File

usb_host_charger.h

C

BOOL USBHostChargerGetDeviceAddress(
 USB_CHARGING_DEVICE_ID * pDevID
);

Description

This interface is used get the address of a specific generic device on the USB.

Remarks

None

Preconditions

The device must be connected and enumerated.

Example

USB_CHARGING_DEVICE_ID deviceID;
BYTE deviceAddress;

deviceID.vid = 0x1234;
deviceID.pid = 0x5678;

if (USBHostChargerGetDeviceAddress(&deviceID))
{
 deviceAddress = deviceID.deviceAddress;
}

Parameters

Parameters Description

pDevID Pointer to a structure containing the Device ID Info (VID, PID, and device
address).

Return Values

Return Values Description

TRUE The device is connected

FALSE The device is not connected.

Function

BOOL USBHostChargerGetDeviceAddress(USB_CHARGING_DEVICE_ID *pDevID)

7.3 Embedded Host API MCHPFSUSB Library Help Charger Client Driver

523

7.3.6.2 Data Type and Constants
Macros

Name Description

EVENT_CHARGER_ATTACH(
page 525)

This event indicates that a device has been attached for charging.
When USB_HOST_APP_EVENT_HANDLER(page 337) is called
with this event, *data points to a USB_CHARGING_DEVICE_ID
structure, and size is the size of the USB_CHARGING_DEVICE_ID
structure.

EVENT_CHARGER_DETACH(
page 526)

This event indicates that the specified device has been detached from
the USB. When USB_HOST_APP_EVENT_HANDLER(page 337) is
called with this event, *data points to a BYTE that contains the device
address, and size is the size of a BYTE.

EVENT_CHARGER_OFFSET(
page 527)

This is an optional offset for the values of the generated events. If
necessary, the application can use a non-zero offset for the generic
events to resolve conflicts in event number.

USB_MAX_CHARGING_DEVICES(
page 528)

Max Number of Supported Devices
This value represents the maximum number of attached devices this
client driver can support. If the user does not define a value, it will be
set to 1.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Charger Client Driver

524

7.3.6.2.1 EVENT_CHARGER_ATTACH Macro
File

usb_host_charger.h

C

#define EVENT_CHARGER_ATTACH (EVENT_CHARGER_BASE+EVENT_CHARGER_OFFSET+0)

Description

This event indicates that a device has been attached for charging. When USB_HOST_APP_EVENT_HANDLER(page
337) is called with this event, *data points to a USB_CHARGING_DEVICE_ID structure, and size is the size of the
USB_CHARGING_DEVICE_ID structure.

7.3 Embedded Host API MCHPFSUSB Library Help Charger Client Driver

525

7.3.6.2.2 EVENT_CHARGER_DETACH Macro
File

usb_host_charger.h

C

#define EVENT_CHARGER_DETACH (EVENT_CHARGER_BASE+EVENT_CHARGER_OFFSET+1)

Description

This event indicates that the specified device has been detached from the USB. When
USB_HOST_APP_EVENT_HANDLER(page 337) is called with this event, *data points to a BYTE that contains the device
address, and size is the size of a BYTE.

7.3 Embedded Host API MCHPFSUSB Library Help Charger Client Driver

526

7.3.6.2.3 EVENT_CHARGER_OFFSET Macro
File

usb_host_charger.h

C

#define EVENT_CHARGER_OFFSET 0

Description

This is an optional offset for the values of the generated events. If necessary, the application can use a non-zero offset for
the generic events to resolve conflicts in event number.

7.3 Embedded Host API MCHPFSUSB Library Help Charger Client Driver

527

7.3.6.2.4 USB_MAX_CHARGING_DEVICES Macro
File

usb_host_charger.h

C

#define USB_MAX_CHARGING_DEVICES 1

Description

Max Number of Supported Devices

This value represents the maximum number of attached devices this client driver can support. If the user does not define a
value, it will be set to 1.

7.3.7 Generic Client Driver

This is a generic client driver for use with the USB Embedded Host driver.

Description

Many USB applications do not fall under the category of an existing class. For these applications, the developer can create a
custom driver, and utilize the Generic client driver to communicate with the device.

The Generic class offers simple wrappers to USB functions, with additional device management support.

See AN1143 - USB Generic Client on an Embedded Host for more information about this client driver.

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

528

7.3.7.1 Interface Routines
Functions

Name Description

USBHostGenericEventHandler(
page 531)

This routine is called by the Host layer to notify the general client of
events that occur.

USBHostGenericGetDeviceAddress(
page 532)

This interface is used get the address of a specific generic device on
the USB.

USBHostGenericInit(page 534) This function is called by the USB Embedded Host layer when a
"generic" device attaches.

USBHostGenericRead(page 535) Use this routine to receive from the device and store it into memory.

USBHostGenericRxIsComplete(
page 537)

This routine indicates whether or not the last IN transfer is complete.

USBHostGenericTxIsComplete(
page 539)

This routine indicates whether or not the last OUT transfer is complete.

USBHostGenericWrite(page 540) Use this routine to transmit data from memory to the device.

Macros

Name Description

USBHostGenericDeviceDetached(
page 530)

This interface is used to check if the devich has been detached from the
bus.

USBHostGenericGetRxLength(
page 533)

This function retrieves the number of bytes copied to user's buffer by the
most recent call to the USBHostGenericRead(page 535)() function.

USBHostGenericRxIsBusy(page
536)

This interface is used to check if the client driver is currently busy
receiving data from the device.

USBHostGenericTxIsBusy(page
538)

This interface is used to check if the client driver is currently busy
transmitting data to the device.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

529

7.3.7.1.1 USBHostGenericDeviceDetached Macro
File

usb_host_generic.h

C

#define USBHostGenericDeviceDetached(a) ((((a)==gc_DevData.ID.deviceAddress) &&
gc_DevData.flags.initialized == 1) ? FALSE : TRUE)

Description

This interface is used to check if the devich has been detached from the bus.

Remarks

None

Preconditions

None

Example

if (USBHostGenericDeviceDetached(deviceAddress))
{
 // Handle detach
}

Parameters

Parameters Description

BYTE deviceAddress USB Address of the device.

Return Values

Return Values Description

TRUE The device has been detached, or an invalid deviceAddress is given.

FALSE The device is attached

Function

BOOL USBHostGenericDeviceDetached(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

530

7.3.7.1.2 USBHostGenericEventHandler Function
This routine is called by the Host layer to notify the general client of events that occur.

File

usb_host_generic.h

C

BOOL USBHostGenericEventHandler(
 BYTE address,
 USB_EVENT event,
 void * data,
 DWORD size
);

Description

This routine is called by the Host layer to notify the general client of events that occur. If the event is recognized, it is handled
and the routine returns TRUE. Otherwise, it is ignored and the routine returns FALSE.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE address Address of device with the event

USB_EVENT event The bus event that occured

void *data Pointer to event-specific data

DWORD size Size of the event-specific data

Return Values

Return Values Description

TRUE The event was handled

FALSE The event was not handled

Function

BOOL USBHostGenericEventHandler (BYTE address, USB_EVENT event,

void *data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

531

7.3.7.1.3 USBHostGenericGetDeviceAddress Function
File

usb_host_generic.h

C

BOOL USBHostGenericGetDeviceAddress(
 GENERIC_DEVICE_ID * pDevID
);

Description

This interface is used get the address of a specific generic device on the USB.

Remarks

None

Preconditions

The device must be connected and enumerated.

Example

GENERIC_DEVICE_ID deviceID;
WORD serialNumber[] = { '1', '2', '3', '4', '5', '6' };
BYTE deviceAddress;

deviceID.vid = 0x1234;
deviceID.pid = 0x5678;
deviceID.serialNumber = &serialNumber;

if (USBHostGenericGetDeviceAddress(&deviceID))
{
 deviceAddress = deviceID.deviceAddress;
}

Parameters

Parameters Description

GENERIC_DEVICE_ID* pDevID Pointer to a structure containing the Device ID Info (VID, PID, serial number,
and device address).

Return Values

Return Values Description

TRUE The device is connected

FALSE The device is not connected.

Function

BOOL USBHostGenericGetDeviceAddress(GENERIC_DEVICE_ID(page 543) *pDevID)

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

532

7.3.7.1.4 USBHostGenericGetRxLength Macro
File

usb_host_generic.h

C

#define USBHostGenericGetRxLength(a) ((API_VALID(a)) ? gc_DevData.rxLength : 0)

Returns

Returns the number of bytes most recently received from the Generic device with address deviceAddress.

Description

This function retrieves the number of bytes copied to user's buffer by the most recent call to the USBHostGenericRead(
page 535)() function.

Remarks

This function can only be called once per transfer. Subsequent calls will return zero until new data has been received.

Preconditions

The device must be connected and enumerated.

Parameters

Parameters Description

BYTE deviceAddress USB Address of the device

Function

DWORD USBHostGenericGetRxLength(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

533

7.3.7.1.5 USBHostGenericInit Function
This function is called by the USB Embedded Host layer when a "generic" device attaches.

File

usb_host_generic.h

C

BOOL USBHostGenericInit(
 BYTE address,
 DWORD flags,
 BYTE clientDriverID
);

Description

This routine is a call out from the USB Embedded Host layer to the USB generic client driver. It is called when a "generic"
device has been connected to the host. Its purpose is to initialize and activate the USB Generic client driver.

Remarks

Multiple client drivers may be used in a single application. The USB Embedded Host layer will call the initialize routine
required for the attached device.

Preconditions

The device has been configured.

Parameters

Parameters Description

BYTE address Device's address on the bus

DWORD flags Initialization flags

BYTE clientDriverID ID to send when issuing a Device Request via USBHostIssueDeviceRequest(),
USBHostSetDeviceConfiguration(page 350)(), or
USBHostSetDeviceInterface().

Return Values

Return Values Description

TRUE Initialization was successful

FALSE Initialization failed

Function

BOOL USBHostGenericInit (BYTE address, DWORD flags, BYTE clientDriverID)

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

534

7.3.7.1.6 USBHostGenericRead Function
File

usb_host_generic.h

C

BYTE USBHostGenericRead(
 BYTE deviceAddress,
 void * buffer,
 DWORD length
);

Description

Use this routine to receive from the device and store it into memory.

Remarks

None

Preconditions

The device must be connected and enumerated.

Example

if (!USBHostGenericRxIsBusy(deviceAddress))
{
 USBHostGenericRead(deviceAddress, &buffer, sizeof(buffer));
}

Parameters

Parameters Description

BYTE deviceAddress USB Address of the device.

BYTE *buffer Pointer to the data buffer

DWORD length Number of bytes to be transferred

Return Values

Return Values Description

USB_SUCCESS The Read was started successfully

(USB error code) The Read was not started. See USBHostRead(page 346)() for a list of errors.

Function

void USBHostGenericRead(BYTE deviceAddress, BYTE *buffer, DWORD length)

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

535

7.3.7.1.7 USBHostGenericRxIsBusy Macro
This interface is used to check if the client driver is currently busy receiving data from the device.

File

usb_host_generic.h

C

#define USBHostGenericRxIsBusy(a) ((API_VALID(a)) ? ((gc_DevData.flags.rxBusy == 1) ? TRUE
: FALSE) : TRUE)

Description

This interface is used to check if the client driver is currently busy receiving data from the device. This function is intended
for use with transfer events. With polling, the function USBHostGenericRxIsComplete(page 537)() should be used.

Remarks

None

Preconditions

The device must be connected and enumerated.

Example

if (!USBHostGenericRxIsBusy(deviceAddress))
{
 USBHostGenericRead(deviceAddress, &buffer, sizeof(buffer));
}

Parameters

Parameters Description

BYTE deviceAddress USB Address of the device

Return Values

Return Values Description

TRUE The device is receiving data or an invalid deviceAddress is given.

FALSE The device is not receiving data

Function

BOOL USBHostGenericRxIsBusy(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

536

7.3.7.1.8 USBHostGenericRxIsComplete Function
This routine indicates whether or not the last IN transfer is complete.

File

usb_host_generic.h

C

BOOL USBHostGenericRxIsComplete(
 BYTE deviceAddress,
 BYTE * errorCode,
 DWORD * byteCount
);

Description

This routine indicates whether or not the last IN transfer is complete. If it is, then the returned errorCode and byteCount are
valid, and reflect the error code and the number of bytes received.

This function is intended for use with polling. With transfer events, the function USBHostGenericRxIsBusy(page 536)()
should be used.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Address of the attached peripheral

BYTE *errorCode Error code of the last transfer, if complete

DWORD *byteCount Bytes transferred during the last transfer, if complete

Return Values

Return Values Description

TRUE The IN transfer is complete. errorCode and byteCount are valid.

FALSE The IN transfer is not complete. errorCode and byteCount are invalid.

Function

BOOL USBHostGenericRxIsComplete(BYTE deviceAddress, BYTE *errorCode,

DWORD *byteCount)

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

537

7.3.7.1.9 USBHostGenericTxIsBusy Macro
This interface is used to check if the client driver is currently busy transmitting data to the device.

File

usb_host_generic.h

C

#define USBHostGenericTxIsBusy(a) ((API_VALID(a)) ? ((gc_DevData.flags.txBusy == 1) ? TRUE
: FALSE) : TRUE)

Description

This interface is used to check if the client driver is currently busy transmitting data to the device. This function is intended
for use with transfer events. With polling, the function USBHostGenericTxIsComplete(page 539)() should be used.

Remarks

None

Preconditions

The device must be connected and enumerated.

Example

if (!USBHostGenericTxIsBusy(deviceAddress))
{
 USBHostGenericWrite(deviceAddress, &buffer, sizeof(buffer));
}

Parameters

Parameters Description

BYTE deviceAddress USB Address of the device

Return Values

Return Values Description

TRUE The device is transmitting data or an invalid deviceAddress is given.

FALSE The device is not transmitting data

Function

BOOL USBHostGenericTxIsBusy(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

538

7.3.7.1.10 USBHostGenericTxIsComplete Function
This routine indicates whether or not the last OUT transfer is complete.

File

usb_host_generic.h

C

BOOL USBHostGenericTxIsComplete(
 BYTE deviceAddress,
 BYTE * errorCode
);

Description

This routine indicates whether or not the last OUT transfer is complete. If it is, then the returned errorCode is valid, and
reflect the error code of the transfer.

This function is intended for use with polling. With transfer events, the function USBHostGenericTxIsBusy(page 538)()
should be used.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Address of the attached peripheral

BYTE *errorCode Error code of the last transfer, if complete

Return Values

Return Values Description

TRUE The OUT transfer is complete. errorCode is valid.

FALSE The OUT transfer is not complete. errorCode is invalid.

Function

BOOL USBHostGenericTxIsComplete(BYTE deviceAddress, BYTE *errorCode)

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

539

7.3.7.1.11 USBHostGenericWrite Function
File

usb_host_generic.h

C

BYTE USBHostGenericWrite(
 BYTE deviceAddress,
 void * buffer,
 DWORD length
);

Description

Use this routine to transmit data from memory to the device.

Remarks

None

Preconditions

The device must be connected and enumerated.

Example

if (!USBHostGenericTxIsBusy(deviceAddress))
{
 USBHostGenericWrite(deviceAddress, &buffer, sizeof(buffer));
}

Parameters

Parameters Description

BYTE deviceAddress USB Address of the device.

BYTE *buffer Pointer to the data buffer

DWORD length Number of bytes to be transferred

Return Values

Return Values Description

USB_SUCCESS The Write was started successfully

(USB error code) The Write was not started. See USBHostWrite(page 358)() for a list of errors.

Function

void USBHostGenericWrite(BYTE deviceAddress, BYTE *buffer, DWORD length)

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

540

7.3.7.2 Data Types and Constants
Macros

Name Description

EVENT_GENERIC_ATTACH(
page 544)

This event indicates that a Generic device has been attached. When
USB_HOST_APP_EVENT_HANDLER(page 337) is called with this
event, *data points to a GENERIC_DEVICE_ID(page 543) structure, and
size is the size of the GENERIC_DEVICE_ID(page 543) structure.

EVENT_GENERIC_DETACH(
page 545)

This event indicates that the specified device has been detached from the
USB. When USB_HOST_APP_EVENT_HANDLER(page 337) is called
with this event, *data points to a BYTE that contains the device address,
and size is the size of a BYTE.

EVENT_GENERIC_OFFSET(
page 546)

This is an optional offset for the values of the generated events. If
necessary, the application can use a non-zero offset for the generic events
to resolve conflicts in event number.

EVENT_GENERIC_RX_DONE(
page 547)

This event indicates that a previous read request has completed. These
events are enabled if USB Embedded Host transfer events are enabled
(USB_ENABLE_TRANSFER_EVENT is defined). When
USB_HOST_APP_EVENT_HANDLER(page 337) is called with this
event, *data points to the receive buffer, and size is the actual number of
bytes read from the device.

EVENT_GENERIC_TX_DONE(
page 548)

This event indicates that a previous write request has completed. These
events are enabled if USB Embedded Host transfer events are enabled
(USB_ENABLE_TRANSFER_EVENT is defined). When
USB_HOST_APP_EVENT_HANDLER(page 337) is called with this
event, *data points to the buffer that completed transmission, and size is the
actual number of bytes that were written to the device.

USB_GENERIC_EP(page 549) This is the default Generic Client Driver endpoint number.

Types

Name Description

GENERIC_DEVICE(page
542)

Generic Device Information
This structure contains information about an attached device, including status
flags and device identification.

GENERIC_DEVICE_ID(
page 543)

Generic Device ID Information
This structure contains identification information about an attached device.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

541

7.3.7.2.1 GENERIC_DEVICE Type
File

usb_host_generic.h

C

typedef struct _GENERIC_DEVICE GENERIC_DEVICE;

Description

Generic Device Information

This structure contains information about an attached device, including status flags and device identification.

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

542

7.3.7.2.2 GENERIC_DEVICE_ID Type
File

usb_host_generic.h

C

typedef struct _GENERIC_DEVICE_ID GENERIC_DEVICE_ID;

Description

Generic Device ID Information

This structure contains identification information about an attached device.

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

543

7.3.7.2.3 EVENT_GENERIC_ATTACH Macro
File

usb_host_generic.h

C

#define EVENT_GENERIC_ATTACH (EVENT_GENERIC_BASE+EVENT_GENERIC_OFFSET+0)

Description

This event indicates that a Generic device has been attached. When USB_HOST_APP_EVENT_HANDLER(page 337) is
called with this event, *data points to a GENERIC_DEVICE_ID(page 543) structure, and size is the size of the
GENERIC_DEVICE_ID(page 543) structure.

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

544

7.3.7.2.4 EVENT_GENERIC_DETACH Macro
File

usb_host_generic.h

C

#define EVENT_GENERIC_DETACH (EVENT_GENERIC_BASE+EVENT_GENERIC_OFFSET+1)

Description

This event indicates that the specified device has been detached from the USB. When
USB_HOST_APP_EVENT_HANDLER(page 337) is called with this event, *data points to a BYTE that contains the device
address, and size is the size of a BYTE.

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

545

7.3.7.2.5 EVENT_GENERIC_OFFSET Macro
File

usb_host_generic.h

C

#define EVENT_GENERIC_OFFSET 0

Description

This is an optional offset for the values of the generated events. If necessary, the application can use a non-zero offset for
the generic events to resolve conflicts in event number.

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

546

7.3.7.2.6 EVENT_GENERIC_RX_DONE Macro
File

usb_host_generic.h

C

#define EVENT_GENERIC_RX_DONE (EVENT_GENERIC_BASE+EVENT_GENERIC_OFFSET+3)

Description

This event indicates that a previous read request has completed. These events are enabled if USB Embedded Host transfer
events are enabled (USB_ENABLE_TRANSFER_EVENT is defined). When USB_HOST_APP_EVENT_HANDLER(page
337) is called with this event, *data points to the receive buffer, and size is the actual number of bytes read from the device.

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

547

7.3.7.2.7 EVENT_GENERIC_TX_DONE Macro
File

usb_host_generic.h

C

#define EVENT_GENERIC_TX_DONE (EVENT_GENERIC_BASE+EVENT_GENERIC_OFFSET+2)

Description

This event indicates that a previous write request has completed. These events are enabled if USB Embedded Host transfer
events are enabled (USB_ENABLE_TRANSFER_EVENT is defined). When USB_HOST_APP_EVENT_HANDLER(page
337) is called with this event, *data points to the buffer that completed transmission, and size is the actual number of bytes
that were written to the device.

7.3 Embedded Host API MCHPFSUSB Library Help Generic Client Driver

548

7.3.7.2.8 USB_GENERIC_EP Macro
File

usb_host_generic.h

C

#define USB_GENERIC_EP 1

Description

This is the default Generic Client Driver endpoint number.

7.3.8 HID Client Driver

This client driver provides USB Embedded Host support for HID devices.

Description

This client driver provides USB Embedded Host support for HID devices. Common HID devices include mice, keyboards,
and bar code scanners. Many other USB peripherals also use the HID class to transfer data, since it provides a simple,
flexible interface and does not require a custom Windows driver when used with a PC.

See AN1144 - USB HID Class on an Embedded Host and AN1212 - Using USB Keyboard with an Embedded Host for more
information.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

549

7.3.8.1 Interface Routines
Functions

Name Description

USBHostHID_ApiFindBit(page 552) This function is used to locate a specific button or indicator.
Once the report descriptor is parsed by the HID layer without
any error, data from the report descriptor is stored in pre defined
dat structures. This function traverses these data structure and
exract data required by application

USBHostHID_ApiFindValue(page 553) Find a specific Usage Value. Once the report descriptor is
parsed by the HID layer without any error, data from the report
descriptor is stored in pre defined dat structures. This function
traverses these data structure and exract data required by
application.

USBHostHID_ApiGetCurrentInterfaceNum(
page 554)

This function reurns the interface number of the cuurent report
descriptor parsed. This function must be called to fill data
interface detail data structure and passed as parameter when
requesinf for report transfers.

USBHostHID_ApiImportData(page 556) This function can be used by application to extract data from the
input reports. On receiving the input report from the device
application can call the function with required inputs
'HID_DATA_DETAILS(page 592)'.

USBHostHID_HasUsage(page 561) This function is used to locate the usage in a report descriptor.
Function will look into the data structures created by the HID
parser and return the appropriate location.

USBHostHIDDeviceDetect(page 562) This function determines if a HID device is attached and ready to
use.

USBHostHIDDeviceStatus(page 563)

USBHostHIDEventHandler(page 564) This function is the event handler for this client driver.

USBHostHIDInitialize(page 565) This function is the initialization routine for this client driver.

USBHostHIDResetDevice(page 567) This function starts a HID reset.

USBHostHIDResetDeviceWithWait(page
568)

This function resets a HID device, and waits until the reset is
complete.

USBHostHIDTasks(page 569) This function performs the maintenance tasks required by HID
class

USBHostHIDTerminateTransfer(page 570) This function terminates a transfer that is in progress.

USBHostHIDTransfer(page 571) This function starts a HID transfer.

USBHostHIDTransferIsComplete(page
572)

This function indicates whether or not the last transfer is
complete.

Macros

Name Description

USBHostHID_ApiGetReport(page
555)

This macro provides legacy support for an older API function.

USBHostHID_ApiSendReport(page
557)

This macro provides legacy support for an older API function.

USBHostHID_ApiTransferIsComplete(
page 558)

This macro provides legacy support for an older API function.

USBHostHID_GetCurrentReportInfo(
page 559)

This function returns a pointer to the current report info structure.

USBHostHID_GetItemListPointers(
page 560)

This function returns a pointer to list of item pointers stored in a
structure.

USBHostHIDRead(page 566) This function starts a Get report transfer reuest from the device,
utilizing the function USBHostHIDTransfer(page 571)();

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

550

USBHostHIDWrite(page 573) This function starts a Set report transfer request to the device,
utilizing the function USBHostHIDTransfer(page 571)();

Description

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

551

7.3.8.1.1 USBHostHID_ApiFindBit Function
File

usb_host_hid.h

C

BOOL USBHostHID_ApiFindBit(
 WORD usagePage,
 WORD usage,
 HIDReportTypeEnum type,
 BYTE* Report_ID,
 BYTE* Report_Length,
 BYTE* Start_Bit
);

Description

This function is used to locate a specific button or indicator. Once the report descriptor is parsed by the HID layer without
any error, data from the report descriptor is stored in pre defined dat structures. This function traverses these data structure
and exract data required by application

Remarks

Application event handler with event 'EVENT_HID_RPT_DESC_PARSED(page 589)' is called. Application is suppose to
fill in data details in structure 'HID_DATA_DETAILS(page 592)'. This function can be used to the get the details of the
required usages.

Preconditions

None

Parameters

Parameters Description

WORD usagePage usage page supported by application

WORD usage usage supported by application

HIDReportTypeEnum type report type Input/Output for the particular usage

BYTE* Report_ID returns the report ID of the required usage

BYTE* Report_Length returns the report length of the required usage

BYTE* Start_Bit returns the start bit of the usage in a particular report

Return Values

Return Values Description

TRUE If the required usage is located in the report descriptor

FALSE If the application required usage is not supported by the device(i.e report
descriptor).

Function

BOOL USBHostHID_ApiFindBit(WORD usagePage,WORD usage, HIDReportTypeEnum(page 601) type,

BYTE* Report_ID, BYTE* Report_Length, BYTE* Start_Bit)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

552

7.3.8.1.2 USBHostHID_ApiFindValue Function
File

usb_host_hid.h

C

BOOL USBHostHID_ApiFindValue(
 WORD usagePage,
 WORD usage,
 HIDReportTypeEnum type,
 BYTE* Report_ID,
 BYTE* Report_Length,
 BYTE* Start_Bit,
 BYTE* Bit_Length
);

Description

Find a specific Usage Value. Once the report descriptor is parsed by the HID layer without any error, data from the report
descriptor is stored in pre defined dat structures. This function traverses these data structure and exract data required by
application.

Remarks

Application event handler with event 'EVENT_HID_RPT_DESC_PARSED(page 589)' is called. Application is suppose to
fill in data details structure 'HID_DATA_DETAILS(page 592)' This function can be used to the get the details of the
required usages.

Preconditions

None

Parameters

Parameters Description

WORD usagePage usage page supported by application

WORD usage usage supported by application

HIDReportTypeEnum type report type Input/Output for the particular usage

BYTE* Report_ID returns the report ID of the required usage

BYTE* Report_Length returns the report length of the required usage

BYTE* Start_Bit returns the start bit of the usage in a particular report

BYTE* Bit_Length returns size of requested usage type data in bits

Return Values

Return Values Description

TRUE If the required usage is located in the report descriptor

FALSE If the application required usage is not supported by the device(i.e report
descriptor).

Function

BOOL USBHostHID_ApiFindValue(WORD usagePage,WORD usage,

HIDReportTypeEnum(page 601) type,BYTE* Report_ID,BYTE* Report_Length,BYTE*

Start_Bit, BYTE* Bit_Length)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

553

7.3.8.1.3 USBHostHID_ApiGetCurrentInterfaceNum Function
File

usb_host_hid.h

C

BYTE USBHostHID_ApiGetCurrentInterfaceNum();

Description

This function reurns the interface number of the cuurent report descriptor parsed. This function must be called to fill data
interface detail data structure and passed as parameter when requesinf for report transfers.

Remarks

None

Preconditions

None

Return Values

Return Values Description

TRUE Transfer is complete, errorCode is valid

FALSE Transfer is not complete, errorCode is not valid

Function

BYTE USBHostHID_ApiGetCurrentInterfaceNum(void)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

554

7.3.8.1.4 USBHostHID_ApiGetReport Macro
File

usb_host_hid.h

C

#define USBHostHID_ApiGetReport(r, i, s, d) USBHostHIDRead(1, r, i, s, d)

Description

This macro provides legacy support for an older API function.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

555

7.3.8.1.5 USBHostHID_ApiImportData Function
File

usb_host_hid.h

C

BOOL USBHostHID_ApiImportData(
 BYTE * report,
 WORD reportLength,
 HID_USER_DATA_SIZE * buffer,
 HID_DATA_DETAILS * pDataDetails
);

Description

This function can be used by application to extract data from the input reports. On receiving the input report from the device
application can call the function with required inputs 'HID_DATA_DETAILS(page 592)'.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE *report Input report received from device

WORD reportLength Length of input report report

HID_USER_DATA_SIZE *buffer Buffer into which data needs to be populated

HID_DATA_DETAILS *pDataDetails data details extracted from report descriptor

Return Values

Return Values Description

TRUE If the required data is retrieved from the report

FALSE If required data is not found.

Function

BOOL USBHostHID_ApiImportData(BYTE *report, WORD reportLength,

HID_USER_DATA_SIZE *buffer, HID_DATA_DETAILS(page 592) *pDataDetails)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

556

7.3.8.1.6 USBHostHID_ApiSendReport Macro
File

usb_host_hid.h

C

#define USBHostHID_ApiSendReport(r, i, s, d) USBHostHIDWrite(1, r, i, s, d)

Description

This macro provides legacy support for an older API function.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

557

7.3.8.1.7 USBHostHID_ApiTransferIsComplete Macro
File

usb_host_hid.h

C

#define USBHostHID_ApiTransferIsComplete(e, c) USBHostHIDTransferIsComplete(1, e, c)

Description

This macro provides legacy support for an older API function.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

558

7.3.8.1.8 USBHostHID_GetCurrentReportInfo Macro
File

usb_host_hid.h

C

#define USBHostHID_GetCurrentReportInfo (&deviceRptInfo)

Returns

BYTE * - Pointer to the report Info structure.

Description

This function returns a pointer to the current report info structure.

Remarks

None

Preconditions

None

Function

BYTE* USBHostHID_GetCurrentReportInfo(void)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

559

7.3.8.1.9 USBHostHID_GetItemListPointers Macro
File

usb_host_hid.h

C

#define USBHostHID_GetItemListPointers (&itemListPtrs)

Returns

BYTE * - Pointer to list of item pointers structure.

Description

This function returns a pointer to list of item pointers stored in a structure.

Remarks

None

Preconditions

None

Function

BYTE* USBHostHID_GetItemListPointers()

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

560

7.3.8.1.10 USBHostHID_HasUsage Function
File

usb_host_hid_parser.h

C

BOOL USBHostHID_HasUsage(
 HID_REPORTITEM * reportItem,
 WORD usagePage,
 WORD usage,
 WORD * pindex,
 BYTE* count
);

Description

This function is used to locate the usage in a report descriptor. Function will look into the data structures created by the HID
parser and return the appropriate location.

Remarks

None

Preconditions

None

Parameters

Parameters Description

HID_REPORTITEM *reportItem Report item index to be searched

WORD usagePage Application needs to pass the usagePage as the search criteria for the usage

WORD usage Application needs to pass the usageto be searched

WORD *pindex returns index to the usage item requested.

BYTE* count returns the remaining number of reports

Return Values

Return Values Description

BOOL FALSE - If requested usage is not found

TRUE if requested usage is found

Function

BOOL USBHostHID_HasUsage(HID_REPORTITEM(page 597) *reportItem, WORD usagePage,

WORD usage, WORD *pindex, BYTE* count)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

561

7.3.8.1.11 USBHostHIDDeviceDetect Function
File

usb_host_hid.h

C

BOOL USBHostHIDDeviceDetect(
 BYTE deviceAddress
);

Description

This function determines if a HID device is attached and ready to use.

Remarks

This function replaces the USBHostHID_ApiDeviceDetect() function.

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Address of the attached device.

Return Values

Return Values Description

TRUE HID present and ready

FALSE HID not present or not ready

Function

BOOL USBHostHIDDeviceDetect(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

562

7.3.8.1.12 USBHostHIDDeviceStatus Function
File

usb_host_hid.h

C

BYTE USBHostHIDDeviceStatus(
 BYTE deviceAddress
);

Description

This function determines the status of a HID device.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress address of device to query

Return Values

Return Values Description

USB_HID_DEVICE_NOT_FOUND(page 609) Illegal device address, or the device is not an HID

USB_HID_INITIALIZING(page 613) HID is attached and in the process of initializing

USB_PROCESSING_REPORT_DESCRIPTOR(
page 623)

HID device is detected and report descriptor is being parsed

USB_HID_NORMAL_RUNNING(page 617) HID Device is running normal, ready to send and receive reports

USB_HID_DEVICE_HOLDING(page 607) Driver has encountered error and could not recover

USB_HID_DEVICE_DETACHED(page 606) HID detached.

Function

BYTE USBHostHIDDeviceStatus(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

563

7.3.8.1.13 USBHostHIDEventHandler Function
This function is the event handler for this client driver.

File

usb_host_hid.h

C

BOOL USBHostHIDEventHandler(
 BYTE address,
 USB_EVENT event,
 void * data,
 DWORD size
);

Description

This function is the event handler for this client driver. It is called by the host layer when various events occur.

Remarks

None

Preconditions

The device has been initialized.

Parameters

Parameters Description

BYTE address Address of the device

USB_EVENT event Event that has occurred

void *data Pointer to data pertinent to the event

DWORD size Size of the data

Return Values

Return Values Description

TRUE Event was handled

FALSE Event was not handled

Function

BOOL USBHostHIDEventHandler(BYTE address, USB_EVENT event,

void *data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

564

7.3.8.1.14 USBHostHIDInitialize Function
This function is the initialization routine for this client driver.

File

usb_host_hid.h

C

BOOL USBHostHIDInitialize(
 BYTE address,
 DWORD flags,
 BYTE clientDriverID
);

Description

This function is the initialization routine for this client driver. It is called by the host layer when the USB device is being
enumerated.For a HID device we need to look into HID descriptor, interface descriptor and endpoint descriptor.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE address Address of the new device

DWORD flags Initialization flags

BYTE clientDriverID Client driver identification for device requests

Return Values

Return Values Description

TRUE We can support the device.

FALSE We cannot support the device.

Function

BOOL USBHostHIDInitialize(BYTE address, DWORD flags, BYTE clientDriverID)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

565

7.3.8.1.15 USBHostHIDRead Macro
This function starts a Get report transfer reuest from the device, utilizing the function USBHostHIDTransfer(page 571)();

File

usb_host_hid.h

C

#define USBHostHIDRead(deviceAddress,reportid,interface,size,data) \
 USBHostHIDTransfer(deviceAddress,1,interface,reportid,size,data)

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE reportid Report ID of the requested report

BYTE interface Interface number

BYTE size Byte size of the data buffer

BYTE *data Pointer to the data buffer

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_HID_DEVICE_NOT_FOUND(
page 609)

No device with specified address

USB_HID_DEVICE_BUSY(page 605) Device not in proper state for performing a transfer

Others Return values from USBHostRead(page 346)()

Function

BYTE USBHostHIDRead(BYTE deviceAddress,BYTE reportid, BYTE interface,

BYTE size, BYTE *data)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

566

7.3.8.1.16 USBHostHIDResetDevice Function
This function starts a HID reset.

File

usb_host_hid.h

C

BYTE USBHostHIDResetDevice(
 BYTE deviceAddress
);

Description

This function starts a HID reset. A reset can be issued only if the device is attached and not being initialized.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

Return Values

Return Values Description

USB_SUCCESS Reset started

USB_MSD_DEVICE_NOT_FOUND(
page 661)

No device with specified address

USB_MSD_ILLEGAL_REQUEST(page
664)

Device is in an illegal state for reset

Function

BYTE USBHostHIDResetDevice(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

567

7.3.8.1.17 USBHostHIDResetDeviceWithWait Function
File

usb_host_hid.h

C

BYTE USBHostHIDResetDeviceWithWait(
 BYTE deviceAddress
);

Description

This function resets a HID device, and waits until the reset is complete.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Address of the device to reset.

Return Values

Return Values Description

USB_SUCCESS Reset successful

USB_HID_RESET_ERROR(page 620) Error while resetting device

Others See return values for USBHostHIDResetDevice(page 567)() and error codes
that can be returned in the errorCode parameter of
USBHostHIDTransferIsComplete(page 572)();

Function

BOOL USBHostHIDResetDeviceWithWait(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

568

7.3.8.1.18 USBHostHIDTasks Function
This function performs the maintenance tasks required by HID class

File

usb_host_hid.h

C

void USBHostHIDTasks();

Returns

None

Description

This function performs the maintenance tasks required by the HID class. If transfer events from the host layer are not being
used, then it should be called on a regular basis by the application. If transfer events from the host layer are being used, this
function is compiled out, and does not need to be called.

Remarks

None

Preconditions

USBHostHIDInitialize(page 565)() has been called.

Function

void USBHostHIDTasks(void)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

569

7.3.8.1.19 USBHostHIDTerminateTransfer Function
This function terminates a transfer that is in progress.

File

usb_host_hid.h

C

BYTE USBHostHIDTerminateTransfer(
 BYTE deviceAddress,
 BYTE direction,
 BYTE interfaceNum
);

Description

This function terminates a transfer that is in progress.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE direction Transfer direction. Valid values are:

• 1 = In (Read)

• 0 = Out (Write)

BYTE interfaceNum Interface number

Return Values

Return Values Description

USB_SUCCESS Transfer terminated

USB_HID_DEVICE_NOT_FOUND(
page 609)

No device with specified address

Function

BYTE USBHostHIDTerminateTransfer(BYTE deviceAddress, BYTE direction, BYTE interfaceNum)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

570

7.3.8.1.20 USBHostHIDTransfer Function
This function starts a HID transfer.

File

usb_host_hid.h

C

BYTE USBHostHIDTransfer(
 BYTE deviceAddress,
 BYTE direction,
 BYTE interfaceNum,
 WORD reportid,
 WORD size,
 BYTE * data
);

Description

This function starts a HID transfer. A read/write wrapper is provided in application interface file to access this function.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE direction 1=read, 0=write

BYTE interfaceNum Interface number

BYTE reportid Report ID of the requested report

BYTE size Byte size of the data buffer

BYTE *data Pointer to the data buffer

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_HID_DEVICE_NOT_FOUND(
page 609)

No device with specified address

USB_HID_DEVICE_BUSY(page 605) Device not in proper state for performing a transfer

Others Return values from USBHostIssueDeviceRequest(), USBHostRead(page
346)(), and USBHostWrite(page 358)()

Function

USBHostHIDTransfer(BYTE deviceAddress, BYTE direction, BYTE interfaceNum,

BYTE reportid, BYTE size, BYTE *data)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

571

7.3.8.1.21 USBHostHIDTransferIsComplete Function
This function indicates whether or not the last transfer is complete.

File

usb_host_hid.h

C

BOOL USBHostHIDTransferIsComplete(
 BYTE deviceAddress,
 BYTE * errorCode,
 BYTE * byteCount
);

Description

This function indicates whether or not the last transfer is complete. If the functions returns TRUE, the returned byte count
and error code are valid. Since only one transfer can be performed at once and only one endpoint can be used, we only
need to know the device address.

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE *errorCode Error code from last transfer

DWORD *byteCount Number of bytes transferred

Return Values

Return Values Description

TRUE Transfer is complete, errorCode is valid

FALSE Transfer is not complete, errorCode is not valid

Function

BOOL USBHostHIDTransferIsComplete(BYTE deviceAddress,

BYTE *errorCode, DWORD *byteCount)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

572

7.3.8.1.22 USBHostHIDWrite Macro
This function starts a Set report transfer request to the device, utilizing the function USBHostHIDTransfer(page 571)();

File

usb_host_hid.h

C

#define USBHostHIDWrite(address,reportid,interface,size,data) \
 USBHostHIDTransfer(address,0,interface,reportid,size,data)

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE reportid Report ID of the requested report

BYTE interface Interface number

BYTE size Byte size of the data buffer

BYTE *data Pointer to the data buffer

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_HID_DEVICE_NOT_FOUND(
page 609)

No device with specified address

USB_HID_DEVICE_BUSY(page 605) Device not in proper state for performing a transfer

Others Return values from USBHostIssueDeviceRequest(), and USBHostWrite(page
358)()

Function

BYTE USBHostHIDWrite(BYTE deviceAddress,BYTE reportid, BYTE interface,

BYTE size, BYTE *data)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

573

7.3.8.2 Data Types and Constants
Enumerations

Name Description

HIDReportTypeEnum(page 601) This is type HIDReportTypeEnum.

USB_HID_RPT_DESC_ERROR(
page 622)

HID parser error codes
This enumerates the error encountered during the parsing of report
descriptor. In case of any error parsing is sttopped and the error is
flagged. Device is not attched successfully.

Macros

Name Description

DEVICE_CLASS_HID(page 577) HID Interface Class Code

DSC_HID(page 578) HID Descriptor Code

DSC_PHY(page 579) Pysical Descriptor Code

DSC_RPT(page 580) Report Descriptor Code

EVENT_HID_ATTACH(page 581) A HID device has attached. The returned data pointer
points to a USB_HID_DEVICE_ID(page 608) structure.

EVENT_HID_BAD_REPORT_DESCRIPTOR(
page 582)

There was a problem parsing the report descriptor of the
attached device. Communication with the device is not
allowed, and the device should be detached.

EVENT_HID_DETACH(page 583) A HID device has detached. The returned data pointer
points to a byte with the previous address of the detached
device.

EVENT_HID_NONE(page 584) No event occured (NULL event)

EVENT_HID_OFFSET(page 585) If the application has not defined an offset for HID events,
set it to 0.

EVENT_HID_READ_DONE(page 586) #define EVENT_HID_TRANSFER EVENT_HID_BASE +
EVENT_HID_OFFSET(page 585) + 3 // Unused - value
retained for legacy. A HID Read transfer has completed.
The returned data pointer points to a
HID_TRANSFER_DATA(page 599) structure, with
information about the transfer.

EVENT_HID_RESET(page 587) HID reset complete. The returned data pointer is NULL.

EVENT_HID_RESET_ERROR(page 588) An error occurred while trying to do a HID reset. The
returned data pointer is NULL.

EVENT_HID_RPT_DESC_PARSED(page 589) A Report Descriptor has been parsed. The returned data
pointer is NULL. The application must collect details, or
simply return TRUE if the application is already aware of
the data format.

EVENT_HID_WRITE_DONE(page 590) A HID Write transfer has completed. The returned data
pointer points to a HID_TRANSFER_DATA(page 599)
structure, with information about the transfer.

USB_HID_CLASS_ERROR(page 602)

USB_HID_COMMAND_FAILED(page 603) Command failed at the device.

USB_HID_COMMAND_PASSED(page 604) Command was successful.

USB_HID_DEVICE_BUSY(page 605) A transfer is currently in progress.

USB_HID_DEVICE_DETACHED(page 606) Device is detached.

USB_HID_DEVICE_HOLDING(page 607) Device is holding due to error

USB_HID_DEVICE_NOT_FOUND(page 609) Device with the specified address is not available.

USB_HID_ILLEGAL_REQUEST(page 612) Cannot perform requested operation.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

574

USB_HID_INITIALIZING(page 613) Device is initializing.

USB_HID_INTERFACE_ERROR(page 614) The interface layer cannot support the device.

USB_HID_NO_REPORT_DESCRIPTOR(page
616)

No report descriptor found

USB_HID_NORMAL_RUNNING(page 617) Device is running and available for data transfers.

USB_HID_PHASE_ERROR(page 618) Command had a phase error at the device.

USB_HID_REPORT_DESCRIPTOR_BAD(
page 619)

Report Descriptor for not proper

USB_HID_RESET_ERROR(page 620) An error occurred while resetting the device.

USB_HID_RESETTING_DEVICE(page 621) Device is being reset.

USB_PROCESSING_REPORT_DESCRIPTOR(
page 623)

Parser is processing report descriptor.

Structures

Name Description

_HID_COLLECTION(page 591) HID Collection Details
This structure contains information about each collection encountered in
the report descriptor.

_HID_DATA_DETAILS(page
592)

HID Data Details
This structure defines the objects used by the application to access
required report. Application must use parser interface functions to fill
these details. e.g. USBHostHID_ApiFindValue(page 553)

_HID_GLOBALS(page 594) HID Global Item Information
This structure contains information about each Global Item of the report
descriptor.

_HID_ITEM_INFO(page 595) HID Item Information
This structure contains information about each Item of the report
descriptor.

_HID_REPORT(page 596) HID Report details
This structure contains information about each report exchanged with the
device.

_HID_REPORTITEM(page 597) HID Report Details
This structure contains information about each Report encountered in the
report descriptor.

_HID_STRINGITEM(page 598) HID String Item Details
This structure contains information about each Report encountered in the
report descriptor.

_HID_TRANSFER_DATA(page
599)

HID Transfer Information
This structure is used when the event handler is used to notify the upper
layer of transfer completion (EVENT_HID_READ_DONE(page 586) or
EVENT_HID_WRITE_DONE(page 590)).

_HID_USAGEITEM(page 600) HID Report Details
This structure contains information about each Usage Item encountered
in the report descriptor.

_USB_HID_DEVICE_ID(page
608)

HID Device ID Information
This structure contains identification information about an attached device.

_USB_HID_DEVICE_RPT_INFO(
page 610)

Report Descriptor Information
This structure contains top level information of the report descriptor. This
information is important and is used to understand the information during
th ecourse of parsing. This structure also stores temporary data needed
during parsing the report descriptor. All of this information may not be of
much inportance to the application.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

575

_USB_HID_ITEM_LIST(page
615)

List of Items
This structure contains array of pointers to all the Items in the report
descriptor. HID parser will populate the lists while parsing the report
descriptor. This data is used by interface functions provided in file
usb_host_hid_interface.c to retrive data from the report received from the
device. Application can also access these details to retreive the intended
information incase provided interface function fail to do so.

HID_COLLECTION(page 591) HID Collection Details
This structure contains information about each collection encountered in
the report descriptor.

HID_DATA_DETAILS(page 592) HID Data Details
This structure defines the objects used by the application to access
required report. Application must use parser interface functions to fill
these details. e.g. USBHostHID_ApiFindValue(page 553)

HID_DESIGITEM(page 593) HID String Item Details
This structure contains information about each Report encountered in the
report descriptor.

HID_GLOBALS(page 594) HID Global Item Information
This structure contains information about each Global Item of the report
descriptor.

HID_ITEM_INFO(page 595) HID Item Information
This structure contains information about each Item of the report
descriptor.

HID_REPORT(page 596) HID Report details
This structure contains information about each report exchanged with the
device.

HID_REPORTITEM(page 597) HID Report Details
This structure contains information about each Report encountered in the
report descriptor.

HID_STRINGITEM(page 598) HID String Item Details
This structure contains information about each Report encountered in the
report descriptor.

HID_TRANSFER_DATA(page
599)

HID Transfer Information
This structure is used when the event handler is used to notify the upper
layer of transfer completion (EVENT_HID_READ_DONE(page 586) or
EVENT_HID_WRITE_DONE(page 590)).

HID_USAGEITEM(page 600) HID Report Details
This structure contains information about each Usage Item encountered
in the report descriptor.

USB_HID_DEVICE_ID(page
608)

HID Device ID Information
This structure contains identification information about an attached device.

USB_HID_DEVICE_RPT_INFO(
page 610)

Report Descriptor Information
This structure contains top level information of the report descriptor. This
information is important and is used to understand the information during
th ecourse of parsing. This structure also stores temporary data needed
during parsing the report descriptor. All of this information may not be of
much inportance to the application.

USB_HID_ITEM_LIST(page 615) List of Items
This structure contains array of pointers to all the Items in the report
descriptor. HID parser will populate the lists while parsing the report
descriptor. This data is used by interface functions provided in file
usb_host_hid_interface.c to retrive data from the report received from the
device. Application can also access these details to retreive the intended
information incase provided interface function fail to do so.

Description

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

576

7.3.8.2.1 DEVICE_CLASS_HID Macro
File

usb_host_hid.h

C

#define DEVICE_CLASS_HID 0x03 /* HID Interface Class Code */

Description

HID Interface Class Code

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

577

7.3.8.2.2 DSC_HID Macro
File

usb_host_hid.h

C

#define DSC_HID 0x21 /* HID Descriptor Code */

Description

HID Descriptor Code

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

578

7.3.8.2.3 DSC_PHY Macro
File

usb_host_hid.h

C

#define DSC_PHY 0x23 /* Pysical Descriptor Code */

Description

Pysical Descriptor Code

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

579

7.3.8.2.4 DSC_RPT Macro
File

usb_host_hid.h

C

#define DSC_RPT 0x2200 /* Report Descriptor Code */

Description

Report Descriptor Code

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

580

7.3.8.2.5 EVENT_HID_ATTACH Macro
File

usb_host_hid.h

C

#define EVENT_HID_ATTACH EVENT_HID_BASE + EVENT_HID_OFFSET + 7

Description

A HID device has attached. The returned data pointer points to a USB_HID_DEVICE_ID(page 608) structure.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

581

7.3.8.2.6 EVENT_HID_BAD_REPORT_DESCRIPTOR Macro
File

usb_host_hid.h

C

#define EVENT_HID_BAD_REPORT_DESCRIPTOR EVENT_HID_BASE + EVENT_HID_OFFSET + 9

Description

There was a problem parsing the report descriptor of the attached device. Communication with the device is not allowed,
and the device should be detached.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

582

7.3.8.2.7 EVENT_HID_DETACH Macro
File

usb_host_hid.h

C

#define EVENT_HID_DETACH EVENT_HID_BASE + EVENT_HID_OFFSET + 8

Description

A HID device has detached. The returned data pointer points to a byte with the previous address of the detached device.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

583

7.3.8.2.8 EVENT_HID_NONE Macro
File

usb_host_hid.h

C

#define EVENT_HID_NONE EVENT_HID_BASE + EVENT_HID_OFFSET + 0

Description

No event occured (NULL event)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

584

7.3.8.2.9 EVENT_HID_OFFSET Macro
File

usb_host_hid.h

C

#define EVENT_HID_OFFSET 0

Description

If the application has not defined an offset for HID events, set it to 0.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

585

7.3.8.2.10 EVENT_HID_READ_DONE Macro
File

usb_host_hid.h

C

#define EVENT_HID_READ_DONE EVENT_HID_BASE + EVENT_HID_OFFSET + 4

Description

#define EVENT_HID_TRANSFER EVENT_HID_BASE + EVENT_HID_OFFSET(page 585) + 3 // Unused - value retained
for legacy. A HID Read transfer has completed. The returned data pointer points to a HID_TRANSFER_DATA(page 599)
structure, with information about the transfer.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

586

7.3.8.2.11 EVENT_HID_RESET Macro
File

usb_host_hid.h

C

#define EVENT_HID_RESET EVENT_HID_BASE + EVENT_HID_OFFSET + 6

Description

HID reset complete. The returned data pointer is NULL.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

587

7.3.8.2.12 EVENT_HID_RESET_ERROR Macro
File

usb_host_hid.h

C

#define EVENT_HID_RESET_ERROR EVENT_HID_BASE + EVENT_HID_OFFSET + 10

Description

An error occurred while trying to do a HID reset. The returned data pointer is NULL.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

588

7.3.8.2.13 EVENT_HID_RPT_DESC_PARSED Macro
File

usb_host_hid.h

C

#define EVENT_HID_RPT_DESC_PARSED EVENT_HID_BASE + EVENT_HID_OFFSET + 1

Description

A Report Descriptor has been parsed. The returned data pointer is NULL. The application must collect details, or simply
return TRUE if the application is already aware of the data format.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

589

7.3.8.2.14 EVENT_HID_WRITE_DONE Macro
File

usb_host_hid.h

C

#define EVENT_HID_WRITE_DONE EVENT_HID_BASE + EVENT_HID_OFFSET + 5

Description

A HID Write transfer has completed. The returned data pointer points to a HID_TRANSFER_DATA(page 599) structure,
with information about the transfer.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

590

7.3.8.2.15 HID_COLLECTION Structure
File

usb_host_hid_parser.h

C

typedef struct _HID_COLLECTION {
 DWORD data;
 WORD usagePage;
 BYTE firstUsageItem;
 BYTE usageItems;
 BYTE firstReportItem;
 BYTE reportItems;
 BYTE parent;
 BYTE firstChild;
 BYTE nextSibling;
} HID_COLLECTION;

Members

Members Description

DWORD data; Collection raw data

WORD usagePage; Usage page associated with current level of collection

BYTE firstUsageItem; Index of First Usage Item in the current collection

BYTE usageItems; Number of Usage Items in the current collection

BYTE firstReportItem; Index of First report Item in the current collection

BYTE reportItems; Number of report Items in the current collection

BYTE parent; Index to Parent collection

BYTE firstChild; Index to next child collection in the report descriptor

BYTE nextSibling; Index to next child collection in the report descriptor

Description

HID Collection Details

This structure contains information about each collection encountered in the report descriptor.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

591

7.3.8.2.16 HID_DATA_DETAILS Structure
File

usb_host_hid.h

C

typedef struct _HID_DATA_DETAILS {
 WORD reportLength;
 WORD reportID;
 BYTE bitOffset;
 BYTE bitLength;
 BYTE count;
 BYTE signExtend;
 BYTE interfaceNum;
} HID_DATA_DETAILS;

Members

Members Description

WORD reportLength; reportLength - the expected length of the parent report.

WORD reportID; reportID - report ID - the first byte of the parent report.

BYTE bitOffset; BitOffset - bit offset within the report.

BYTE bitLength; bitlength - length of the data in bits.

BYTE count; count - what's left of the message after this data.

BYTE signExtend; extend - sign extend the data.

BYTE interfaceNum; interfaceNum - informs HID layer about interface number.

Description

HID Data Details

This structure defines the objects used by the application to access required report. Application must use parser interface
functions to fill these details. e.g. USBHostHID_ApiFindValue(page 553)

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

592

7.3.8.2.17 HID_DESIGITEM Structure
File

usb_host_hid_parser.h

C

typedef struct _HID_STRINGITEM {
 BOOL isRange;
 WORD index;
 WORD minimum;
 WORD maximum;
} HID_STRINGITEM, HID_DESIGITEM;

Members

Members Description

BOOL isRange; If range of String Item is valid

WORD index; String index for a String descriptor; allows a string to be associated with a
particular item or control

WORD minimum; Specifies the first string index when assigning a group of sequential strings to
controls in an array or bitmap

WORD maximum; Specifies the last string index when assigning a group of sequential strings to
controls in an array or bitmap

Description

HID String Item Details

This structure contains information about each Report encountered in the report descriptor.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

593

7.3.8.2.18 HID_GLOBALS Structure
File

usb_host_hid_parser.h

C

typedef struct _HID_GLOBALS {
 WORD usagePage;
 LONG logicalMinimum;
 LONG logicalMaximum;
 LONG physicalMinimum;
 LONG physicalMaximum;
 LONG unitExponent;
 LONG unit;
 WORD reportIndex;
 BYTE reportID;
 BYTE reportsize;
 BYTE reportCount;
} HID_GLOBALS;

Members

Members Description

WORD usagePage; Specifies current Usage Page

LONG logicalMinimum; This is the minimum value that a variable or array item will report

LONG logicalMaximum; This is the maximum value that a variable or array item will report

LONG physicalMinimum; Minimum value for the physical extent of a variable item

LONG physicalMaximum; Maximum value for the physical extent of a variable item

LONG unitExponent; Value of the unit exponent in base 10

LONG unit; Unit values

WORD reportIndex; Conter to keep track of report being processed in the parser

BYTE reportID; Report ID. All the reports are preceded by a single byte report ID

BYTE reportsize; Size of current report in bytes

BYTE reportCount; This field determines number of fields in the report

Description

HID Global Item Information

This structure contains information about each Global Item of the report descriptor.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

594

7.3.8.2.19 HID_ITEM_INFO Structure
File

usb_host_hid_parser.h

C

typedef struct _HID_ITEM_INFO {
 union {
 struct {
 BYTE ItemSize : 2;
 BYTE ItemType : 2;
 BYTE ItemTag : 4;
 }
 BYTE val;
 } ItemDetails;
 union {
 LONG sItemData;
 DWORD uItemData;
 BYTE bItemData[4];
 } Data;
} HID_ITEM_INFO;

Members

Members Description

BYTE ItemSize : 2; Numeric expression specifying size of data

BYTE ItemType : 2; This field identifies type of item(Main, Global or Local)

BYTE ItemTag : 4; This field specifies the function of the item

BYTE val; to access the data in byte format

LONG sItemData; Item Data is stored in signed format

DWORD uItemData; Item Data is stored in unsigned format

Description

HID Item Information

This structure contains information about each Item of the report descriptor.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

595

7.3.8.2.20 HID_REPORT Structure
File

usb_host_hid_parser.h

C

typedef struct _HID_REPORT {
 WORD reportID;
 WORD inputBits;
 WORD outputBits;
 WORD featureBits;
} HID_REPORT;

Members

Members Description

WORD reportID; Report ID of the associated report

WORD inputBits; If input report then length of report in bits

WORD outputBits; If output report then length of report in bits

WORD featureBits; If feature report then length of report in bits

Description

HID Report details

This structure contains information about each report exchanged with the device.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

596

7.3.8.2.21 HID_REPORTITEM Structure
File

usb_host_hid_parser.h

C

typedef struct _HID_REPORTITEM {
 HIDReportTypeEnum reportType;
 HID_GLOBALS globals;
 BYTE startBit;
 BYTE parent;
 DWORD dataModes;
 BYTE firstUsageItem;
 BYTE usageItems;
 BYTE firstStringItem;
 BYTE stringItems;
 BYTE firstDesignatorItem;
 BYTE designatorItems;
} HID_REPORTITEM;

Members

Members Description

HIDReportTypeEnum reportType; Type of Report Input/Output/Feature

HID_GLOBALS globals; Stores all the global items associated with the current report

BYTE startBit; Starting Bit Position of the report

BYTE parent; Index of parent collection

DWORD dataModes; this tells the data mode is array or not

BYTE firstUsageItem; Index to first usage item related to the report

BYTE usageItems; Number of usage items in the current report

BYTE firstStringItem; Index to first srting item in the list

BYTE stringItems; Number of string items in the current report

BYTE firstDesignatorItem; Index to first designator item

BYTE designatorItems; Number of designator items in the current report

Description

HID Report Details

This structure contains information about each Report encountered in the report descriptor.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

597

7.3.8.2.22 HID_STRINGITEM Structure
File

usb_host_hid_parser.h

C

typedef struct _HID_STRINGITEM {
 BOOL isRange;
 WORD index;
 WORD minimum;
 WORD maximum;
} HID_STRINGITEM, HID_DESIGITEM;

Members

Members Description

BOOL isRange; If range of String Item is valid

WORD index; String index for a String descriptor; allows a string to be associated with a
particular item or control

WORD minimum; Specifies the first string index when assigning a group of sequential strings to
controls in an array or bitmap

WORD maximum; Specifies the last string index when assigning a group of sequential strings to
controls in an array or bitmap

Description

HID String Item Details

This structure contains information about each Report encountered in the report descriptor.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

598

7.3.8.2.23 HID_TRANSFER_DATA Structure
File

usb_host_hid.h

C

typedef struct _HID_TRANSFER_DATA {
 DWORD dataCount;
 BYTE bErrorCode;
} HID_TRANSFER_DATA;

Members

Members Description

DWORD dataCount; Count of bytes transferred.

BYTE bErrorCode; Transfer error code.

Description

HID Transfer Information

This structure is used when the event handler is used to notify the upper layer of transfer completion
(EVENT_HID_READ_DONE(page 586) or EVENT_HID_WRITE_DONE(page 590)).

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

599

7.3.8.2.24 HID_USAGEITEM Structure
File

usb_host_hid_parser.h

C

typedef struct _HID_USAGEITEM {
 BOOL isRange;
 WORD usagePage;
 WORD usage;
 WORD usageMinimum;
 WORD usageMaximum;
} HID_USAGEITEM;

Members

Members Description

BOOL isRange; True if Usage item has a valid MAX and MIN range

WORD usagePage; Usage page ID asscociated with the Item

WORD usage; Usage ID asscociated with the Item

WORD usageMinimum; Defines the starting usage associated with an array or bitmap

WORD usageMaximum; Defines the ending usage associated with an array or bitmap

Description

HID Report Details

This structure contains information about each Usage Item encountered in the report descriptor.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

600

7.3.8.2.25 HIDReportTypeEnum Enumeration
File

usb_host_hid_parser.h

C

typedef enum {
 hidReportInput,
 hidReportOutput,
 hidReportFeature,
 hidReportUnknown
} HIDReportTypeEnum;

Description

This is type HIDReportTypeEnum.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

601

7.3.8.2.26 USB_HID_CLASS_ERROR Macro
File

usb_host_hid.h

C

#define USB_HID_CLASS_ERROR USB_ERROR_CLASS_DEFINED

Section

HID Class Error Codes

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

602

7.3.8.2.27 USB_HID_COMMAND_FAILED Macro
File

usb_host_hid.h

C

#define USB_HID_COMMAND_FAILED (USB_HID_CLASS_ERROR | HID_COMMAND_FAILED) // Command failed
at the device.

Description

Command failed at the device.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

603

7.3.8.2.28 USB_HID_COMMAND_PASSED Macro
File

usb_host_hid.h

C

#define USB_HID_COMMAND_PASSED USB_SUCCESS // Command was
successful.

Description

Command was successful.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

604

7.3.8.2.29 USB_HID_DEVICE_BUSY Macro
File

usb_host_hid.h

C

#define USB_HID_DEVICE_BUSY (USB_HID_CLASS_ERROR | 0x04) // A transfer is
currently in progress.

Description

A transfer is currently in progress.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

605

7.3.8.2.30 USB_HID_DEVICE_DETACHED Macro
File

usb_host_hid.h

C

#define USB_HID_DEVICE_DETACHED 0x50 // Device is detached.

Description

Device is detached.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

606

7.3.8.2.31 USB_HID_DEVICE_HOLDING Macro
File

usb_host_hid.h

C

#define USB_HID_DEVICE_HOLDING 0x54 // Device is holding due to error

Description

Device is holding due to error

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

607

7.3.8.2.32 USB_HID_DEVICE_ID Structure
File

usb_host_hid.h

C

typedef struct _USB_HID_DEVICE_ID {
 WORD vid;
 WORD pid;
 BYTE deviceAddress;
 BYTE clientDriverID;
} USB_HID_DEVICE_ID;

Members

Members Description

WORD vid; Vendor ID of the device

WORD pid; Product ID of the device

BYTE deviceAddress; Address of the device on the USB

BYTE clientDriverID; Client driver ID for device requests

Description

HID Device ID Information

This structure contains identification information about an attached device.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

608

7.3.8.2.33 USB_HID_DEVICE_NOT_FOUND Macro
File

usb_host_hid.h

C

#define USB_HID_DEVICE_NOT_FOUND (USB_HID_CLASS_ERROR | 0x03) // Device with
the specified address is not available.

Description

Device with the specified address is not available.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

609

7.3.8.2.34 USB_HID_DEVICE_RPT_INFO Structure
File

usb_host_hid_parser.h

C

typedef struct _USB_HID_DEVICE_RPT_INFO {
 WORD reportPollingRate;
 BYTE interfaceNumber;
 BOOL haveDesignatorMax;
 BOOL haveDesignatorMin;
 BOOL haveStringMax;
 BOOL haveStringMin;
 BOOL haveUsageMax;
 BOOL haveUsageMin;
 WORD designatorMaximum;
 WORD designatorMinimum;
 WORD designatorRanges;
 WORD designators;
 WORD rangeUsagePage;
 WORD stringMaximum;
 WORD stringMinimum;
 WORD stringRanges;
 WORD usageMaximum;
 WORD usageMinimum;
 WORD usageRanges;
 BYTE collectionNesting;
 BYTE collections;
 BYTE designatorItems;
 BYTE firstUsageItem;
 BYTE firstDesignatorItem;
 BYTE firstStringItem;
 BYTE globalsNesting;
 BYTE maxCollectionNesting;
 BYTE maxGlobalsNesting;
 BYTE parent;
 BYTE reportItems;
 BYTE reports;
 BYTE sibling;
 BYTE stringItems;
 BYTE strings;
 BYTE usageItems;
 BYTE usages;
 HID_GLOBALS globals;
} USB_HID_DEVICE_RPT_INFO;

Members

Members Description

WORD reportPollingRate; This stores the pollrate for the input report. Application can use this to decide
the rate of transfer

BYTE interfaceNumber; This stores the interface number for the current report descriptor

BOOL haveDesignatorMax; True if report descriptor has a valid Designator Max

BOOL haveDesignatorMin; True if report descriptor has a valid Designator Min

BOOL haveStringMax; True if report descriptor has a valid String Max

BOOL haveStringMin; True if report descriptor has a valid String Min

BOOL haveUsageMax; True if report descriptor has a valid Usage Max

BOOL haveUsageMin; True if report descriptor has a valid Usage Min

WORD designatorMaximum; Last designator max value

WORD designatorMinimum; Last designator min value

WORD designatorRanges; Last designator range

WORD designators; This tells toatal number of designator items

WORD rangeUsagePage; current usage page during parsing

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

610

WORD stringMaximum; current string maximum

WORD stringMinimum; current string minimum

WORD stringRanges; current string ranges

WORD usageMaximum; current usage maximum

WORD usageMinimum; current usage minimum

WORD usageRanges; current usage ranges

BYTE collectionNesting; this number tells depth of collection nesting

BYTE collections; total number of collections

BYTE designatorItems; total number of designator items

BYTE firstUsageItem; index of first usage item for the current collection

BYTE firstDesignatorItem; index of first designator item for the current collection

BYTE firstStringItem; index of first string item for the current collection

BYTE globalsNesting; On encountering every PUSH item , this is incremented , keep track of current
depth of Globals

BYTE maxCollectionNesting; Maximum depth of collections

BYTE maxGlobalsNesting; Maximum depth of Globals

BYTE parent; Parent collection

BYTE reportItems; total number of report items

BYTE reports; total number of reports

BYTE sibling; current sibling collection

BYTE stringItems; total number of string items , used to index the array of strings

BYTE strings; total sumber of strings

BYTE usageItems; total number of usage items , used to index the array of usage

BYTE usages; total sumber of usages

HID_GLOBALS globals; holds cuurent globals items

Description

Report Descriptor Information

This structure contains top level information of the report descriptor. This information is important and is used to understand
the information during th ecourse of parsing. This structure also stores temporary data needed during parsing the report
descriptor. All of this information may not be of much inportance to the application.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

611

7.3.8.2.35 USB_HID_ILLEGAL_REQUEST Macro
File

usb_host_hid.h

C

#define USB_HID_ILLEGAL_REQUEST (USB_HID_CLASS_ERROR | 0x0B) // Cannot perform requested
operation.

Description

Cannot perform requested operation.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

612

7.3.8.2.36 USB_HID_INITIALIZING Macro
File

usb_host_hid.h

C

#define USB_HID_INITIALIZING 0x51 // Device is initializing.

Description

Device is initializing.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

613

7.3.8.2.37 USB_HID_INTERFACE_ERROR Macro
File

usb_host_hid.h

C

#define USB_HID_INTERFACE_ERROR (USB_HID_CLASS_ERROR | 0x06) // The interface
layer cannot support the device.

Description

The interface layer cannot support the device.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

614

7.3.8.2.38 USB_HID_ITEM_LIST Structure
File

usb_host_hid_parser.h

C

typedef struct _USB_HID_ITEM_LIST {
 HID_COLLECTION * collectionList;
 HID_DESIGITEM * designatorItemList;
 HID_GLOBALS * globalsStack;
 HID_REPORTITEM * reportItemList;
 HID_REPORT * reportList;
 HID_STRINGITEM * stringItemList;
 HID_USAGEITEM * usageItemList;
 BYTE * collectionStack;
} USB_HID_ITEM_LIST;

Members

Members Description

HID_COLLECTION * collectionList; List of collections, see HID_COLLECTION(page 591) for details in the
structure

HID_DESIGITEM * designatorItemList; List of designator Items, see HID_DESIGITEM(page 593) for details in the
structure

HID_GLOBALS * globalsStack; List of global Items, see HID_GLOBALS(page 594) for details in the structure

HID_REPORTITEM * reportItemList; List of report Items, see HID_REPORTITEM(page 597) for details in the
structure

HID_REPORT * reportList; List of reports , see HID_REPORT(page 596) for details in the structure

HID_STRINGITEM * stringItemList; List of string item , see HID_STRINGITEM(page 598) for details in the
structure

HID_USAGEITEM * usageItemList; List of Usage item , see HID_USAGEITEM(page 600) for details in the
structure

BYTE * collectionStack; stores the array of parents ids for the collection

Description

List of Items

This structure contains array of pointers to all the Items in the report descriptor. HID parser will populate the lists while
parsing the report descriptor. This data is used by interface functions provided in file usb_host_hid_interface.c to retrive data
from the report received from the device. Application can also access these details to retreive the intended information
incase provided interface function fail to do so.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

615

7.3.8.2.39 USB_HID_NO_REPORT_DESCRIPTOR Macro
File

usb_host_hid.h

C

#define USB_HID_NO_REPORT_DESCRIPTOR (USB_HID_CLASS_ERROR | 0x05) // No
report descriptor found

Description

No report descriptor found

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

616

7.3.8.2.40 USB_HID_NORMAL_RUNNING Macro
File

usb_host_hid.h

C

#define USB_HID_NORMAL_RUNNING 0x53 // Device is running and available for data
transfers.

Description

Device is running and available for data transfers.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

617

7.3.8.2.41 USB_HID_PHASE_ERROR Macro
File

usb_host_hid.h

C

#define USB_HID_PHASE_ERROR (USB_HID_CLASS_ERROR | HID_PHASE_ERROR) // Command had a
phase error at the device.

Description

Command had a phase error at the device.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

618

7.3.8.2.42 USB_HID_REPORT_DESCRIPTOR_BAD Macro
File

usb_host_hid.h

C

#define USB_HID_REPORT_DESCRIPTOR_BAD (USB_HID_CLASS_ERROR | 0x07) // Report
Descriptor for not proper

Description

Report Descriptor for not proper

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

619

7.3.8.2.43 USB_HID_RESET_ERROR Macro
File

usb_host_hid.h

C

#define USB_HID_RESET_ERROR (USB_HID_CLASS_ERROR | 0x0A) // An error occurred while
resetting the device.

Description

An error occurred while resetting the device.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

620

7.3.8.2.44 USB_HID_RESETTING_DEVICE Macro
File

usb_host_hid.h

C

#define USB_HID_RESETTING_DEVICE 0x55 // Device is being reset.

Description

Device is being reset.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

621

7.3.8.2.45 USB_HID_RPT_DESC_ERROR Enumeration
File

usb_host_hid_parser.h

C

typedef enum {
 HID_ERR = 0,
 HID_ERR_NotEnoughMemory,
 HID_ERR_NullPointer,
 HID_ERR_UnexpectedEndCollection,
 HID_ERR_UnexpectedPop,
 HID_ERR_MissingEndCollection,
 HID_ERR_MissingTopLevelCollection,
 HID_ERR_NoReports,
 HID_ERR_UnmatchedUsageRange,
 HID_ERR_UnmatchedStringRange,
 HID_ERR_UnmatchedDesignatorRange,
 HID_ERR_UnexpectedEndOfDescriptor,
 HID_ERR_BadLogicalMin,
 HID_ERR_BadLogicalMax,
 HID_ERR_BadLogical,
 HID_ERR_ZeroReportSize,
 HID_ERR_ZeroReportID,
 HID_ERR_ZeroReportCount,
 HID_ERR_BadUsageRangePage,
 HID_ERR_BadUsageRange
} USB_HID_RPT_DESC_ERROR;

Members

Members Description

HID_ERR = 0 No error

HID_ERR_NotEnoughMemory If not enough Heap can be allocated, make sure sufficient dynamic memory is
aloocated for the parser

HID_ERR_NullPointer Pointer to report descriptor is NULL

HID_ERR_UnexpectedEndCollection End of collection not expected

HID_ERR_UnexpectedPop POP not expected

HID_ERR_MissingEndCollection No end of collection found

HID_ERR_MissingTopLevelCollection Atleast one collection must be present

HID_ERR_NoReports atlest one report must be present

HID_ERR_UnmatchedUsageRange Either Minimum or Maximum for usage range missing

HID_ERR_UnmatchedStringRange Either Minimum or Maximum for string range missing

HID_ERR_UnmatchedDesignatorRange Either Minimum or Maximum for designator range missing

HID_ERR_UnexpectedEndOfDescriptor Report descriptor not formatted properly

HID_ERR_BadLogicalMin Logical Min greater than report size

HID_ERR_BadLogicalMax Logical Max greater than report size

HID_ERR_BadLogical If logical Min is greater than Max

HID_ERR_ZeroReportSize Report size is zero

HID_ERR_ZeroReportID report ID is zero

HID_ERR_ZeroReportCount Number of reports is zero

HID_ERR_BadUsageRangePage Bad Usage page range

HID_ERR_BadUsageRange Bad Usage range

Description

HID parser error codes

This enumerates the error encountered during the parsing of report descriptor. In case of any error parsing is sttopped and
the error is flagged. Device is not attched successfully.

7.3 Embedded Host API MCHPFSUSB Library Help HID Client Driver

622

7.3.8.2.46 USB_PROCESSING_REPORT_DESCRIPTOR Macro
File

usb_host_hid.h

C

#define USB_PROCESSING_REPORT_DESCRIPTOR 0x52 // Parser is processing report descriptor.

Description

Parser is processing report descriptor.

7.3.9 Mass Storage Client Driver

This client driver provides USB Embedded Host support for mass storage devices.

Description

This client driver provides USB Embedded Host support for mass storage devices. Mass storage devices use USB Bulk
transfers to efficiently transfer large amounts of data. Bulk transfers may utilize all remaining bandwidth on the bus after all of
the Control, Interrupt, and Isochronous transfers for the frame have completed. The exact amount of time required for a bulk
transfer will depend on the amount of other traffic that is on the bus. Therefore, Bulk transfers should be used only for
non-time critical operations.

This implementation of the Mass Storage Class provides support for the Bulk Only Transport.

See AN1142 - USB Mass Storage Class on an Embedded Host for more information about the Mass Storage Class and this
client driver.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

623

7.3.9.1 Interface Routines
Functions

Name Description

USBHostMSDDeviceStatus(page
625)

This function determines the status of a mass storage device.

USBHostMSDEventHandler(page
626)

This function is the event handler for this client driver.

USBHostMSDInitialize(page 627) This function is the initialization routine for this client driver.

USBHostMSDResetDevice(page
629)

This function starts a bulk-only mass storage reset.

USBHostMSDSCSIEventHandler(
page 630)

This function is called when various events occur in the USB Host Mass
Storage client driver.

USBHostMSDSCSIInitialize(page
631)

This function is called when a USB Mass Storage device is being
enumerated.

USBHostMSDSCSISectorRead(
page 632)

This function reads one sector.

USBHostMSDSCSISectorWrite(
page 633)

This function writes one sector.

USBHostMSDTerminateTransfer(
page 634)

This function terminates a mass storage transfer.

USBHostMSDTransfer(page 635) This function starts a mass storage transfer.

USBHostMSDTransferIsComplete(
page 636)

This function indicates whether or not the last transfer is complete.

Macros

Name Description

USBHostMSDRead(page
628)

This function starts a mass storage read, utilizing the function
USBHostMSDTransfer(page 635)();

USBHostMSDWrite(page
637)

This function starts a mass storage write, utilizing the function
USBHostMSDTransfer(page 635)();

Description

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

624

7.3.9.1.1 USBHostMSDDeviceStatus Function
File

usb_host_msd.h

C

BYTE USBHostMSDDeviceStatus(
 BYTE deviceAddress
);

Description

This function determines the status of a mass storage device.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress address of device to query

Return Values

Return Values Description

USB_MSD_DEVICE_NOT_FOUND(
page 661)

Illegal device address, or the device is not an MSD

USB_MSD_INITIALIZING(page 665) MSD is attached and in the process of initializing

USB_MSD_NORMAL_RUNNING(page
668)

MSD is in normal running mode

USB_MSD_RESETTING_DEVICE(
page 672)

MSD is resetting

USB_MSD_DEVICE_DETACHED(
page 660)

MSD detached. Should not occur

USB_MSD_ERROR_STATE(page 663) MSD is holding due to an error. No communication is allowed.

Other Return codes from USBHostDeviceStatus(page 340)() will also be returned if
the device is in the process of enumerating.

Function

BYTE USBHostMSDDeviceStatus(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

625

7.3.9.1.2 USBHostMSDEventHandler Function
This function is the event handler for this client driver.

File

usb_host_msd.h

C

BOOL USBHostMSDEventHandler(
 BYTE address,
 USB_EVENT event,
 void * data,
 DWORD size
);

Description

This function is the event handler for this client driver. It is called by the host layer when various events occur.

Remarks

None

Preconditions

The device has been initialized.

Parameters

Parameters Description

BYTE address Address of the device

USB_EVENT event Event that has occurred

void *data Pointer to data pertinent to the event

WORD size Size of the data

Return Values

Return Values Description

TRUE Event was handled

FALSE Event was not handled

Function

BOOL USBHostMSDEventHandler(BYTE address, USB_EVENT event,

void *data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

626

7.3.9.1.3 USBHostMSDInitialize Function
This function is the initialization routine for this client driver.

File

usb_host_msd.h

C

BOOL USBHostMSDInitialize(
 BYTE address,
 DWORD flags,
 BYTE clientDriverID
);

Description

This function is the initialization routine for this client driver. It is called by the host layer when the USB device is being
enumerated. For a mass storage device, we need to make sure that we have room for a new device, and that the device has
at least one bulk IN and one bulk OUT endpoint.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE address Address of the new device

DWORD flags Initialization flags

BYTE clientDriverID ID to send when issuing a Device Request via USBHostSendDeviceRequest(),
USBHostSetDeviceConfiguration(page 350)(), or
USBHostSetDeviceInterface().

Return Values

Return Values Description

TRUE We can support the device.

FALSE We cannot support the device.

Function

BOOL USBHostMSDInitialize(BYTE address, DWORD flags, BYTE clientDriverID)

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

627

7.3.9.1.4 USBHostMSDRead Macro
File

usb_host_msd.h

C

#define USBHostMSDRead(
deviceAddress,deviceLUN,commandBlock,commandBlockLength,data,dataLength) \
 USBHostMSDTransfer(deviceAddress, deviceLUN, 1, commandBlock, commandBlockLength,
data, dataLength)

Description

This function starts a mass storage read, utilizing the function USBHostMSDTransfer(page 635)();

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE deviceLUN Device LUN to access

BYTE *commandBlock Pointer to the command block for the CBW

BYTE commandBlockLength Length of the command block

BYTE *data Pointer to the data buffer

DWORD dataLength Byte size of the data buffer

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_MSD_DEVICE_NOT_FOUND(
page 661)

No device with specified address

USB_MSD_DEVICE_BUSY(page 659) Device not in proper state for performing a transfer

USB_MSD_INVALID_LUN(page 666) Specified LUN does not exist

Function

BYTE USBHostMSDRead(BYTE deviceAddress, BYTE deviceLUN, BYTE *commandBlock,

BYTE commandBlockLength, BYTE *data, DWORD dataLength);

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

628

7.3.9.1.5 USBHostMSDResetDevice Function
This function starts a bulk-only mass storage reset.

File

usb_host_msd.h

C

BYTE USBHostMSDResetDevice(
 BYTE deviceAddress
);

Description

This function starts a bulk-only mass storage reset. A reset can be issued only if the device is attached and not being
initialized.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

Return Values

Return Values Description

USB_SUCCESS Reset started

USB_MSD_DEVICE_NOT_FOUND(
page 661)

No device with specified address

USB_MSD_ILLEGAL_REQUEST(page
664)

Device is in an illegal state for reset

Function

BYTE USBHostMSDResetDevice(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

629

7.3.9.1.6 USBHostMSDSCSIEventHandler Function
File

usb_host_msd_scsi.h

C

BOOL USBHostMSDSCSIEventHandler(
 BYTE address,
 USB_EVENT event,
 void * data,
 DWORD size
);

Description

This function is called when various events occur in the USB Host Mass Storage client driver.

Remarks

None

Preconditions

The device has been initialized.

Parameters

Parameters Description

BYTE address Address of the device

USB_EVENT event Event that has occurred

void *data Pointer to data pertinent to the event

DWORD size Size of the data

Return Values

Return Values Description

TRUE Event was handled

FALSE Event was not handled

Function

BOOL USBHostMSDSCSIEventHandler(BYTE address, USB_EVENT event,

void *data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

630

7.3.9.1.7 USBHostMSDSCSIInitialize Function
File

usb_host_msd_scsi.h

C

BOOL USBHostMSDSCSIInitialize(
 BYTE address,
 DWORD flags,
 BYTE clientDriverID
);

Description

This function is called when a USB Mass Storage device is being enumerated.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE address Address of the new device

DWORD flags Initialization flags

BYTE clientDriverID ID for this layer. Not used by the media interface layer.

Return Values

Return Values Description

TRUE We can support the device.

FALSE We cannot support the device.

Function

BOOL USBHostMSDSCSIInitialize(BYTE address, DWORD flags, BYTE clientDriverID)

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

631

7.3.9.1.8 USBHostMSDSCSISectorRead Function
This function reads one sector.

File

usb_host_msd_scsi.h

C

BYTE USBHostMSDSCSISectorRead(
 DWORD sectorAddress,
 BYTE * dataBuffer
);

Description

This function uses the SCSI command READ10 to read one sector. The size of the sector was determined in the
USBHostMSDSCSIMediaInitialize() function. The data is stored in the application buffer.

Remarks

The READ10 command block is as follows:

 Byte/Bit 7 6 5 4 3 2 1 0
 0 Operation Code (0x28)
 1 [RDPROTECT] DPO FUA - FUA_NV -
 2 [(MSB)
 3 Logical Block Address
 4
 5 (LSB)]
 6 [-][Group Number]
 7 [(MSB) Transfer Length
 8 (LSB)]
 9 [Control]

Preconditions

None

Parameters

Parameters Description

DWORD sectorAddress address of sector to read

BYTE *dataBuffer buffer to store data

Return Values

Return Values Description

TRUE read performed successfully

FALSE read was not successful

Function

BYTE USBHostMSDSCSISectorRead(DWORD sectorAddress, BYTE *dataBuffer)

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

632

7.3.9.1.9 USBHostMSDSCSISectorWrite Function
This function writes one sector.

File

usb_host_msd_scsi.h

C

BYTE USBHostMSDSCSISectorWrite(
 DWORD sectorAddress,
 BYTE * dataBuffer,
 BYTE allowWriteToZero
);

Description

This function uses the SCSI command WRITE10 to write one sector. The size of the sector was determined in the
USBHostMSDSCSIMediaInitialize() function. The data is read from the application buffer.

Remarks

To follow convention, this function blocks until the write is complete.

The WRITE10 command block is as follows:

 Byte/Bit 7 6 5 4 3 2 1 0
 0 Operation Code (0x2A)
 1 [WRPROTECT] DPO FUA - FUA_NV -
 2 [(MSB)
 3 Logical Block Address
 4
 5 (LSB)]
 6 [-][Group Number]
 7 [(MSB) Transfer Length
 8 (LSB)]
 9 [Control]

Preconditions

None

Parameters

Parameters Description

DWORD sectorAddress address of sector to write

BYTE *dataBuffer buffer with application data

BYTE allowWriteToZero If a write to sector 0 is allowed.

Return Values

Return Values Description

TRUE write performed successfully

FALSE write was not successful

Function

BYTE USBHostMSDSCSISectorWrite(DWORD sectorAddress, BYTE *dataBuffer, BYTE allowWriteToZero)

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

633

7.3.9.1.10 USBHostMSDTerminateTransfer Function
File

usb_host_msd.h

C

void USBHostMSDTerminateTransfer(
 BYTE deviceAddress
);

Returns

None

Description

This function terminates a mass storage transfer.

Remarks

After executing this function, the application may have to reset the device in order for the device to continue working properly.

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

Function

void USBHostMSDTerminateTransfer(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

634

7.3.9.1.11 USBHostMSDTransfer Function
This function starts a mass storage transfer.

File

usb_host_msd.h

C

BYTE USBHostMSDTransfer(
 BYTE deviceAddress,
 BYTE deviceLUN,
 BYTE direction,
 BYTE * commandBlock,
 BYTE commandBlockLength,
 BYTE * data,
 DWORD dataLength
);

Description

This function starts a mass storage transfer. Usually, applications will probably utilize a read/write wrapper to access this
function.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE deviceLUN Device LUN to access

BYTE direction 1=read, 0=write

BYTE *commandBlock Pointer to the command block for the CBW

BYTE commandBlockLength Length of the command block

BYTE *data Pointer to the data buffer

DWORD dataLength Byte size of the data buffer

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_MSD_DEVICE_NOT_FOUND(
page 661)

No device with specified address

USB_MSD_DEVICE_BUSY(page 659) Device not in proper state for performing a transfer

USB_MSD_INVALID_LUN(page 666) Specified LUN does not exist

Function

BYTE USBHostMSDTransfer(BYTE deviceAddress, BYTE deviceLUN,

BYTE direction, BYTE *commandBlock, BYTE commandBlockLength,

BYTE *data, DWORD dataLength)

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

635

7.3.9.1.12 USBHostMSDTransferIsComplete Function
This function indicates whether or not the last transfer is complete.

File

usb_host_msd.h

C

BOOL USBHostMSDTransferIsComplete(
 BYTE deviceAddress,
 BYTE * errorCode,
 DWORD * byteCount
);

Description

This function indicates whether or not the last transfer is complete. If the functions returns TRUE, the returned byte count
and error code are valid. Since only one transfer can be performed at once and only one endpoint can be used, we only
need to know the device address.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE *errorCode Error code from last transfer

DWORD *byteCount Number of bytes transferred

Return Values

Return Values Description

TRUE Transfer is complete, errorCode is valid

FALSE Transfer is not complete, errorCode is not valid

Function

BOOL USBHostMSDTransferIsComplete(BYTE deviceAddress,

BYTE *errorCode, DWORD *byteCount)

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

636

7.3.9.1.13 USBHostMSDWrite Macro
File

usb_host_msd.h

C

#define USBHostMSDWrite(
deviceAddress,deviceLUN,commandBlock,commandBlockLength,data,dataLength) \
 USBHostMSDTransfer(deviceAddress, deviceLUN, 0, commandBlock, commandBlockLength,
data, dataLength)

Description

This function starts a mass storage write, utilizing the function USBHostMSDTransfer(page 635)();

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE deviceAddress Device address

BYTE deviceLUN Device LUN to access

BYTE *commandBlock Pointer to the command block for the CBW

BYTE commandBlockLength Length of the command block

BYTE *data Pointer to the data buffer

DWORD dataLength Byte size of the data buffer

Return Values

Return Values Description

USB_SUCCESS Request started successfully

USB_MSD_DEVICE_NOT_FOUND(
page 661)

No device with specified address

USB_MSD_DEVICE_BUSY(page 659) Device not in proper state for performing a transfer

USB_MSD_INVALID_LUN(page 666) Specified LUN does not exist

Function

BYTE USBHostMSDWrite(BYTE deviceAddress, BYTE deviceLUN, BYTE *commandBlock,

BYTE commandBlockLength, BYTE *data, DWORD dataLength);

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

637

7.3.9.2 Data Types and Constants
Macros

Name Description

DEVICE_CLASS_MASS_STORAGE(page 639) Class code for Mass Storage.

DEVICE_INTERFACE_PROTOCOL_BULK_ONLY(
page 640)

Protocol code for Bulk-only mass storage.

DEVICE_SUBCLASS_CD_DVD(page 641) SubClass code for a CD/DVD drive (not supported).

DEVICE_SUBCLASS_FLOPPY_INTERFACE(
page 642)

SubClass code for a floppy disk interface (not
supported).

DEVICE_SUBCLASS_RBC(page 643) SubClass code for Reduced Block Commands (not
supported).

DEVICE_SUBCLASS_REMOVABLE(page 644) SubClass code for removable media (not supported).

DEVICE_SUBCLASS_SCSI(page 645) SubClass code for a SCSI interface device (supported).

DEVICE_SUBCLASS_TAPE_DRIVE(page 646) SubClass code for a tape drive (not supported).

EVENT_MSD_MAX_LUN(page 647) Set maximum LUN for the device

EVENT_MSD_NONE(page 648) No event occured (NULL event)

EVENT_MSD_OFFSET(page 649) If the application has not defined an offset for MSD
events, set it to 0.

EVENT_MSD_RESET(page 650) MSD reset complete

EVENT_MSD_TRANSFER(page 651) A MSD transfer has completed

MSD_COMMAND_FAILED(page 652) Transfer failed. Returned in dCSWStatus.

MSD_COMMAND_PASSED(page 653) Transfer was successful. Returned in dCSWStatus.

MSD_PHASE_ERROR(page 654) Transfer phase error. Returned in dCSWStatus.

USB_MSD_CBW_ERROR(page 655) The CBW was not transferred successfully.

USB_MSD_COMMAND_FAILED(page 656) Command failed at the device.

USB_MSD_COMMAND_PASSED(page 657) Command was successful.

USB_MSD_CSW_ERROR(page 658) The CSW was not transferred successfully.

USB_MSD_DEVICE_BUSY(page 659) A transfer is currently in progress.

USB_MSD_DEVICE_DETACHED(page 660) Device is detached.

USB_MSD_DEVICE_NOT_FOUND(page 661) Device with the specified address is not available.

USB_MSD_ERROR(page 662) Error code offset.

USB_MSD_ERROR_STATE(page 663) Device is holding due to a MSD error.

USB_MSD_ILLEGAL_REQUEST(page 664) Cannot perform requested operation.

USB_MSD_INITIALIZING(page 665) Device is initializing.

USB_MSD_INVALID_LUN(page 666) Invalid LUN specified.

USB_MSD_MEDIA_INTERFACE_ERROR(page
667)

The media interface layer cannot support the device.

USB_MSD_NORMAL_RUNNING(page 668) Device is running and available for data transfers.

USB_MSD_OUT_OF_MEMORY(page 669) No dynamic memory is available.

USB_MSD_PHASE_ERROR(page 670) Command had a phase error at the device.

USB_MSD_RESET_ERROR(page 671) An error occurred while resetting the device.

USB_MSD_RESETTING_DEVICE(page 672) Device is being reset.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

638

7.3.9.2.1 DEVICE_CLASS_MASS_STORAGE Macro
File

usb_host_msd.h

C

#define DEVICE_CLASS_MASS_STORAGE 0x08 // Class code for Mass Storage.

Description

Class code for Mass Storage.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

639

7.3.9.2.2 DEVICE_INTERFACE_PROTOCOL_BULK_ONLY Macro
File

usb_host_msd.h

C

#define DEVICE_INTERFACE_PROTOCOL_BULK_ONLY 0x50 // Protocol code for Bulk-only mass
storage.

Description

Protocol code for Bulk-only mass storage.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

640

7.3.9.2.3 DEVICE_SUBCLASS_CD_DVD Macro
File

usb_host_msd.h

C

#define DEVICE_SUBCLASS_CD_DVD 0x02 // SubClass code for a CD/DVD drive (not supported).

Description

SubClass code for a CD/DVD drive (not supported).

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

641

7.3.9.2.4 DEVICE_SUBCLASS_FLOPPY_INTERFACE Macro
File

usb_host_msd.h

C

#define DEVICE_SUBCLASS_FLOPPY_INTERFACE 0x04 // SubClass code for a floppy disk
interface (not supported).

Description

SubClass code for a floppy disk interface (not supported).

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

642

7.3.9.2.5 DEVICE_SUBCLASS_RBC Macro
File

usb_host_msd.h

C

#define DEVICE_SUBCLASS_RBC 0x01 // SubClass code for Reduced Block Commands (not
supported).

Description

SubClass code for Reduced Block Commands (not supported).

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

643

7.3.9.2.6 DEVICE_SUBCLASS_REMOVABLE Macro
File

usb_host_msd.h

C

#define DEVICE_SUBCLASS_REMOVABLE 0x05 // SubClass code for removable media (not
supported).

Description

SubClass code for removable media (not supported).

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

644

7.3.9.2.7 DEVICE_SUBCLASS_SCSI Macro
File

usb_host_msd.h

C

#define DEVICE_SUBCLASS_SCSI 0x06 // SubClass code for a SCSI interface device
(supported).

Description

SubClass code for a SCSI interface device (supported).

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

645

7.3.9.2.8 DEVICE_SUBCLASS_TAPE_DRIVE Macro
File

usb_host_msd.h

C

#define DEVICE_SUBCLASS_TAPE_DRIVE 0x03 // SubClass code for a tape drive (not
supported).

Description

SubClass code for a tape drive (not supported).

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

646

7.3.9.2.9 EVENT_MSD_MAX_LUN Macro
File

usb_host_msd.h

C

#define EVENT_MSD_MAX_LUN EVENT_MSD_BASE + EVENT_MSD_OFFSET + 3 // Set maximum LUN for
the device

Description

Set maximum LUN for the device

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

647

7.3.9.2.10 EVENT_MSD_NONE Macro
File

usb_host_msd.h

C

#define EVENT_MSD_NONE EVENT_MSD_BASE + EVENT_MSD_OFFSET + 0 // No event occured (NULL
event)

Description

No event occured (NULL event)

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

648

7.3.9.2.11 EVENT_MSD_OFFSET Macro
File

usb_host_msd.h

C

#define EVENT_MSD_OFFSET 0

Description

If the application has not defined an offset for MSD events, set it to 0.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

649

7.3.9.2.12 EVENT_MSD_RESET Macro
File

usb_host_msd.h

C

#define EVENT_MSD_RESET EVENT_MSD_BASE + EVENT_MSD_OFFSET + 2 // MSD reset complete

Description

MSD reset complete

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

650

7.3.9.2.13 EVENT_MSD_TRANSFER Macro
File

usb_host_msd.h

C

#define EVENT_MSD_TRANSFER EVENT_MSD_BASE + EVENT_MSD_OFFSET + 1 // A MSD transfer has
completed

Description

A MSD transfer has completed

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

651

7.3.9.2.14 MSD_COMMAND_FAILED Macro
File

usb_host_msd.h

C

#define MSD_COMMAND_FAILED 0x01 // Transfer failed. Returned in dCSWStatus.

Description

Transfer failed. Returned in dCSWStatus.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

652

7.3.9.2.15 MSD_COMMAND_PASSED Macro
File

usb_host_msd.h

C

#define MSD_COMMAND_PASSED 0x00 // Transfer was successful. Returned in dCSWStatus.

Description

Transfer was successful. Returned in dCSWStatus.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

653

7.3.9.2.16 MSD_PHASE_ERROR Macro
File

usb_host_msd.h

C

#define MSD_PHASE_ERROR 0x02 // Transfer phase error. Returned in dCSWStatus.

Description

Transfer phase error. Returned in dCSWStatus.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

654

7.3.9.2.17 USB_MSD_CBW_ERROR Macro
File

usb_host_msd.h

C

#define USB_MSD_CBW_ERROR (USB_MSD_ERROR | 0x04) // The CBW was not
transferred successfully.

Description

The CBW was not transferred successfully.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

655

7.3.9.2.18 USB_MSD_COMMAND_FAILED Macro
File

usb_host_msd.h

C

#define USB_MSD_COMMAND_FAILED (USB_MSD_ERROR | MSD_COMMAND_FAILED)// Command failed at the
device.

Description

Command failed at the device.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

656

7.3.9.2.19 USB_MSD_COMMAND_PASSED Macro
File

usb_host_msd.h

C

#define USB_MSD_COMMAND_PASSED USB_SUCCESS // Command was
successful.

Description

Command was successful.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

657

7.3.9.2.20 USB_MSD_CSW_ERROR Macro
File

usb_host_msd.h

C

#define USB_MSD_CSW_ERROR (USB_MSD_ERROR | 0x05) // The CSW was not
transferred successfully.

Description

The CSW was not transferred successfully.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

658

7.3.9.2.21 USB_MSD_DEVICE_BUSY Macro
File

usb_host_msd.h

C

#define USB_MSD_DEVICE_BUSY (USB_MSD_ERROR | 0x07) // A transfer is currently
in progress.

Description

A transfer is currently in progress.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

659

7.3.9.2.22 USB_MSD_DEVICE_DETACHED Macro
File

usb_host_msd.h

C

#define USB_MSD_DEVICE_DETACHED 0x50 // Device is detached.

Description

Device is detached.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

660

7.3.9.2.23 USB_MSD_DEVICE_NOT_FOUND Macro
File

usb_host_msd.h

C

#define USB_MSD_DEVICE_NOT_FOUND (USB_MSD_ERROR | 0x06) // Device with the
specified address is not available.

Description

Device with the specified address is not available.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

661

7.3.9.2.24 USB_MSD_ERROR Macro
File

usb_host_msd.h

C

#define USB_MSD_ERROR USB_ERROR_CLASS_DEFINED // Error code offset.

Description

Error code offset.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

662

7.3.9.2.25 USB_MSD_ERROR_STATE Macro
File

usb_host_msd.h

C

#define USB_MSD_ERROR_STATE 0x55 // Device is holding due to a MSD error.

Description

Device is holding due to a MSD error.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

663

7.3.9.2.26 USB_MSD_ILLEGAL_REQUEST Macro
File

usb_host_msd.h

C

#define USB_MSD_ILLEGAL_REQUEST (USB_MSD_ERROR | 0x0B) // Cannot perform
requested operation.

Description

Cannot perform requested operation.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

664

7.3.9.2.27 USB_MSD_INITIALIZING Macro
File

usb_host_msd.h

C

#define USB_MSD_INITIALIZING 0x51 // Device is initializing.

Description

Device is initializing.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

665

7.3.9.2.28 USB_MSD_INVALID_LUN Macro
File

usb_host_msd.h

C

#define USB_MSD_INVALID_LUN (USB_MSD_ERROR | 0x08) // Invalid LUN specified.

Description

Invalid LUN specified.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

666

7.3.9.2.29 USB_MSD_MEDIA_INTERFACE_ERROR Macro
File

usb_host_msd.h

C

#define USB_MSD_MEDIA_INTERFACE_ERROR (USB_MSD_ERROR | 0x09) // The media
interface layer cannot support the device.

Description

The media interface layer cannot support the device.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

667

7.3.9.2.30 USB_MSD_NORMAL_RUNNING Macro
File

usb_host_msd.h

C

#define USB_MSD_NORMAL_RUNNING 0x52 // Device is running and available for data
transfers.

Description

Device is running and available for data transfers.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

668

7.3.9.2.31 USB_MSD_OUT_OF_MEMORY Macro
File

usb_host_msd.h

C

#define USB_MSD_OUT_OF_MEMORY (USB_MSD_ERROR | 0x03) // No dynamic memory is
available.

Description

No dynamic memory is available.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

669

7.3.9.2.32 USB_MSD_PHASE_ERROR Macro
File

usb_host_msd.h

C

#define USB_MSD_PHASE_ERROR (USB_MSD_ERROR | MSD_PHASE_ERROR) // Command had a phase
error at the device.

Description

Command had a phase error at the device.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

670

7.3.9.2.33 USB_MSD_RESET_ERROR Macro
File

usb_host_msd.h

C

#define USB_MSD_RESET_ERROR (USB_MSD_ERROR | 0x0A) // An error occurred while
resetting the device.

Description

An error occurred while resetting the device.

7.3 Embedded Host API MCHPFSUSB Library Help Mass Storage Client Driver

671

7.3.9.2.34 USB_MSD_RESETTING_DEVICE Macro
File

usb_host_msd.h

C

#define USB_MSD_RESETTING_DEVICE 0x53 // Device is being reset.

Description

Device is being reset.

7.3.10 Printer Client Driver

This client driver provides USB Embedded Host support for printer devices.

Description

Many USB printers utilize the USB Printer Class to communicate with a USB Host. This class defines the USB transfer type,
the endpoint structure,a device requests that can be performed. The actual commands sent to the printer, however, are
dictated by the printer language used by the particular printer.

Many different printer languages are utilized by the wide variety of printers on the market. Typically, low end printers receive
printer-specific binary data, utilizing the processing power of the USB Host to perform all of the complex calculations
required to translate text and graphics to a simple binary representation. This works well when a PC is the USB Host, but it is
not conducive to an embedded application with limited resources.

Many printers on the market use a command based printer language, relying on the printer itself to interpret commands to
produce the desired output. Some languages are standardized across printers from a particular manufacturer, and some are
used across multiple manufacturer. This method lends itself better to embedded applications by allowing the printer to take
on some of the computational overhead. Microchip provides support for some printer languages, including ESC/POS,
PostScript, and PCL 5. Additional printer language can be implemented. Refer to the USB Embedded Host Printer Class
application notes for more details on implementing printer language support.

Printer support is loosely divided into two categories: full sheet and point-of-sale (POS). Full sheet printers print on standard
letter sized paper, and use printer languages such as PostScript and PCL 5. POS printers typically print on paper rolls, and
use printer languages such as ESC/POS. The difference between printing on these two types of printers will be shown below.

Coordinate System - Full Sheet Printers

Locations on the printed page are specified in terms of (X,Y) coordinates. The (0,0) location on the page is located at the
upper left corner, in either portrait or landscape mode. Ascending values of X proceed right across the page, and ascending
values of Y proceed down the page. The scale of the coordinate system is 72 dots per inch, giving a maximum position of
(611,791) in the portrait orientation, and (791,611) in the landscape orientation.

Standard vs. Page Mode - POS Printers

All POS printers support Standard Mode printing. In this mode, the printer prints the output as soon as it receives the
command. Output is printed one line at a time, and vertical position is determined simply by the previous lines that were
printed. Many POS printers also support Page Mode, where an entire "page" can be described before it is printed. Currently,
only Standard Mode is supported.

Colors - Full Sheet Printers

Currently, only black and white printing is supported. All printing is performed with opaque colors; if a a white object is
printed over a previously printed black object, the white object will be visible on the printed output. Therefore, it is important
to consider the order in which the objects should be printed.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

672

Colors - POS Printers

Most POS printers support only one color. Some printers, particularly impact printers that utilize a printer ribbon, can print in
two colors. If the printer supports two color printing, use the commands USB_PRINTER_POS_COLOR_BLACK and
USB_PRINTER_POS_COLOR_RED to specify the color.

Printing Commands

The application receives the event EVENT_PRINTER_ATTACH(page 730) when a USB printer successfully attaches. The
application can then send printing commands to the printer, utilizing either USBHostPrinterCommand(page 679)() or
USBHostPrinterCommandWithReadyWait(page 682)().

Starting a Print Job

To start a print job, issue the command USB_PRINTER_JOB_START (USB_PRINTER_COMMAND(page 785) enum).
This will reset the printer back to its default settings.

Page Orientation - Full Sheet Printers

The page orientation must be set immediately after starting the print job, before any other printing commands. It cannot be
changed in the middle of a page. To set portrait orientation, issue the command
USB_PRINTER_ORIENTATION_PORTRAIT (USB_PRINTER_COMMAND(page 785) enum). To set landscape
orientation, issue the command USB_PRINTER_ORIENTATION_LANDSCAPE (USB_PRINTER_COMMAND(page 785)
enum). The default orientation is portrait.

Set Position - Full Sheet Printers

Many printer commands will be performed at the current location of the printer cursor. To move the printer cursor to the
desired location, issue the command USB_PRINTER_SET_POSITION (USB_PRINTER_COMMAND(page 785) enum).

Set Justification - POS Printers

Set the horizontal justification of the printed items to left, center, or right justification by issuing the command
USB_PRINTER_POS_JUSTIFICATION_LEFT, USB_PRINTER_POS_JUSTIFICATION_CENTER, or
USB_PRINTER_POS_JUSTIFICATION_RIGHT (USB_PRINTER_COMMAND(page 785) enum).

Stop the Job

To finish the print job, issue the command USB_PRINTER_JOB_STOP (USB_PRINTER_COMMAND(page 785) enum).
This will print the page and reset the printer for the next job.

Selecting Fonts - Full Sheet Printers

Before printing text, select the desired font by issuing the command USB_PRINTER_FONT_NAME
(USB_PRINTER_COMMAND(page 785) enum). The available fonts, supported by most printers, are listed in the
USB_PRINTER_FONTS(page 796) enumeration. Select the size of the font in points by issuing the command
USB_PRINTER_FONT_SIZE (USB_PRINTER_COMMAND(page 785) enum). The font can be made italic by issuing the
command USB_PRINTER_FONT_ITALIC (USB_PRINTER_COMMAND(page 785) enum), and returned to upright by
issuing the command USB_PRINTER_FONT_UPRIGHT (USB_PRINTER_COMMAND(page 785) enum). The font can be
made bold by issuing the command USB_PRINTER_FONT_BOLD (USB_PRINTER_COMMAND(page 785) enum), and
returned to medium weight be issuing the command USB_PRINTER_FONT_MEDIUM (USB_PRINTER_COMMAND(page
785) enum).

Note: When the printer receives the font selection commands described above, the printer will select its best matching
internal font. Some printers may not be able to support all fonts at all sizes and with all italic and bold combinations. Be sure
to test the output on the target printer to ensure that the output appears as desired. In general, PostScript printers provide
the best font support.

Bitmapped fonts are currently not supported.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

673

Selecting Fonts - POS Printers

Before printing text, select the desired font by issuing the command USB_PRINTER_FONT_NAME
(USB_PRINTER_COMMAND(page 785) enum). The available fonts, supported by most printers, are listed in the
USB_PRINTER_FONTS_POS(page 797) enumeration. The font name also includes the font size, so the command
USB_PRINTER_FONT_SIZE (USB_PRINTER_COMMAND(page 785) enum) is not supported by POS printers. The font
can be made bold by issuing the command USB_PRINTER_FONT_BOLD (USB_PRINTER_COMMAND(page 785)
enum), and returned to medium weight be issuing the command USB_PRINTER_FONT_MEDIUM
(USB_PRINTER_COMMAND(page 785) enum). Use the command USB_PRINTER_POS_FONT_UNDERLINE
(USB_PRINTER_COMMAND(page 785) enum) to enable and disable underlining. If the printer has to ability to do reverse
text printing (white characters on a black background), use the command USB_PRINTER_POS_FONT_REVERSE
(USB_PRINTER_COMMAND(page 785) enum) to enable and disable reverse text printing.

User defined characters and fonts are not currently supported.

Printing Text - Full Sheet Printers

To print text, first set the printer cursor to the desired location, and select the desired font, as described above. Initialize text
printing by issuing the command USB_PRINTER_TEXT_START (USB_PRINTER_COMMAND(page 785) enum). After
this command, issue the command USB_PRINTER_TEXT (USB_PRINTER_COMMAND(page 785) enum) with the
desired text string to print. Then issue the command USB_PRINTER_TEXT_STOP (USB_PRINTER_COMMAND(page
785) enum).

This sequence of commands is required in order to support the various ways that the different printer languages handle text
printing. Do not insert any other printer commands in this sequence, or the print will fail.

Different printers handle an embedded carriage returns and line feeds differently. For maximum compatibility across all
printers, print each line of text separately.

Printing Text - POS Printers

The three command sequence described above can also be for printing text to POS printers. To simplify text printing in
standard mode, use the command USB_PRINTER_POS_TEXT_LINE (USB_PRINTER_COMMAND(page 785) enum) to
print a single, null terminated string.

Printing Bitmapped Images

The printer languages supplied with USB Embedded Host Printer Class Support can print bitmapped images that are
compatible with the Microchip Graphics Library bitmapped images. The images must be specified with one bit per pixel. A bit
value of 0 indicates the color black, and a bit value of 1 indicates the color white. Images are opaque, not transparent. Image
data begins at the top left corner, with the data proceeding from left to right, then top to bottom.

To print a bitmapped image, issue the command USB_PRINTER_IMAGE_START (USB_PRINTER_COMMAND(page
785) enum) to initialize the image print. Be sure to examine the structure USB_PRINTER_IMAGE_INFO(page 805),
required by this command, and fill in all of the members appropriately for the image. Note that the position of the image on
the paper is specified in the structure, so the printer cursor does not have to be explicitly set before this command. Next,
send the image data to the printer, one line at a time. For each line, issue the command
USB_PRINTER_IMAGE_DATA_HEADER (USB_PRINTER_COMMAND(page 785) enum), then issue the command
USB_PRINTER_IMAGE_DATA (USB_PRINTER_COMMAND(page 785) enum) with a pointer to the row of bitmapped
data. Be sure to correctly indicate the source of the data (RAM, ROM, or external memory). After all of the data has been
transferred, issue the command USB_PRINTER_IMAGE_STOP (USB_PRINTER_COMMAND(page 785) enum) to
terminate image printing.

This sequence of commands is required in order to support the various ways that the different printer languages handle
bitmapped image printing. Do not insert any other printer commands in this sequence, or the print will fail.

POS printers require image data in a slightly modified format from full sheet printers. Refer to the function
USBHostPrinterPOSImageDataFormat(page 698)() for further information about printing to POS printers.

NOTE: Some printer languages use the reverse polarity to specify black and white. For compatibility, the printer language

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

674

drivers will automatically convert the image data to the format required by the particular printer, as long as the image data is
located in ROM (USB_PRINTER_TRANSFER_FROM_ROM(page 815)) or it is copied from a RAM buffer
(USB_PRINTER_TRANSFER_COPY_DATA(page 813)). If the data is to be sent directly from its original RAM location,
the data must already be in the format required by the printer language. Refer to the main printer language documentation to
see if the default polarity differs from 0=black, 1=white.

Vector Graphics - Full Sheet Printers

Some printer languages offer the ability to perform vector graphics, or the ability to print shapes such as lines and arcs via
special commands instead of bitmaps. If vector graphics support is enabled, many additional commands are available to
easily print shapes. Refer to the enumeration USB_PRINTER_COMMAND(page 785) for the list of commands and which
ones are supported only if vector graphics is enabled.

Multiple Page Output - Full Sheet Printers

If the print job contains multiple pages, issue the command USB_PRINTER_EJECT_PAGE (USB_PRINTER_COMMAND(
page 785) enum) to print and eject the current page. After this command, previous settings for orientation, font, and line type
settings should be assumed to be undefined. Re-issue these commands at the beginning of each page to ensure correct
output.

See AN1233 - USB Printer Class on an Embedded Host for more information about the Printer Class and this client driver.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

675

7.3.10.1 Interface Routines
Functions

Name Description

PrintScreen(page 678) This routine will extract the image that is currently on the
specified portion of the graphics display, and print it at the
specified location.

USBHostPrinterCommand(page 679) This is the primary user interface function for the printer
client driver. It is used to issue all printer commands.

USBHostPrinterCommandReady(page 681) This interface is used to check if the client driver has
space available to enqueue another transfer.

USBHostPrinterDeviceDetached(page 684) This interface is used to check if the device has been
detached from the bus.

USBHostPrinterEventHandler(page 685) This routine is called by the Host layer to notify the printer
client of events that occur.

USBHostPrinterGetRxLength(page 686) This function retrieves the number of bytes copied to
user's buffer by the most recent call to the
USBHostPrinterRead(page 702)() function.

USBHostPrinterGetStatus(page 687) This function issues the Printer class-specific Device
Request to obtain the printer status.

USBHostPrinterInitialize(page 688) This function is called by the USB Embedded Host layer
when a printer attaches.

USBHostPrinterLanguageESCPOS(page 689) This function executes printer commands for an ESC/POS
printer.

USBHostPrinterLanguageESCPOSIsSupported(
page 691)

This function determines if the printer with the given
device ID string supports the ESC/POS printer language.

USBHostPrinterLanguagePCL5(page 692) This function executes printer commands for a PCL 5
printer.

USBHostPrinterLanguagePCL5IsSupported(
page 694)

This function determines if the printer with the given
device ID string supports the PCL 5 printer language.

USBHostPrinterLanguagePostScript(page 695) This function executes printer commands for a PostScript
printer.

USBHostPrinterLanguagePostScriptIsSupported(
page 697)

This function determines if the printer with the given
device ID string supports the PostScript printer language.

USBHostPrinterPOSImageDataFormat(page
698)

This function formats data for a bitmapped image into the
format required for sending to a POS printer.

USBHostPrinterRead(page 702) Use this routine to receive from the device and store it into
memory.

USBHostPrinterReset(page 703) This function issues the Printer class-specific Device
Request to perform a soft reset.

USBHostPrinterRxIsBusy(page 704) This interface is used to check if the client driver is
currently busy receiving data from the device.

USBHostPrinterWrite(page 705) Use this routine to transmit data from memory to the
device. This routine will not usually be called by the
application directly. The application will use the
USBHostPrinterCommand(page 679)() function, which
will call the appropriate printer language support function,
which will utilize this routine.

USBHostPrinterWriteComplete(page 706) This interface is used to check if the client driver is
currently transmitting data to the printer, or if it is between
transfers but still has transfers queued.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

676

Macros

Name Description

USBHostPrinterCommandWithReadyWait(
page 682)

This function is intended to be a short-cut to perform blocking
calls to USBHostPrinterCommand(page 679)(). While there is
no space available in the printer queue
(USBHostPrinterCommandReady(page 681)() returns FALSE),
USBTasks() is called. When space becomes available,
USBHostPrinterCommand(page 679)() is called. The return
value from USBHostPrinterCommand(page 679)() is returned
in the returnCode parameter.

USBHostPrinterPosition(page 700) This function is used to simplify the call to the printer command
USB_PRINTER_SET_POSITION by generating the value
needed for the specified (X,Y) coordinate.

USBHostPrinterPositionRelative(page
701)

This function is used to simplify the call to some of the printer
graphics commands by generating the value needed for the
specified change in X and change in Y coordinates.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

677

7.3.10.1.1 PrintScreen Function
This routine will extract the image that is currently on the specified portion of the graphics display, and print it at the specified
location.

File

usb_host_printer_primitives.h

C

SHORT PrintScreen(
 BYTE address,
 USB_PRINT_SCREEN_INFO * printScreenInfo
);

Description

This routine is intended for use in an application that is using the Graphics Library to control a graphics display. This routine
will extract the image that is currently on the specified portion of the graphics display, and print it at the specified location.
Since the display may be in color and the printer can print only black and white, the pixel color to interpret as black must be
specified in the USB_PRINT_SCREEN_INFO(page 784) structure.

The function can be compiled as either a blocking function or a non-blocking function. When compiled as a blocking function,
the routine will wait to enqueue all printer instructions. If an error occurs, then this function will return the error. If all printer
instructions are enqueued successfully, the function will return -1. When compiled as a non-blocking function, this function
will return 0 if the operation is proceeding correctly but has not yet completed. The application must continue to call this
function, with the same parameters, until a non-zero value is returned. A value of -1 indicates that all printer instructions
have been enqueued successfully. Any other value is an error code, and the state machine will be set back to the beginning
state.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE address USB address of the printer.

USB_PRINT_SCREEN_INFO
*printScreenInfo

Information about the screen area to print, how to interpret the screen image,
and how and where to print the image. Note that the width and height members
of the structure do not need to be filled in by the application.

Return Values

Return Values Description

0 Non-blocking configuration only. Image output is not yet complete, but is
proceeding normally.

(-1) Image output was completed successfully.

other Printing was aborted due to an error. See the return values for
USBHostPrinterCommand(page 679)(). Note that the return code
USB_PRINTER_SUCCESS will not be returned. Instead, (-1) will be returned
upon successful completion.

Function

SHORT PrintScreen(BYTE address, USB_PRINT_SCREEN_INFO(page 784) *printScreenInfo)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

678

7.3.10.1.2 USBHostPrinterCommand Function
This is the primary user interface function for the printer client driver. It is used to issue all printer commands.

File

usb_host_printer.h

C

BYTE USBHostPrinterCommand(
 BYTE deviceAddress,
 USB_PRINTER_COMMAND command,
 USB_DATA_POINTER data,
 DWORD size,
 BYTE flags
);

Returns

See the USB_PRINTER_ERRORS(page 795) enumeration. Also, refer to the printer language command handler function,
such as USBHostPrinterLanguagePostScript(page 695)().

Description

This is the primary user interface function for the printer client driver. It is used to issue all printer commands. Each generic
printer command is translated to the appropriate command for the supported language and is enqueued for transfer to the
printer. Before calling this routine, it is recommended to call the function USBHostPrinterCommandReady(page 681)() to
determine if there is space available in the printer's output queue.

Remarks

When developing new commands, keep in mind that the function USBHostPrinterCommandReady(page 681)() will be
used before calling this function to see if there is space available in the output transfer queue.
USBHostPrinterCommandReady(page 681)() will routine TRUE if a single space is available in the output queue.
Therefore, each command can generate only one output transfer.

Preconditions

None

Example

if (USBHostPrinterCommandReady(address))
{
 USBHostPrinterCommand(address, USB_PRINTER_JOB_START, USB_NULL, 0, 0);
}

Parameters

Parameters Description

BYTE address Device's address on the bus

USB_PRINTER_COMMAND command Command to execute. See the enumeration USB_PRINTER_COMMAND(
page 785) for the list of valid commands and their requirements.

USB_DATA_POINTER data Pointer to the required data. Note that the caller must set transferFlags
appropriately to indicate if the pointer is a RAM pointer or a ROM pointer.

DWORD size Size of the data. For some commands, this parameter is used to hold the data
itself.

BYTE transferFlags Flags that indicate details about the transfer operation. Refer to these flags

• USB_PRINTER_TRANSFER_COPY_DATA(page 813)

• USB_PRINTER_TRANSFER_STATIC_DATA(page 817)

• USB_PRINTER_TRANSFER_NOTIFY(page 816)

• USB_PRINTER_TRANSFER_FROM_ROM(page 815)

• USB_PRINTER_TRANSFER_FROM_RAM(page 814)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

679

Function

BYTE USBHostPrinterCommand(BYTE deviceAddress, USB_PRINTER_COMMAND(page 785) command,

USB_DATA_POINTER(page 779) data, DWORD size, BYTE flags)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

680

7.3.10.1.3 USBHostPrinterCommandReady Function
File

usb_host_printer.h

C

BOOL USBHostPrinterCommandReady(
 BYTE deviceAddress
);

Description

This interface is used to check if the client driver has space available to enqueue another transfer.

Remarks

Use the definitions USB_DATA_POINTER_RAM(page 780)() and USB_DATA_POINTER_ROM(page 781)() to cast
data pointers. For example:

 USBHostPrinterCommand(address, USB_PRINTER_TEXT, USB_DATA_POINTER_RAM(buffer),
strlen(buffer), 0);

This routine will return TRUE if a single transfer can be enqueued. Since this routine is the check to see if
USBHostPrinterCommand(page 679)() can be called, every command can generate at most one transfer.

Preconditions

None

Example

if (USBHostPrinterCommandReady(address))
{
 USBHostPrinterCommand(address, USB_PRINTER_JOB_START, USB_NULL, 0, 0);
}

Parameters

Parameters Description

deviceAddress USB Address of the device

Return Values

Return Values Description

TRUE The printer client driver has room for at least one more transfer request, or the
device is not attached. The latter allows this routine to be called without
generating an infinite loop if the device detaches.

FALSE The transfer queue is full.

Function

BOOL USBHostPrinterCommandReady(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

681

7.3.10.1.4 USBHostPrinterCommandWithReadyWait Macro
File

usb_host_printer.h

C

#define USBHostPrinterCommandWithReadyWait(returnCode, deviceAddress, command, data, size,
flags) \
 {

\
 while (!USBHostPrinterCommandReady(deviceAddress))
USBTasks(); \
 *(returnCode) = USBHostPrinterCommand(deviceAddress, command, data, size,
flags); \
 }

Returns

See the USB_PRINTER_ERRORS(page 795) enumeration. Also, refer to the printer language command handler function,
such as USBHostPrinterLanguagePostScript(page 695)().

Description

This function is intended to be a short-cut to perform blocking calls to USBHostPrinterCommand(page 679)(). While there
is no space available in the printer queue (USBHostPrinterCommandReady(page 681)() returns FALSE), USBTasks() is
called. When space becomes available, USBHostPrinterCommand(page 679)() is called. The return value from
USBHostPrinterCommand(page 679)() is returned in the returnCode parameter.

Remarks

Use the definitions USB_DATA_POINTER_RAM(page 780)() and USB_DATA_POINTER_ROM(page 781)() to cast
data pointers. For example:

 USBHostPrinterCommandWithReadyWait(&rc, address, USB_PRINTER_TEXT,
USB_DATA_POINTER_RAM(buffer), strlen(buffer), 0);

In the event that the device detaches during this routine, USBHostPrinterCommandReady(page 681)() will return TRUE,
and this function will return USB_PRINTER_UNKNOWN_DEVICE.

Preconditions

None

Parameters

Parameters Description

BYTE address Device's address on the bus

USB_PRINTER_COMMAND command Command to execute. See the enumeration USB_PRINTER_COMMAND(
page 785) for the list of valid commands and their requirements.

USB_DATA_POINTER data Pointer to the required data. Note that the caller must set transferFlags
appropriately to indicate if the pointer is a RAM pointer or a ROM pointer.

DWORD size Size of the data. For some commands, this parameter is used to hold the data
itself.

BYTE transferFlags Flags that indicate details about the transfer operation. Refer to these flags

• USB_PRINTER_TRANSFER_COPY_DATA(page 813)

• USB_PRINTER_TRANSFER_STATIC_DATA(page 817)

• USB_PRINTER_TRANSFER_NOTIFY(page 816)

• USB_PRINTER_TRANSFER_FROM_ROM(page 815)

• USB_PRINTER_TRANSFER_FROM_RAM(page 814)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

682

Function

BYTE USBHostPrinterCommandWithReadyWait(BYTE &returnCode,

BYTE deviceAddress, USB_PRINTER_COMMAND(page 785) command,

USB_DATA_POINTER(page 779) data, DWORD size, BYTE flags)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

683

7.3.10.1.5 USBHostPrinterDeviceDetached Function
File

usb_host_printer.h

C

BOOL USBHostPrinterDeviceDetached(
 BYTE deviceAddress
);

Description

This interface is used to check if the device has been detached from the bus.

Remarks

The event EVENT_PRINTER_DETACH(page 731) can also be used to detect a detach.

Preconditions

None

Example

if (USBHostPrinterDeviceDetached(deviceAddress))
{
 // Handle detach
}

Parameters

Parameters Description

BYTE deviceAddress USB Address of the device.

Return Values

Return Values Description

TRUE The device has been detached, or an invalid deviceAddress is given.

FALSE The device is attached

Function

BOOL USBHostPrinterDeviceDetached(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

684

7.3.10.1.6 USBHostPrinterEventHandler Function
This routine is called by the Host layer to notify the printer client of events that occur.

File

usb_host_printer.h

C

BOOL USBHostPrinterEventHandler(
 BYTE address,
 USB_EVENT event,
 void * data,
 DWORD size
);

Description

This routine is called by the Host layer to notify the printer client of events that occur. If the event is recognized, it is handled
and the routine returns TRUE. Otherwise, it is ignored and the routine returns FALSE.

This routine can notify the application with the following events:

• EVENT_PRINTER_ATTACH(page 730)

• EVENT_PRINTER_DETACH(page 731)

• EVENT_PRINTER_TX_DONE(page 737)

• EVENT_PRINTER_RX_DONE(page 735)

• EVENT_PRINTER_REQUEST_DONE(page 733)

• EVENT_PRINTER_UNSUPPORTED(page 739)

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE address Address of device with the event

USB_EVENT event The bus event that occured

void *data Pointer to event-specific data

DWORD size Size of the event-specific data

Return Values

Return Values Description

TRUE The event was handled

FALSE The event was not handled

Function

BOOL USBHostPrinterEventHandler (BYTE address, USB_EVENT event,

void *data, DWORD size)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

685

7.3.10.1.7 USBHostPrinterGetRxLength Function
File

usb_host_printer.h

C

DWORD USBHostPrinterGetRxLength(
 BYTE deviceAddress
);

Returns

Returns the number of bytes most recently received from the Printer device with address deviceAddress.

Description

This function retrieves the number of bytes copied to user's buffer by the most recent call to the USBHostPrinterRead(
page 702)() function.

Remarks

None

Preconditions

The device must be connected and enumerated.

Parameters

Parameters Description

BYTE deviceAddress USB Address of the device

Function

DWORD USBHostPrinterGetRxLength(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

686

7.3.10.1.8 USBHostPrinterGetStatus Function
This function issues the Printer class-specific Device Request to obtain the printer status.

File

usb_host_printer.h

C

BYTE USBHostPrinterGetStatus(
 BYTE deviceAddress,
 BYTE * status
);

Returns

See the return values for the USBHostIssueDeviceRequest() function.

Description

This function issues the Printer class-specific Device Request to obtain the printer status. The returned status should have
the following format, per the USB specification. Any deviation will be due to the specific printer implementation.

• Bit 5 - Paper Empty; 1 = paper empty, 0 = paper not empty

• Bit 4 - Select; 1 = selected, 0 = not selected

• Bit 3 - Not Error; 1 = no error, 0 = error

• All other bits are reserved.

The *status parameter is not updated until the EVENT_PRINTER_REQUEST_DONE(page 733) event is thrown. Until that
point the value of *status is unknown.

The *status parameter will only be updated if this function returns USB_SUCCESS. If this function returns with any other
error code then the EVENT_PRINTER_REQUEST_DONE(page 733) event will not be thrown and the status field will not
be updated.

Remarks

None

Preconditions

The device must be connected and enumerated.

Parameters

Parameters Description

deviceAddress USB Address of the device

*status pointer to the returned status byte

Function

BYTE USBHostPrinterGetStatus(BYTE deviceAddress, BYTE *status)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

687

7.3.10.1.9 USBHostPrinterInitialize Function
This function is called by the USB Embedded Host layer when a printer attaches.

File

usb_host_printer.h

C

BOOL USBHostPrinterInitialize(
 BYTE address,
 DWORD flags,
 BYTE clientDriverID
);

Description

This routine is a call out from the USB Embedded Host layer to the USB printer client driver. It is called when a "printer"
device has been connected to the host. Its purpose is to initialize and activate the USB Printer client driver.

Remarks

Multiple client drivers may be used in a single application. The USB Embedded Host layer will call the initialize routine
required for the attached device.

Preconditions

The device has been configured.

Parameters

Parameters Description

BYTE address Device's address on the bus

DWORD flags Initialization flags

BYTE clientDriverID Client driver identification for device requests

Return Values

Return Values Description

TRUE Initialization was successful

FALSE Initialization failed

Function

BOOL USBHostPrinterInitialize (BYTE address, DWORD flags, BYTE clientDriverID)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

688

7.3.10.1.10 USBHostPrinterLanguageESCPOS Function
This function executes printer commands for an ESC/POS printer.

File

usb_host_printer_esc_pos.h

C

BYTE USBHostPrinterLanguageESCPOS(
 BYTE address,
 USB_PRINTER_COMMAND command,
 USB_DATA_POINTER data,
 DWORD size,
 BYTE transferFlags
);

Description

This function executes printer commands for an ESC/POS printer. When the application issues a printer command, the
printer client driver determines what language to use to communicate with the printer, and transfers the command to that
language support routine. As much as possible, commands are designed to produce the same output regardless of what
printer language is used.

Not all printer commands support data from both RAM and ROM. Unless otherwise noted, the data pointer is assumed to
point to RAM, regardless of the value of transferFlags. Refer to the specific command to see if ROM data is supported.

Remarks

When developing new commands, keep in mind that the function USBHostPrinterCommandReady(page 681)() will be
used before calling this function to see if there is space available in the output transfer queue.
USBHostPrinterCommandReady(page 681)() will routine TRUE if a single space is available in the output queue.
Therefore, each command can generate only one output transfer.

Multiple printer languages may be used in a single application. The USB Embedded Host Printer Client Driver will call the
routine required for the attached device.

Preconditions

None

Parameters

Parameters Description

BYTE address Device's address on the bus

USB_PRINTER_COMMAND command Command to execute. See the enumeration USB_PRINTER_COMMAND(
page 785) for the list of valid commands and their requirements.

USB_DATA_POINTER data Pointer to the required data. Note that the caller must set transferFlags
appropriately to indicate if the pointer is a RAM pointer or a ROM pointer.

DWORD size Size of the data. For some commands, this parameter is used to hold the data
itself.

BYTE transferFlags Flags that indicate details about the transfer operation. Refer to these flags

• USB_PRINTER_TRANSFER_COPY_DATA(page 813)

• USB_PRINTER_TRANSFER_STATIC_DATA(page 817)

• USB_PRINTER_TRANSFER_NOTIFY(page 816)

• USB_PRINTER_TRANSFER_FROM_ROM(page 815)

• USB_PRINTER_TRANSFER_FROM_RAM(page 814)

Return Values

Return Values Description

USB_PRINTER_SUCCESS The command was executed successfully.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

689

USB_PRINTER_UNKNOWN_DEVICE A printer with the indicated address is not attached

USB_PRINTER_TOO_MANY_DEVICES The printer status array does not have space for another printer.

USB_PRINTER_OUT_OF_MEMORY Not enough available heap space to execute the command.

other See possible return codes from the function USBHostPrinterWrite(page
705)().

Function

BYTE USBHostPrinterLanguageESCPOS(BYTE address,

USB_PRINTER_COMMAND(page 785) command, USB_DATA_POINTER(page 779) data, DWORD size, BYTE
transferFlags)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

690

7.3.10.1.11 USBHostPrinterLanguageESCPOSIsSupported Function
File

usb_host_printer_esc_pos.h

C

BOOL USBHostPrinterLanguageESCPOSIsSupported(
 char * deviceID,
 USB_PRINTER_FUNCTION_SUPPORT * support
);

Description

This function determines if the printer with the given device ID string supports the ESC/POS printer language.

Remarks

The caller must first locate the "COMMAND SET:" section of the device ID string. To ensure that only the "COMMAND SET:"
section of the device ID string is checked, the ";" at the end of the section should be temporarily replaced with a NULL.
Otherwise, this function may find the printer language string in the comments or other section, and incorrectly indicate that
the printer supports the language.

Device ID strings are case sensitive.

See the file header comments for this file (usb_host_printer_esc_pos.h) for cautions regarding dynamic printer language
selection with POS printers.

Preconditions

None

Parameters

Parameters Description

char *deviceID Pointer to the "COMMAND SET:" portion of the device ID string of the attached
printer.

USB_PRINTER_FUNCTION_SUPPORT
*support

Pointer to returned information about what types of functions this printer
supports.

Return Values

Return Values Description

TRUE The printer supports ESC/POS.

FALSE The printer does not support ESC/POS.

Function

BOOL USBHostPrinterLanguageESCPOSIsSupported(char *deviceID,

USB_PRINTER_FUNCTION_SUPPORT(page 798) *support)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

691

7.3.10.1.12 USBHostPrinterLanguagePCL5 Function
This function executes printer commands for a PCL 5 printer.

File

usb_host_printer_pcl_5.h

C

BYTE USBHostPrinterLanguagePCL5(
 BYTE address,
 USB_PRINTER_COMMAND command,
 USB_DATA_POINTER data,
 DWORD size,
 BYTE transferFlags
);

Description

This function executes printer commands for a PCL 5 printer. When the application issues a printer command, the printer
client driver determines what language to use to communicate with the printer, and transfers the command to that language
support routine. As much as possible, commands are designed to produce the same output regardless of what printer
language is used.

Not all printer commands support data from both RAM and ROM. Unless otherwise noted, the data pointer is assumed to
point to RAM, regardless of the value of transferFlags. Refer to the specific command to see if ROM data is supported.

Remarks

When developing new commands, keep in mind that the function USBHostPrinterCommandReady(page 681)() will be
used before calling this function to see if there is space available in the output transfer queue.
USBHostPrinterCommandReady(page 681)() will routine TRUE if a single space is available in the output queue.
Therefore, each command can generate only one output transfer.

Multiple printer languages may be used in a single application. The USB Embedded Host Printer Client Driver will call the
routine required for the attached device.

Preconditions

None

Parameters

Parameters Description

BYTE address Device's address on the bus

USB_PRINTER_COMMAND command Command to execute. See the enumeration USB_PRINTER_COMMAND(
page 785) for the list of valid commands and their requirements.

USB_DATA_POINTER data Pointer to the required data. Note that the caller must set transferFlags
appropriately to indicate if the pointer is a RAM pointer or a ROM pointer.

DWORD size Size of the data. For some commands, this parameter is used to hold the data
itself.

BYTE transferFlags Flags that indicate details about the transfer operation. Refer to these flags

• USB_PRINTER_TRANSFER_COPY_DATA(page 813)

• USB_PRINTER_TRANSFER_STATIC_DATA(page 817)

• USB_PRINTER_TRANSFER_NOTIFY(page 816)

• USB_PRINTER_TRANSFER_FROM_ROM(page 815)

• USB_PRINTER_TRANSFER_FROM_RAM(page 814)

Return Values

Return Values Description

USB_PRINTER_SUCCESS The command was executed successfully.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

692

USB_PRINTER_UNKNOWN_DEVICE A printer with the indicated address is not attached

USB_PRINTER_TOO_MANY_DEVICES The printer status array does not have space for another printer.

USB_PRINTER_OUT_OF_MEMORY Not enough available heap space to execute the command.

other See possible return codes from the function USBHostPrinterWrite(page
705)().

Function

BYTE USBHostPrinterLanguagePCL5(BYTE address,

USB_PRINTER_COMMAND(page 785) command, USB_DATA_POINTER(page 779) data, DWORD size, BYTE
transferFlags)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

693

7.3.10.1.13 USBHostPrinterLanguagePCL5IsSupported Function
This function determines if the printer with the given device ID string supports the PCL 5 printer language.

File

usb_host_printer_pcl_5.h

C

BOOL USBHostPrinterLanguagePCL5IsSupported(
 char * deviceID,
 USB_PRINTER_FUNCTION_SUPPORT * support
);

Description

This function determines if the printer with the given device ID string supports the PCL 5 printer language.

Unfortunately, printer language support is not always advertised correctly by the printer. Some printers advertise only PCL 6
support when they also support PCL 5. Therefore, this routine will return TRUE if any PCL language support is advertised. It
is therefore highly recommended to test the target application with the specific printer(s) that will be utilized.

Remarks

The caller must first locate the "COMMAND SET:" section of the device ID string. To ensure that only the "COMMAND SET:"
section of the device ID string is checked, the ";" at the end of the section should be temporarily replaced with a NULL.
Otherwise, this function may find the printer language string in the comments or other section, and incorrectly indicate that
the printer supports the language.

Device ID strings are case sensitive.

Preconditions

None

Parameters

Parameters Description

char *deviceID Pointer to the "COMMAND SET:" portion of the device ID string of the attached
printer.

USB_PRINTER_FUNCTION_SUPPORT
*support

Pointer to returned information about what types of functions this printer
supports.

Return Values

Return Values Description

TRUE The printer supports PCL 5.

FALSE The printer does not support PCL 5.

Function

BOOL USBHostPrinterLanguagePCL5IsSupported(char *deviceID,

USB_PRINTER_FUNCTION_SUPPORT(page 798) *support)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

694

7.3.10.1.14 USBHostPrinterLanguagePostScript Function
This function executes printer commands for a PostScript printer.

File

usb_host_printer_postscript.h

C

BYTE USBHostPrinterLanguagePostScript(
 BYTE address,
 USB_PRINTER_COMMAND command,
 USB_DATA_POINTER data,
 DWORD size,
 BYTE transferFlags
);

Description

This function executes printer commands for a PostScript printer. When the application issues a printer command, the printer
client driver determines what language to use to communicate with the printer, and transfers the command to that language
support routine. As much as possible, commands are designed to produce the same output regardless of what printer
language is used.

Not all printer commands support data from both RAM and ROM. Unless otherwise noted, the data pointer is assumed to
point to RAM, regardless of the value of transferFlags. Refer to the specific command to see if ROM data is supported.

Remarks

When developing new commands, keep in mind that the function USBHostPrinterCommandReady(page 681)() will be
used before calling this function to see if there is space available in the output transfer queue.
USBHostPrinterCommandReady(page 681)() will routine TRUE if a single space is available in the output queue.
Therefore, each command can generate only one output transfer.

Multiple printer languages may be used in a single application. The USB Embedded Host Printer Client Driver will call the
routine required for the attached device.

Preconditions

None

Parameters

Parameters Description

BYTE address Device's address on the bus

USB_PRINTER_COMMAND command Command to execute. See the enumeration USB_PRINTER_COMMAND(
page 785) for the list of valid commands and their requirements.

USB_DATA_POINTER data Pointer to the required data. Note that the caller must set transferFlags
appropriately to indicate if the pointer is a RAM pointer or a ROM pointer.

DWORD size Size of the data. For some commands, this parameter is used to hold the data
itself.

BYTE transferFlags Flags that indicate details about the transfer operation. Refer to these flags

• USB_PRINTER_TRANSFER_COPY_DATA(page 813)

• USB_PRINTER_TRANSFER_STATIC_DATA(page 817)

• USB_PRINTER_TRANSFER_NOTIFY(page 816)

• USB_PRINTER_TRANSFER_FROM_ROM(page 815)

• USB_PRINTER_TRANSFER_FROM_RAM(page 814)

Return Values

Return Values Description

USB_PRINTER_SUCCESS The command was executed successfully.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

695

USB_PRINTER_UNKNOWN_DEVICE A printer with the indicated address is not attached

USB_PRINTER_TOO_MANY_DEVICES The printer status array does not have space for another printer.

USB_PRINTER_OUT_OF_MEMORY Not enough available heap space to execute the command.

other See possible return codes from the function USBHostPrinterWrite(page
705)().

Function

BYTE USBHostPrinterLanguagePostScript(BYTE address,

USB_PRINTER_COMMAND(page 785) command, USB_DATA_POINTER(page 779) data, DWORD size, BYTE
transferFlags)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

696

7.3.10.1.15 USBHostPrinterLanguagePostScriptIsSupported Function
File

usb_host_printer_postscript.h

C

BOOL USBHostPrinterLanguagePostScriptIsSupported(
 char * deviceID,
 USB_PRINTER_FUNCTION_SUPPORT * support
);

Description

This function determines if the printer with the given device ID string supports the PostScript printer language.

Remarks

The caller must first locate the "COMMAND SET:" section of the device ID string. To ensure that only the "COMMAND SET:"
section of the device ID string is checked, the ";" at the end of the section should be temporarily replaced with a NULL.
Otherwise, this function may find the printer language string in the comments or other section, and incorrectly indicate that
the printer supports the language.

Device ID strings are case sensitive.

Preconditions

None

Parameters

Parameters Description

char *deviceID Pointer to the "COMMAND SET:" portion of the device ID string of the attached
printer.

USB_PRINTER_FUNCTION_SUPPORT
*support

Pointer to returned information about what types of functions this printer
supports.

Return Values

Return Values Description

TRUE The printer supports PostScript.

FALSE The printer does not support PostScript.

Function

BOOL USBHostPrinterLanguagePostScriptIsSupported(char *deviceID,

USB_PRINTER_FUNCTION_SUPPORT(page 798) *support)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

697

7.3.10.1.16 USBHostPrinterPOSImageDataFormat Function
This function formats data for a bitmapped image into the format required for sending to a POS printer.

File

usb_host_printer_esc_pos.h

C

USB_DATA_POINTER USBHostPrinterPOSImageDataFormat(
 USB_DATA_POINTER image,
 BYTE imageLocation,
 WORD imageHeight,
 WORD imageWidth,
 WORD * currentRow,
 BYTE byteDepth,
 BYTE * imageData
);

Returns

The function returns a pointer to the next byte of image data.

Description

This function formats data for a bitmapped image into the format required for sending to a POS printer. Bitmapped images
are stored one row of pixels at a time. Suppose we have an image with vertical black bars, eight pixels wide and eight pixels
deep. The image would appear as the following pixels, where 0 indicates a black dot and 1 indicates a white dot:

0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1

The stored bitmap of the data would contain the data bytes, where each byte is one row of data:

0x55 0x55 0x55 0x55 0x55 0x55 0x55 0x55

When printing to a full sheet printer, eight separate USB_PRINTER_IMAGE_DATA_HEADER /
USB_PRINTER_IMAGE_DATA command combinations are required to print this image.

POS printers, however, require image data formated either 8 dots or 24 dots deep, depending on the desired (and
supported) vertical print density. For a POS printer performing an 8-dot vertical density print, the data needs to be in this
format:

0x00 0xFF 0x00 0xFF 0x00 0xFF 0x00 0xFF

When printing to a POS printer, only one USB_PRINTER_IMAGE_DATA_HEADER / USB_PRINTER_IMAGE_DATA
command combination is required to print this image.

This function supports 8-dot and 24-dot vertical densities by specifying the byteDepth parameter as either 1 (8-dot) or 3
(24-dot).

Remarks

This routine currently does not support 36-dot density printing. Since the output for 36-dot vertical density is identical to
24-dot vertical density, 24-dot vertical density should be used instead.

This routine does not yet support reading from external memory.

Preconditions

None

Example

The following example code will send a complete bitmapped image to a POS printer.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

698

 WORD currentRow;
 BYTE depthBytes;
 BYTE *imageDataPOS;
 USB_PRINTER_IMAGE_INFO imageInfo;
 BYTE returnCode;
 #if defined (__C30__)
 BYTE __prog__ *ptr;
 ptr = (BYTE __prog__ *)logoMCHP.address;
 #elif defined (__PIC32MX__)
 const BYTE *ptr;
 ptr = (const BYTE *)logoMCHP.address;
 #endif

 imageInfo.densityVertical = 24; // 24-dot density
 imageInfo.densityHorizontal = 2; // Double density

 // Extract the image height and width
 imageInfo.width = ((WORD)ptr[5] << 8) + ptr[4];
 imageInfo.height = ((WORD)ptr[3] << 8) + ptr[2];

 depthBytes = imageInfo.densityVertical / 8;
 imageDataPOS = (BYTE *)malloc(imageInfo.width *
 depthBytes);

 if (imageDataPOS == NULL)
 {
 // Error - not enough heap space
 }

 USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress, USB_PRINTER_IMAGE_START,
 USB_DATA_POINTER_RAM(&imageInfo),
 sizeof(USB_PRINTER_IMAGE_INFO),
 0);

 ptr += 10; // skip the header info

 currentRow = 0;
 while (currentRow < imageInfo.height)
 {
 USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress,
 USB_PRINTER_IMAGE_DATA_HEADER, USB_NULL,
 imageInfo.width, 0);

 ptr = USBHostPrinterPOSImageDataFormat(
 USB_DATA_POINTER_ROM(ptr),
 USB_PRINTER_TRANSFER_FROM_ROM, imageInfo.height,
 imageInfo.width, ¤tRow, depthBytes,
 imageDataPOS).pointerROM;

 USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress, USB_PRINTER_IMAGE_DATA,
 USB_DATA_POINTER_RAM(imageDataPOS), imageInfo.width,
 USB_PRINTER_TRANSFER_COPY_DATA);
 }

 free(imageDataPOS);

 USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress, USB_PRINTER_IMAGE_STOP,
 USB_NULL, 0, 0);

Function

USB_DATA_POINTER(page 779) USBHostPrinterPOSImageDataFormat(USB_DATA_POINTER(page 779) image,

BYTE imageLocation, WORD imageHeight, WORD imageWidth, WORD *currentRow,

BYTE byteDepth, BYTE *imageData)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

699

7.3.10.1.17 USBHostPrinterPosition Macro
This function is used to simplify the call to the printer command USB_PRINTER_SET_POSITION by generating the value
needed for the specified (X,Y) coordinate.

File

usb_host_printer.h

C

#define USBHostPrinterPosition(X, Y) (((DWORD)(X) << 16) | ((DWORD)(Y) & 0xFFFF))

Returns

DWORD value that can be used in the USBHostPrinterCommand(page 679)() function call with the command
USB_PRINTER_SET_POSITION.

Description

This function is used to simplify the call to the printer command USB_PRINTER_SET_POSITION by generating the value
needed for the specified (X,Y) coordinate. The USB_PRINTER_SET_POSITION command requires that the (X,Y)
coordinate be passed in the (DWORD) size parameter of the USBHostPrinterCommand(page 679)() function. This
function takes the specified coordinate and packs it in the DWORD as required.

Remarks

None

Preconditions

None

Example

USBHostPrinterCommand(printer, USB_PRINTER_SET_POSITION, USB_NULL,
 USBHostPrinterPosition(100, 100), 0);

Parameters

Parameters Description

X X coordinate (horizontal)

Y Y coordinate (vertical)

Function

DWORD USBHostPrinterPosition(WORD X, WORD Y)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

700

7.3.10.1.18 USBHostPrinterPositionRelative Macro
This function is used to simplify the call to some of the printer graphics commands by generating the value needed for the
specified change in X and change in Y coordinates.

File

usb_host_printer.h

C

#define USBHostPrinterPositionRelative(dX, dY) (((DWORD)(dX) << 16) | ((DWORD)(dY) &
0xFFFF))

Returns

DWORD value that can be used in the USBHostPrinterCommand(page 679)() function call with the commands
USB_PRINTER_GRAPHICS_MOVE_RELATIVE and USB_PRINTER_GRAPHICS_LINE_TO_RELATIVE.

Description

This function is used to simplify the call to some of the printer graphics commands by generating the value needed for the
specified change in X and change in Y coordinates. The USB_PRINTER_GRAPHICS_MOVE_RELATIVE and the
USB_PRINTER_GRAPHICS_LINE_TO_RELATIVE commands requires that the change in the (X,Y) coordinates be passed
in the (DWORD) size parameter of the USBHostPrinterCommand(page 679)() function. This function takes the specified
coordinate changes and packs them in the DWORD as required.

Remarks

None

Preconditions

None

Example

USBHostPrinterCommand(printer, USB_PRINTER_GRAPHICS_LINE_TO_RELATIVE, USB_NULL,
 USBHostPrinterPositionRelative(0, -100), 0);

Parameters

Parameters Description

dX Change in the X coordinate (horizontal)

dY Change in the Y coordinate (vertical)

Function

DWORD USBHostPrinterPositionRelative(SHORT dX, SHORT dY)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

701

7.3.10.1.19 USBHostPrinterRead Function
File

usb_host_printer.h

C

BYTE USBHostPrinterRead(
 BYTE deviceAddress,
 void * buffer,
 DWORD length,
 BYTE transferFlags
);

Description

Use this routine to receive from the device and store it into memory.

Remarks

None

Preconditions

The device must be connected and enumerated.

Example

if (!USBHostPrinterRxIsBusy(deviceAddress))
{
 USBHostPrinterRead(deviceAddress, &buffer, sizeof(buffer), 0);
}

Parameters

Parameters Description

deviceAddress USB Address of the device.

buffer Pointer to the data buffer

length Number of bytes to be transferred

transferFlags Flags for how to perform the operation

Return Values

Return Values Description

USB_SUCCESS The Read was started successfully

(USB error code) The Read was not started. See USBHostRead(page 346)() for a list of errors.

Function

BYTE USBHostPrinterRead(BYTE deviceAddress, BYTE *buffer, DWORD length,

BYTE transferFlags)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

702

7.3.10.1.20 USBHostPrinterReset Function
File

usb_host_printer.h

C

BYTE USBHostPrinterReset(
 BYTE deviceAddress
);

Returns

See the return values for the USBHostIssueDeviceRequest() function.

Description

This function issues the Printer class-specific Device Request to perform a soft reset.

Remarks

Not all printers support this command.

Preconditions

The device must be connected and enumerated.

Parameters

Parameters Description

BYTE deviceAddress USB Address of the device

Function

BYTE USBHostPrinterReset(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

703

7.3.10.1.21 USBHostPrinterRxIsBusy Function
This interface is used to check if the client driver is currently busy receiving data from the device.

File

usb_host_printer.h

C

BOOL USBHostPrinterRxIsBusy(
 BYTE deviceAddress
);

Description

This interface is used to check if the client driver is currently busy receiving data from the device.

Remarks

None

Preconditions

None

Example

if (!USBHostPrinterRxIsBusy(deviceAddress))
{
 USBHostPrinterRead(deviceAddress, &buffer, sizeof(buffer));
}

Parameters

Parameters Description

deviceAddress USB Address of the device

Return Values

Return Values Description

TRUE The device is receiving data or an invalid deviceAddress is given.

FALSE The device is not receiving data

Function

BOOL USBHostPrinterRxIsBusy(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

704

7.3.10.1.22 USBHostPrinterWrite Function
File

usb_host_printer.h

C

BYTE USBHostPrinterWrite(
 BYTE deviceAddress,
 void * buffer,
 DWORD length,
 BYTE flags
);

Description

Use this routine to transmit data from memory to the device. This routine will not usually be called by the application directly.
The application will use the USBHostPrinterCommand(page 679)() function, which will call the appropriate printer
language support function, which will utilize this routine.

Remarks

None

Preconditions

The device must be connected and enumerated.

Parameters

Parameters Description

BYTE deviceAddress USB Address of the device.

void *buffer Pointer to the data buffer

DWORD length Number of bytes to be transferred

BYTE transferFlags Flags for how to perform the operation

Return Values

Return Values Description

USB_SUCCESS The Write was started successfully.

USB_PRINTER_UNKNOWN_DEVICE Device not found or has not been initialized.

USB_PRINTER_BUSY The printer's output queue is full.

(USB error code) The Write was not started. See USBHostWrite(page 358)() for a list of errors.

Function

BYTE USBHostPrinterWrite(BYTE deviceAddress, void *buffer, DWORD length,

BYTE transferFlags)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

705

7.3.10.1.23 USBHostPrinterWriteComplete Function
File

usb_host_printer.h

C

BOOL USBHostPrinterWriteComplete(
 BYTE deviceAddress
);

Description

This interface is used to check if the client driver is currently transmitting data to the printer, or if it is between transfers but
still has transfers queued.

Remarks

None

Preconditions

None

Parameters

Parameters Description

deviceAddress USB Address of the device

Return Values

Return Values Description

TRUE The device is done transmitting data or an invalid deviceAddress is given.

FALSE The device is transmitting data or has a transfer in the queue.

Function

BOOL USBHostPrinterWriteComplete(BYTE deviceAddress)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

706

7.3.10.2 Data Types and Constants
Enumerations

Name Description

USB_PRINTER_COMMAND(page 785) USB Printer Client Driver Commands
The main interface to the USB Printer Client Driver is through
the function USBHostPrinterCommand(page 679)(). These
are the commands that can be passed to that function.

USB_PRINTER_ERRORS(page 795) Printer Errors
These are errors that can be returned by the printer client
driver. Note that USB Embedded Host errors can also be
returned.

USB_PRINTER_FONTS(page 796) Printer Fonts
This enumeration defines the various printer fonts. If new
fonts are added, they must be added at the end of the list, just
before the USB_PRINTER_FONT_MAX_FONT definition, as
the printer language support files may utilize them for
indexing purposes.

USB_PRINTER_FONTS_POS(page 797) POS Printer Fonts
This enumeration defines the various printer fonts used by
POS printers. If new fonts are added, they must be added at
the end of the list, just before the
USB_PRINTER_FONT_POS_MAX_FONT definition, as the
printer language support files may utilize them for indexing
purposes.

USB_PRINTER_POS_BARCODE_FORMAT(
page 810)

Bar Code Formats
These are the bar code formats for printing bar codes on POS
printers. They are used in conjuction with the
USB_PRINTER_POS_BARCODE command
(USB_PRINTER_COMMAND(page 785)). Bar code
information is passed using the sBarCode structure within the
USB_PRINTER_GRAPHICS_PARAMETERS(page 801)
union. The exact values to send for each bar code type can
vary for the particular POS printer, and not all printers support
all bar code types. Be sure to test the output on the target
printer, and adjust the values specified in
usb_host_printer_esc_pos.c if necessary. Refer to the
printer's technical documentation for the required values. Do
not alter this... more(page 810)

Macros

Name Description

_USB_HOST_PRINTER_PRIMITIVES_H(page 715) This is macro
_USB_HOST_PRINTER_PRIMITIVES_H.

BARCODE_CODE128_CODESET_A_CHAR(page 716) For use with POS printers that support
Code128 bar codes (extended barcodes).
This is the value of the second data byte
of the bar code data to specify character
code set CODE A. This code set should
be used if control characters (0x00-0x1F)
are included in the data.

BARCODE_CODE128_CODESET_A_STRING(page 717) For use with POS printers that support
Code128 bar codes (extended barcodes).
This is the value of the second data byte
of the bar code data to specify character
code set CODE A. This code set should
be used if control characters (0x00-0x1F)
are included in the data.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

707

BARCODE_CODE128_CODESET_B_CHAR(page 718) For use with POS printers that support
Code128 bar codes (extended barcodes).
This is the value of the second data byte
of the bar code data to specify character
code set CODE B. This code set should
be used if lower case letters and higher
ASCII characters (0x60-0x7F) are
included in the data.

BARCODE_CODE128_CODESET_B_STRING(page 719) For use with POS printers that support
Code128 bar codes (extended barcodes).
This is the value of the second data byte
of the bar code data to specify character
code set CODE B. This code set should
be used if lower case letters and higher
ASCII characters (0x60-0x7F) are
included in the data.

BARCODE_CODE128_CODESET_C_CHAR(page 720) For use with POS printers that support
Code128 bar codes (extended barcodes).
This is the value of the second data byte
of the bar code data to specify character
code set CODE C. This code set can be
used only if the data values are between 0
and 99 (0x00-0x63).

BARCODE_CODE128_CODESET_C_STRING(page 721) For use with POS printers that support
Code128 bar codes (extended barcodes).
This is the value of the second data byte
of the bar code data to specify character
code set CODE C. This code set can be
used only if the data values are between 0
and 99 (0x00-0x63).

BARCODE_CODE128_CODESET_CHAR(page 722) For use with POS printers that support
Code128 bar codes (extended barcodes).
This is the value of the first data byte of
the bar code data, which begins the
character code specification. The next
byte must be 'A', 'B', or 'C'.

BARCODE_CODE128_CODESET_STRING(page 723) For use with POS printers that support
Code128 bar codes (extended barcodes).
This is the value of the first data byte of
the bar code data, which begins the
character code specification. The next
byte must be 'A', 'B', or 'C'.

BARCODE_TEXT_12x24(page 724) For use with POS printers. May not be
valid for all printers. Print the bar code text
in 12x24 dot font. Do not alter this value.

BARCODE_TEXT_18x36(page 725) For use with POS printers. May not be
valid for all printers. Print the bar code text
in 18x36 dot font. Do not alter this value.

BARCODE_TEXT_ABOVE(page 726) For use with POS printers. Print readable
text above the bar code. Do not alter this
value.

BARCODE_TEXT_ABOVE_AND_BELOW(page 727) For use with POS printers. Print readable
text above and below the bar code. Do not
alter this value.

BARCODE_TEXT_BELOW(page 728) For use with POS printers. Print readable
text below the bar code. Do not alter this
value.

BARCODE_TEXT_OMIT(page 729) For use with POS printers. Do not print
readable bar code text. Do not alter this
value.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

708

EVENT_PRINTER_ATTACH(page 730) This event indicates that a Printer device
has been attached. When
USB_HOST_APP_EVENT_HANDLER(
page 337) is called with this event, the
*data parameter points to a structure of
the type USB_PRINTER_DEVICE_ID(
page 794), which provides important
information about the attached printer.
The size parameter is the size of this
structure.

EVENT_PRINTER_DETACH(page 731) This event indicates that the specified
device has been detached from the USB.
When
USB_HOST_APP_EVENT_HANDLER(
page 337) is called with this event, *data
points to a BYTE that contains the device
address, and size is the size of a BYTE.

EVENT_PRINTER_OFFSET(page 732) This is an optional offset for the values of
the generated events. If necessary, the
application can use a non-zero offset for
the generic events to resolve conflicts in
event number.

EVENT_PRINTER_REQUEST_DONE(page 733) This event indicates that the printer
request has completed. These requests
occur on endpoint 0 and include getting
the printer status and performing a soft
reset.

EVENT_PRINTER_REQUEST_ERROR(page 734) This event indicates that a bus error
occurred while trying to perform a device
request. The error code is returned in the
size parameter. The data parameter is
returned as NULL.

EVENT_PRINTER_RX_DONE(page 735) This event indicates that a previous read
request has completed. When
USB_HOST_APP_EVENT_HANDLER(
page 337) is called with this event, *data
points to the receive buffer, and size is the
actual number of bytes read from the
device.

EVENT_PRINTER_RX_ERROR(page 736) This event indicates that a bus error
occurred while trying to perform a read.
The error code is returned in the size
parameter. The data parameter is
returned as NULL.

EVENT_PRINTER_TX_DONE(page 737) This event indicates that a previous write
request has completed. When
USB_HOST_APP_EVENT_HANDLER(
page 337) is called with this event, *data
points to the buffer that completed
transmission, and size is the actual
number of bytes that were written to the
device.

EVENT_PRINTER_TX_ERROR(page 738) This event indicates that a bus error
occurred while trying to perform a write.
The error code is returned in the size
parameter. The data parameter is
returned as NULL.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

709

EVENT_PRINTER_UNSUPPORTED(page 739) This event indicates that a printer has
attached for which we do not have printer
language support. Therefore, we cannot
talk to this printer. This event can also
occur if there is not enough dynamic
memory available to read the device ID
string.

LANGUAGE_ID_STRING_ESCPOS(page 740) This is the string that the printer language
support determination routine will look for
to determine if the printer supports this
printer language. This string is case
sensive. See the function
USBHostPrinterLanguageESCPOSIsSupp
orted(
page 691)() for more information about
using or changing this string. Dynamic
language determination is not
recommended when using POS printers.

LANGUAGE_ID_STRING_PCL(page 741) This is the string that the printer language
support determination routine will look for
to determine if the printer supports this
printer language. This string is case
sensive. Some printers that report only
PCL 6 support also support PCL 5. So it is
recommended to use "PCL" as the search
string, rather than "PCL 5", and verify that
the correct output is produced by the
target printer.

LANGUAGE_ID_STRING_POSTSCRIPT(page 742) This is the string that the printer language
support determination routine will look for
to determine if the printer supports this
printer language. This string is case
sensive.

LANGUAGE_SUPPORT_FLAGS_ESCPOS(page 743) These are the support flags that are set
for this language.

LANGUAGE_SUPPORT_FLAGS_PCL3(page 744) These are the support flags that are set
for the PCL 3 version of this language.

LANGUAGE_SUPPORT_FLAGS_PCL5(page 745) These are the support flags that are set
for the PCL 5 version of this language.

LANGUAGE_SUPPORT_FLAGS_POSTSCRIPT(page 746) These are the support flags that are set
for this language.

PRINTER_COLOR_BLACK(page 747) Indicates a black line for drawing graphics
objects.

PRINTER_COLOR_WHITE(page 748) Indicates a white line for drawing graphics
objects.

PRINTER_DEVICE_REQUEST_GET_DEVICE_ID(page 749) bRequest value for the GET_DEVICE_ID
USB class-specific request.

PRINTER_DEVICE_REQUEST_GET_PORT_STATUS(page
750)

bRequest value for the
GET_PORT_STATUS USB class-specific
request.

PRINTER_DEVICE_REQUEST_SOFT_RESET(page 751) bRequest value for the SOFT_RESET
USB class-specific request.

PRINTER_FILL_CROSS_HATCHED(page 752) Indicates a cross-hatched fill for graphics
objects. Requires a specified line spacing
and angle.

PRINTER_FILL_HATCHED(page 753) Indicates a hatched fill for graphics
objects. Requires a specified line spacing
and angle.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

710

PRINTER_FILL_SHADED(page 754) Indicates a shaded fill for filled graphics
objects. Requires a specified fill
percentage.

PRINTER_FILL_SOLID(page 755) Indicates a solid color fill for filled graphics
objects.

PRINTER_LINE_END_BUTT(page 756) Drawn lines will have a butt end.

PRINTER_LINE_END_ROUND(page 757) Drawn lines will have a round end.

PRINTER_LINE_END_SQUARE(page 758) Drawn lines will have a square end.

PRINTER_LINE_JOIN_BEVEL(page 759) Drawn lines will be joined with a bevel.

PRINTER_LINE_JOIN_MITER(page 760) Drawn lines will be joined with a miter.

PRINTER_LINE_JOIN_ROUND(page 761) Drawn lines will be joined with a round.

PRINTER_LINE_TYPE_DASHED(page 762) Indicates a dashed line for drawing
graphics objects.

PRINTER_LINE_TYPE_DOTTED(page 763) Indicates a dotted line for drawing
graphics objects.

PRINTER_LINE_TYPE_SOLID(page 764) Indicates a solid line for drawing graphics
objects.

PRINTER_LINE_WIDTH_NORMAL(page 765) Indicates a normal width line for drawing
graphics objects.

PRINTER_LINE_WIDTH_THICK(page 766) Indicates a thick line for drawing graphics
objects.

PRINTER_PAGE_LANDSCAPE_HEIGHT(page 767) The height of the page in points when in
landscape mode.

PRINTER_PAGE_LANDSCAPE_WIDTH(page 768) The width of the page in points when in
landscape mode.

PRINTER_PAGE_PORTRAIT_HEIGHT(page 769) The height of the page in points when in
portrait mode.

PRINTER_PAGE_PORTRAIT_WIDTH(page 770) The width of the page in points when in
portrait mode.

PRINTER_POS_BOTTOM_TO_TOP(page 771) POS print direction bottom to top, starting
at the bottom left corner.

PRINTER_POS_DENSITY_HORIZONTAL_DOUBLE(page 772) Image print with double horizontal density.

PRINTER_POS_DENSITY_HORIZONTAL_SINGLE(page 773) Image print with single horizontal density.

PRINTER_POS_DENSITY_VERTICAL_24(page 774) Image print with 24-dot vertical density.

PRINTER_POS_DENSITY_VERTICAL_8(page 775) Image print with 8-dot vertical density.

PRINTER_POS_LEFT_TO_RIGHT(page 776) POS print direction left to right, starting at
the top left corner.

PRINTER_POS_RIGHT_TO_LEFT(page 777) POS print direction right to left, startin at
the bottom right corner.

PRINTER_POS_TOP_TO_BOTTOM(page 778) POS print direction top to bottom, starting
at the top right corner.

USB_DATA_POINTER_RAM(page 780) Use this definition to cast a pointer being
passed to the function
USBHostPrinterCommand(page 679)()
that points to data in RAM.

USB_DATA_POINTER_ROM(page 781) Use this definition to cast a pointer being
passed to the function
USBHostPrinterCommand(page 679)()
that points to data in ROM.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

711

USB_MAX_PRINTER_DEVICES(page 782) Max Number of Supported Devices
This value represents the maximum
number of attached devices this class
driver can support. If the user does not
define a value, it will be set to 1. Currently
this must be set to 1, due to limitations in
the USB Host layer.

USB_NULL(page 783) Use this definition to pass a NULL pointer
to the function
USBHostPrinterCommand(page 679)().

USB_PRINTER_FUNCTION_SUPPORT_POS(page 799) Constant to use to set the supportsPOS
member of the
USB_PRINTER_FUNCTION_SUPPORT(

page 798) union.

USB_PRINTER_FUNCTION_SUPPORT_VECTOR_GRAPHICS(
page 800)

Constant to use to set the
supportsVectorGraphics member of the
USB_PRINTER_FUNCTION_SUPPORT(

page 798) union.

USB_PRINTER_TRANSFER_COPY_DATA(page 813) This flag indicates that the printer client
driver should make a copy of the data
passed to the command. This allows the
application to reuse the data storage
immediately instead of waiting until the
transfer is sent to the printer. The client
driver will allocate space in the heap for
the data copy. If there is not enough
available memory, the command will
terminate with a
USB_PRINTER_OUT_OF_MEMORY
error. Otherwise, the original data will be
copied to the temporary data space. This
temporary data will be freed upon
completion, regardless of whether or not
the command was performed
successfully. NOTE: If... more(page 813)

USB_PRINTER_TRANSFER_FROM_RAM(page 814) This flag indicates that the source of the
command data is in RAM. The application
can then choose whether or not to have
the printer client driver make a copy of the
data.

USB_PRINTER_TRANSFER_FROM_ROM(page 815) This flag indicates that the source of the
command data is in ROM. The data will
be copied to RAM, since the USB Host
layer cannot read data from ROM. If there
is not enough available heap space to
make a copy of the data, the command
will fail. If using this flag, do not set the
USB_PRINTER_TRANSFER_COPY_DAT
A(
page 813) flag.

USB_PRINTER_TRANSFER_NOTIFY(page 816) This flag indicates that the application
layer wants to receive an event
notification when the command completes.

USB_PRINTER_TRANSFER_STATIC_DATA(page 817) This flag indicates that the data will not
change in the time between the printer
command being issued and the data
actually being sent to the printer.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

712

USBHOSTPRINTER_SETFLAG_COPY_DATA(page 818) Use this macro to set the
USB_PRINTER_TRANSFER_COPY_DAT
A(
page 813) flag in a variable.

USBHOSTPRINTER_SETFLAG_NOTIFY(page 819) Use this macro to set the
USB_PRINTER_TRANSFER_NOTIFY(
page 816) flag in a variable.

USBHOSTPRINTER_SETFLAG_STATIC_DATA(page 820) Use this macro to clear the
USB_PRINTER_TRANSFER_COPY_DAT
A(
page 813) flag in a variable.

Structures

Name Description

_USB_PRINTER_DEVICE_ID(page 794) Printer Device ID Information
This structure contains identification information about an
attached device.

USB_PRINT_SCREEN_INFO(page 784) Print Screen Information
This structure is designed for use when the USB Embedded Host
Printer support is integrated with the graphics library. The
structure contains the information needed to print a portion of the
graphics screen as a bitmapped graphic image.

USB_PRINTER_DEVICE_ID(page 794) Printer Device ID Information
This structure contains identification information about an
attached device.

USB_PRINTER_IMAGE_INFO(page 805) Bitmapped Image Information
This structure contains the information needed to print a
bitmapped graphic image.
When using a full sheet printer, utilize the resolution and the
scale members to specify the size of the image. Some printer
languages (e.g. PostScript) utilize a scale factor, while others
(e.g. PCL 5) utilize a dots-per-inch resolution. Also, some printers
that utilize the resolution specification support only certain values
for the resolution. For maximum compatibility, specify both
members of this structure. The following table shows example
values that will generate similarly sized output.

USB_PRINTER_INTERFACE(page 807) USB Printer Interface Structure
This structure represents the information needed to interface with
a printer language. An array of these structures must be created
in usb_config.c, so the USB printer client driver can determine
what printer language to use to communicate with the printer.

USB_PRINTER_SPECIFIC_INTERFACE(
page 812)

USB Printer Specific Interface Structure
This structure is used to explicitly specify what printer language
to use for a particular printer, and what print functions the printer
supports. It can be used when a printer supports multiple
languages with one language preferred over the others. It is
required for printers that do not support the GET_DEVICE_ID
printer class request. These printers do not report what printer
languages they support. Typically, these printers also do not
report Printer Class support in their Interface Descriptors, and
must be explicitly supported by their VID and PID in the TPL. This
structure links the... more(page 812)

Types

Name Description

USB_PRINTER_LANGUAGE_HANDLER(
page 808)

This is a typedef to use when defining a printer language
command handler.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

713

USB_PRINTER_LANGUAGE_SUPPORTED(
page 809)

This is a typedef to use when defining a function that
determines if the printer with the given "COMMAND SET:"
portion of the device ID string supports the particular printer
language.

Unions

Name Description

USB_DATA_POINTER(page 779) This type is used to represent a generic RAM or ROM pointer
when passed to the function USBHostPrinterCommand(
page 679)() or a printer language function of the type
USB_PRINTER_LANGUAGE_HANDLER(page 808). Note
that the caller must indicate whether the point is actually
pointing to RAM or to ROM, so we can tell which pointer is
valid. Not all printer commands can actually use data in
ROM. Refer to the specific printer command in the
USB_PRINTER_COMMAND(page 785) enumeration for
more information.

USB_PRINTER_FUNCTION_SUPPORT(
page 798)

Printer Device Function support Information
This structure contains information about the functions that
the attached printer supports. See the related constants for
setting these flags via the val member:

• USB_PRINTER_FUNCTION_SUPPORT_POS(page
799)

•
USB_PRINTER_FUNCTION_SUPPORT_VECTOR_GR
APHICS(
page 800)

USB_PRINTER_GRAPHICS_PARAMETERS(
page 801)

USB Printer Graphics Parameter Structures
This union can be used to declare a variable that can hold
the parameters for any printer graphics or POS printer
command (USB_PRINTER_COMMAND(page 785)). The
union allows a single variable to be declared and then reused
for any printer graphics command.

Description

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

714

7.3.10.2.1 _USB_HOST_PRINTER_PRIMITIVES_H Macro
File

usb_host_printer_primitives.h

C

#define _USB_HOST_PRINTER_PRIMITIVES_H

Description

This is macro _USB_HOST_PRINTER_PRIMITIVES_H.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

715

7.3.10.2.2 BARCODE_CODE128_CODESET_A_CHAR Macro
File

usb_host_printer.h

C

#define BARCODE_CODE128_CODESET_A_CHAR 'A'

Description

For use with POS printers that support Code128 bar codes (extended barcodes). This is the value of the second data byte of
the bar code data to specify character code set CODE A. This code set should be used if control characters (0x00-0x1F) are
included in the data.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

716

7.3.10.2.3 BARCODE_CODE128_CODESET_A_STRING Macro
File

usb_host_printer.h

C

#define BARCODE_CODE128_CODESET_A_STRING "A"

Description

For use with POS printers that support Code128 bar codes (extended barcodes). This is the value of the second data byte of
the bar code data to specify character code set CODE A. This code set should be used if control characters (0x00-0x1F) are
included in the data.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

717

7.3.10.2.4 BARCODE_CODE128_CODESET_B_CHAR Macro
File

usb_host_printer.h

C

#define BARCODE_CODE128_CODESET_B_CHAR 'B'

Description

For use with POS printers that support Code128 bar codes (extended barcodes). This is the value of the second data byte of
the bar code data to specify character code set CODE B. This code set should be used if lower case letters and higher
ASCII characters (0x60-0x7F) are included in the data.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

718

7.3.10.2.5 BARCODE_CODE128_CODESET_B_STRING Macro
File

usb_host_printer.h

C

#define BARCODE_CODE128_CODESET_B_STRING "B"

Description

For use with POS printers that support Code128 bar codes (extended barcodes). This is the value of the second data byte of
the bar code data to specify character code set CODE B. This code set should be used if lower case letters and higher
ASCII characters (0x60-0x7F) are included in the data.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

719

7.3.10.2.6 BARCODE_CODE128_CODESET_C_CHAR Macro
File

usb_host_printer.h

C

#define BARCODE_CODE128_CODESET_C_CHAR 'C'

Description

For use with POS printers that support Code128 bar codes (extended barcodes). This is the value of the second data byte of
the bar code data to specify character code set CODE C. This code set can be used only if the data values are between 0
and 99 (0x00-0x63).

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

720

7.3.10.2.7 BARCODE_CODE128_CODESET_C_STRING Macro
File

usb_host_printer.h

C

#define BARCODE_CODE128_CODESET_C_STRING "C"

Description

For use with POS printers that support Code128 bar codes (extended barcodes). This is the value of the second data byte of
the bar code data to specify character code set CODE C. This code set can be used only if the data values are between 0
and 99 (0x00-0x63).

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

721

7.3.10.2.8 BARCODE_CODE128_CODESET_CHAR Macro
File

usb_host_printer.h

C

#define BARCODE_CODE128_CODESET_CHAR '{'

Description

For use with POS printers that support Code128 bar codes (extended barcodes). This is the value of the first data byte of the
bar code data, which begins the character code specification. The next byte must be 'A', 'B', or 'C'.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

722

7.3.10.2.9 BARCODE_CODE128_CODESET_STRING Macro
File

usb_host_printer.h

C

#define BARCODE_CODE128_CODESET_STRING "{"

Description

For use with POS printers that support Code128 bar codes (extended barcodes). This is the value of the first data byte of the
bar code data, which begins the character code specification. The next byte must be 'A', 'B', or 'C'.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

723

7.3.10.2.10 BARCODE_TEXT_12x24 Macro
File

usb_host_printer.h

C

#define BARCODE_TEXT_12x24 1

Description

For use with POS printers. May not be valid for all printers. Print the bar code text in 12x24 dot font. Do not alter this value.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

724

7.3.10.2.11 BARCODE_TEXT_18x36 Macro
File

usb_host_printer.h

C

#define BARCODE_TEXT_18x36 0

Description

For use with POS printers. May not be valid for all printers. Print the bar code text in 18x36 dot font. Do not alter this value.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

725

7.3.10.2.12 BARCODE_TEXT_ABOVE Macro
File

usb_host_printer.h

C

#define BARCODE_TEXT_ABOVE 1

Description

For use with POS printers. Print readable text above the bar code. Do not alter this value.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

726

7.3.10.2.13 BARCODE_TEXT_ABOVE_AND_BELOW Macro
File

usb_host_printer.h

C

#define BARCODE_TEXT_ABOVE_AND_BELOW 3

Description

For use with POS printers. Print readable text above and below the bar code. Do not alter this value.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

727

7.3.10.2.14 BARCODE_TEXT_BELOW Macro
File

usb_host_printer.h

C

#define BARCODE_TEXT_BELOW 2

Description

For use with POS printers. Print readable text below the bar code. Do not alter this value.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

728

7.3.10.2.15 BARCODE_TEXT_OMIT Macro
File

usb_host_printer.h

C

#define BARCODE_TEXT_OMIT 0

Description

For use with POS printers. Do not print readable bar code text. Do not alter this value.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

729

7.3.10.2.16 EVENT_PRINTER_ATTACH Macro
File

usb_host_printer.h

C

#define EVENT_PRINTER_ATTACH (EVENT_PRINTER_BASE+EVENT_PRINTER_OFFSET+0)

Description

This event indicates that a Printer device has been attached. When USB_HOST_APP_EVENT_HANDLER(page 337) is
called with this event, the *data parameter points to a structure of the type USB_PRINTER_DEVICE_ID(page 794), which
provides important information about the attached printer. The size parameter is the size of this structure.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

730

7.3.10.2.17 EVENT_PRINTER_DETACH Macro
File

usb_host_printer.h

C

#define EVENT_PRINTER_DETACH (EVENT_PRINTER_BASE+EVENT_PRINTER_OFFSET+1)

Description

This event indicates that the specified device has been detached from the USB. When
USB_HOST_APP_EVENT_HANDLER(page 337) is called with this event, *data points to a BYTE that contains the device
address, and size is the size of a BYTE.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

731

7.3.10.2.18 EVENT_PRINTER_OFFSET Macro
File

usb_host_printer.h

C

#define EVENT_PRINTER_OFFSET 0

Description

This is an optional offset for the values of the generated events. If necessary, the application can use a non-zero offset for
the generic events to resolve conflicts in event number.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

732

7.3.10.2.19 EVENT_PRINTER_REQUEST_DONE Macro
File

usb_host_printer.h

C

#define EVENT_PRINTER_REQUEST_DONE (EVENT_PRINTER_BASE+EVENT_PRINTER_OFFSET+4)

Description

This event indicates that the printer request has completed. These requests occur on endpoint 0 and include getting the
printer status and performing a soft reset.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

733

7.3.10.2.20 EVENT_PRINTER_REQUEST_ERROR Macro
File

usb_host_printer.h

C

#define EVENT_PRINTER_REQUEST_ERROR (EVENT_PRINTER_BASE+EVENT_PRINTER_OFFSET+7)

Description

This event indicates that a bus error occurred while trying to perform a device request. The error code is returned in the size
parameter. The data parameter is returned as NULL.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

734

7.3.10.2.21 EVENT_PRINTER_RX_DONE Macro
File

usb_host_printer.h

C

#define EVENT_PRINTER_RX_DONE (EVENT_PRINTER_BASE+EVENT_PRINTER_OFFSET+3)

Description

This event indicates that a previous read request has completed. When USB_HOST_APP_EVENT_HANDLER(page 337)
is called with this event, *data points to the receive buffer, and size is the actual number of bytes read from the device.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

735

7.3.10.2.22 EVENT_PRINTER_RX_ERROR Macro
File

usb_host_printer.h

C

#define EVENT_PRINTER_RX_ERROR (EVENT_PRINTER_BASE+EVENT_PRINTER_OFFSET+6)

Description

This event indicates that a bus error occurred while trying to perform a read. The error code is returned in the size
parameter. The data parameter is returned as NULL.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

736

7.3.10.2.23 EVENT_PRINTER_TX_DONE Macro
File

usb_host_printer.h

C

#define EVENT_PRINTER_TX_DONE (EVENT_PRINTER_BASE+EVENT_PRINTER_OFFSET+2)

Description

This event indicates that a previous write request has completed. When USB_HOST_APP_EVENT_HANDLER(page 337)
is called with this event, *data points to the buffer that completed transmission, and size is the actual number of bytes that
were written to the device.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

737

7.3.10.2.24 EVENT_PRINTER_TX_ERROR Macro
File

usb_host_printer.h

C

#define EVENT_PRINTER_TX_ERROR (EVENT_PRINTER_BASE+EVENT_PRINTER_OFFSET+5)

Description

This event indicates that a bus error occurred while trying to perform a write. The error code is returned in the size
parameter. The data parameter is returned as NULL.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

738

7.3.10.2.25 EVENT_PRINTER_UNSUPPORTED Macro
File

usb_host_printer.h

C

#define EVENT_PRINTER_UNSUPPORTED (EVENT_PRINTER_BASE+EVENT_PRINTER_OFFSET+8)

Description

This event indicates that a printer has attached for which we do not have printer language support. Therefore, we cannot talk
to this printer. This event can also occur if there is not enough dynamic memory available to read the device ID string.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

739

7.3.10.2.26 LANGUAGE_ID_STRING_ESCPOS Macro
File

usb_host_printer_esc_pos.h

C

#define LANGUAGE_ID_STRING_ESCPOS "ESC"

Description

This is the string that the printer language support determination routine will look for to determine if the printer supports this
printer language. This string is case sensive. See the function USBHostPrinterLanguageESCPOSIsSupported(page 691)()
for more information about using or changing this string. Dynamic language determination is not recommended when using
POS printers.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

740

7.3.10.2.27 LANGUAGE_ID_STRING_PCL Macro
File

usb_host_printer_pcl_5.h

C

#define LANGUAGE_ID_STRING_PCL "PCL"

Description

This is the string that the printer language support determination routine will look for to determine if the printer supports this
printer language. This string is case sensive. Some printers that report only PCL 6 support also support PCL 5. So it is
recommended to use "PCL" as the search string, rather than "PCL 5", and verify that the correct output is produced by the
target printer.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

741

7.3.10.2.28 LANGUAGE_ID_STRING_POSTSCRIPT Macro
File

usb_host_printer_postscript.h

C

#define LANGUAGE_ID_STRING_POSTSCRIPT "POSTSCRIPT"

Description

This is the string that the printer language support determination routine will look for to determine if the printer supports this
printer language. This string is case sensive.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

742

7.3.10.2.29 LANGUAGE_SUPPORT_FLAGS_ESCPOS Macro
File

usb_host_printer_esc_pos.h

C

#define LANGUAGE_SUPPORT_FLAGS_ESCPOS USB_PRINTER_FUNCTION_SUPPORT_POS

Description

These are the support flags that are set for this language.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

743

7.3.10.2.30 LANGUAGE_SUPPORT_FLAGS_PCL3 Macro
File

usb_host_printer_pcl_5.h

C

#define LANGUAGE_SUPPORT_FLAGS_PCL3 0

Description

These are the support flags that are set for the PCL 3 version of this language.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

744

7.3.10.2.31 LANGUAGE_SUPPORT_FLAGS_PCL5 Macro
File

usb_host_printer_pcl_5.h

C

#define LANGUAGE_SUPPORT_FLAGS_PCL5 USB_PRINTER_FUNCTION_SUPPORT_VECTOR_GRAPHICS

Description

These are the support flags that are set for the PCL 5 version of this language.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

745

7.3.10.2.32 LANGUAGE_SUPPORT_FLAGS_POSTSCRIPT Macro
File

usb_host_printer_postscript.h

C

#define LANGUAGE_SUPPORT_FLAGS_POSTSCRIPT USB_PRINTER_FUNCTION_SUPPORT_VECTOR_GRAPHICS

Description

These are the support flags that are set for this language.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

746

7.3.10.2.33 PRINTER_COLOR_BLACK Macro
File

usb_host_printer.h

C

#define PRINTER_COLOR_BLACK 0

Description

Indicates a black line for drawing graphics objects.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

747

7.3.10.2.34 PRINTER_COLOR_WHITE Macro
File

usb_host_printer.h

C

#define PRINTER_COLOR_WHITE 1

Description

Indicates a white line for drawing graphics objects.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

748

7.3.10.2.35 PRINTER_DEVICE_REQUEST_GET_DEVICE_ID Macro
File

usb_host_printer.h

C

#define PRINTER_DEVICE_REQUEST_GET_DEVICE_ID 0x00

Description

bRequest value for the GET_DEVICE_ID USB class-specific request.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

749

7.3.10.2.36 PRINTER_DEVICE_REQUEST_GET_PORT_STATUS Macro
File

usb_host_printer.h

C

#define PRINTER_DEVICE_REQUEST_GET_PORT_STATUS 0x01

Description

bRequest value for the GET_PORT_STATUS USB class-specific request.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

750

7.3.10.2.37 PRINTER_DEVICE_REQUEST_SOFT_RESET Macro
File

usb_host_printer.h

C

#define PRINTER_DEVICE_REQUEST_SOFT_RESET 0x02

Description

bRequest value for the SOFT_RESET USB class-specific request.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

751

7.3.10.2.38 PRINTER_FILL_CROSS_HATCHED Macro
File

usb_host_printer.h

C

#define PRINTER_FILL_CROSS_HATCHED 3

Description

Indicates a cross-hatched fill for graphics objects. Requires a specified line spacing and angle.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

752

7.3.10.2.39 PRINTER_FILL_HATCHED Macro
File

usb_host_printer.h

C

#define PRINTER_FILL_HATCHED 2

Description

Indicates a hatched fill for graphics objects. Requires a specified line spacing and angle.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

753

7.3.10.2.40 PRINTER_FILL_SHADED Macro
File

usb_host_printer.h

C

#define PRINTER_FILL_SHADED 1

Description

Indicates a shaded fill for filled graphics objects. Requires a specified fill percentage.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

754

7.3.10.2.41 PRINTER_FILL_SOLID Macro
File

usb_host_printer.h

C

#define PRINTER_FILL_SOLID 0

Description

Indicates a solid color fill for filled graphics objects.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

755

7.3.10.2.42 PRINTER_LINE_END_BUTT Macro
File

usb_host_printer.h

C

#define PRINTER_LINE_END_BUTT 0

Description

Drawn lines will have a butt end.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

756

7.3.10.2.43 PRINTER_LINE_END_ROUND Macro
File

usb_host_printer.h

C

#define PRINTER_LINE_END_ROUND 1

Description

Drawn lines will have a round end.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

757

7.3.10.2.44 PRINTER_LINE_END_SQUARE Macro
File

usb_host_printer.h

C

#define PRINTER_LINE_END_SQUARE 2

Description

Drawn lines will have a square end.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

758

7.3.10.2.45 PRINTER_LINE_JOIN_BEVEL Macro
File

usb_host_printer.h

C

#define PRINTER_LINE_JOIN_BEVEL 0

Description

Drawn lines will be joined with a bevel.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

759

7.3.10.2.46 PRINTER_LINE_JOIN_MITER Macro
File

usb_host_printer.h

C

#define PRINTER_LINE_JOIN_MITER 1

Description

Drawn lines will be joined with a miter.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

760

7.3.10.2.47 PRINTER_LINE_JOIN_ROUND Macro
File

usb_host_printer.h

C

#define PRINTER_LINE_JOIN_ROUND 2

Description

Drawn lines will be joined with a round.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

761

7.3.10.2.48 PRINTER_LINE_TYPE_DASHED Macro
File

usb_host_printer.h

C

#define PRINTER_LINE_TYPE_DASHED 1

Description

Indicates a dashed line for drawing graphics objects.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

762

7.3.10.2.49 PRINTER_LINE_TYPE_DOTTED Macro
File

usb_host_printer.h

C

#define PRINTER_LINE_TYPE_DOTTED 2

Description

Indicates a dotted line for drawing graphics objects.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

763

7.3.10.2.50 PRINTER_LINE_TYPE_SOLID Macro
File

usb_host_printer.h

C

#define PRINTER_LINE_TYPE_SOLID 0

Description

Indicates a solid line for drawing graphics objects.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

764

7.3.10.2.51 PRINTER_LINE_WIDTH_NORMAL Macro
File

usb_host_printer.h

C

#define PRINTER_LINE_WIDTH_NORMAL 0

Description

Indicates a normal width line for drawing graphics objects.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

765

7.3.10.2.52 PRINTER_LINE_WIDTH_THICK Macro
File

usb_host_printer.h

C

#define PRINTER_LINE_WIDTH_THICK 1

Description

Indicates a thick line for drawing graphics objects.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

766

7.3.10.2.53 PRINTER_PAGE_LANDSCAPE_HEIGHT Macro
File

usb_host_printer.h

C

#define PRINTER_PAGE_LANDSCAPE_HEIGHT 612

Description

The height of the page in points when in landscape mode.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

767

7.3.10.2.54 PRINTER_PAGE_LANDSCAPE_WIDTH Macro
File

usb_host_printer.h

C

#define PRINTER_PAGE_LANDSCAPE_WIDTH 792

Description

The width of the page in points when in landscape mode.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

768

7.3.10.2.55 PRINTER_PAGE_PORTRAIT_HEIGHT Macro
File

usb_host_printer.h

C

#define PRINTER_PAGE_PORTRAIT_HEIGHT 792

Description

The height of the page in points when in portrait mode.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

769

7.3.10.2.56 PRINTER_PAGE_PORTRAIT_WIDTH Macro
File

usb_host_printer.h

C

#define PRINTER_PAGE_PORTRAIT_WIDTH 612

Description

The width of the page in points when in portrait mode.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

770

7.3.10.2.57 PRINTER_POS_BOTTOM_TO_TOP Macro
File

usb_host_printer.h

C

#define PRINTER_POS_BOTTOM_TO_TOP 1

Description

POS print direction bottom to top, starting at the bottom left corner.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

771

7.3.10.2.58 PRINTER_POS_DENSITY_HORIZONTAL_DOUBLE Macro
File

usb_host_printer.h

C

#define PRINTER_POS_DENSITY_HORIZONTAL_DOUBLE 2

Description

Image print with double horizontal density.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

772

7.3.10.2.59 PRINTER_POS_DENSITY_HORIZONTAL_SINGLE Macro
File

usb_host_printer.h

C

#define PRINTER_POS_DENSITY_HORIZONTAL_SINGLE 1

Description

Image print with single horizontal density.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

773

7.3.10.2.60 PRINTER_POS_DENSITY_VERTICAL_24 Macro
File

usb_host_printer.h

C

#define PRINTER_POS_DENSITY_VERTICAL_24 24

Description

Image print with 24-dot vertical density.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

774

7.3.10.2.61 PRINTER_POS_DENSITY_VERTICAL_8 Macro
File

usb_host_printer.h

C

#define PRINTER_POS_DENSITY_VERTICAL_8 8

Description

Image print with 8-dot vertical density.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

775

7.3.10.2.62 PRINTER_POS_LEFT_TO_RIGHT Macro
File

usb_host_printer.h

C

#define PRINTER_POS_LEFT_TO_RIGHT 0

Description

POS print direction left to right, starting at the top left corner.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

776

7.3.10.2.63 PRINTER_POS_RIGHT_TO_LEFT Macro
File

usb_host_printer.h

C

#define PRINTER_POS_RIGHT_TO_LEFT 2

Description

POS print direction right to left, startin at the bottom right corner.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

777

7.3.10.2.64 PRINTER_POS_TOP_TO_BOTTOM Macro
File

usb_host_printer.h

C

#define PRINTER_POS_TOP_TO_BOTTOM 3

Description

POS print direction top to bottom, starting at the top right corner.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

778

7.3.10.2.65 USB_DATA_POINTER Union
File

usb_host_printer.h

C

typedef union {
 void * pointerRAM;
 const void * pointerROM;
} USB_DATA_POINTER;

Members

Members Description

void * pointerRAM; Pointer to data in RAM.

const void * pointerROM; Pointer to data in ROM.

Description

This type is used to represent a generic RAM or ROM pointer when passed to the function USBHostPrinterCommand(
page 679)() or a printer language function of the type USB_PRINTER_LANGUAGE_HANDLER(page 808). Note that the
caller must indicate whether the point is actually pointing to RAM or to ROM, so we can tell which pointer is valid. Not all
printer commands can actually use data in ROM. Refer to the specific printer command in the
USB_PRINTER_COMMAND(page 785) enumeration for more information.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

779

7.3.10.2.66 USB_DATA_POINTER_RAM Macro
File

usb_host_printer.h

C

#define USB_DATA_POINTER_RAM(x) ((USB_DATA_POINTER)(void *)x)

Description

Use this definition to cast a pointer being passed to the function USBHostPrinterCommand(page 679)() that points to data
in RAM.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

780

7.3.10.2.67 USB_DATA_POINTER_ROM Macro
File

usb_host_printer.h

C

#define USB_DATA_POINTER_ROM(x) ((USB_DATA_POINTER)(const void *)x)

Description

Use this definition to cast a pointer being passed to the function USBHostPrinterCommand(page 679)() that points to data
in ROM.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

781

7.3.10.2.68 USB_MAX_PRINTER_DEVICES Macro
File

usb_host_printer.h

C

#define USB_MAX_PRINTER_DEVICES 1

Description

Max Number of Supported Devices

This value represents the maximum number of attached devices this class driver can support. If the user does not define a
value, it will be set to 1. Currently this must be set to 1, due to limitations in the USB Host layer.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

782

7.3.10.2.69 USB_NULL Macro
File

usb_host_printer.h

C

#define USB_NULL (USB_DATA_POINTER)(void *)NULL

Description

Use this definition to pass a NULL pointer to the function USBHostPrinterCommand(page 679)().

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

783

7.3.10.2.70 USB_PRINT_SCREEN_INFO Structure
File

usb_host_printer_primitives.h

C

typedef struct {
 WORD xL;
 WORD yT;
 WORD xR;
 WORD yB;
 WORD colorBlack;
 USB_PRINTER_FUNCTION_SUPPORT printerType;
 USB_PRINTER_IMAGE_INFO printerInfo;
} USB_PRINT_SCREEN_INFO;

Members

Members Description

WORD xL; X-axis position of the left side of the screen image.

WORD yT; Y-axis position of the top of the screen image.

WORD xR; X-axis position of the right side of the screen image.

WORD yB; Y-axis position of the bottom of the screen image.

WORD colorBlack; Screen color that should be printed as black.

USB_PRINTER_FUNCTION_SUPPORT
printerType;

The capabilities of the current printer, so we know what structure members are
valid.

USB_PRINTER_IMAGE_INFO printerInfo; Store all the info needed to print the image. The width and height parameters
will be determined by the screen coordinates specified above. The application
must provide the other values.

Description

Print Screen Information

This structure is designed for use when the USB Embedded Host Printer support is integrated with the graphics library. The
structure contains the information needed to print a portion of the graphics screen as a bitmapped graphic image.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

784

7.3.10.2.71 USB_PRINTER_COMMAND Enumeration
File

usb_host_printer.h

C

typedef enum {
 USB_PRINTER_ATTACHED,
 USB_PRINTER_DETACHED,
 USB_PRINTER_TRANSPARENT,
 USB_PRINTER_JOB_START,
 USB_PRINTER_JOB_STOP,
 USB_PRINTER_ORIENTATION_PORTRAIT,
 USB_PRINTER_ORIENTATION_LANDSCAPE,
 USB_PRINTER_FONT_NAME,
 USB_PRINTER_FONT_SIZE,
 USB_PRINTER_FONT_ITALIC,
 USB_PRINTER_FONT_UPRIGHT,
 USB_PRINTER_FONT_BOLD,
 USB_PRINTER_FONT_MEDIUM,
 USB_PRINTER_EJECT_PAGE,
 USB_PRINTER_TEXT_START,
 USB_PRINTER_TEXT,
 USB_PRINTER_TEXT_STOP,
 USB_PRINTER_SET_POSITION,
 USB_PRINTER_IMAGE_START,
 USB_PRINTER_IMAGE_DATA_HEADER,
 USB_PRINTER_IMAGE_DATA,
 USB_PRINTER_IMAGE_STOP,
 USB_PRINTER_VECTOR_GRAPHICS_START,
 USB_PRINTER_GRAPHICS_LINE_TYPE,
 USB_PRINTER_GRAPHICS_LINE_WIDTH,
 USB_PRINTER_GRAPHICS_LINE_END,
 USB_PRINTER_GRAPHICS_LINE_JOIN,
 USB_PRINTER_GRAPHICS_FILL_TYPE,
 USB_PRINTER_GRAPHICS_COLOR,
 USB_PRINTER_GRAPHICS_MOVE_TO,
 USB_PRINTER_GRAPHICS_MOVE_RELATIVE,
 USB_PRINTER_GRAPHICS_LINE,
 USB_PRINTER_GRAPHICS_LINE_TO,
 USB_PRINTER_GRAPHICS_LINE_TO_RELATIVE,
 USB_PRINTER_GRAPHICS_ARC,
 USB_PRINTER_GRAPHICS_CIRCLE,
 USB_PRINTER_GRAPHICS_CIRCLE_FILLED,
 USB_PRINTER_GRAPHICS_BEVEL,
 USB_PRINTER_GRAPHICS_BEVEL_FILLED,
 USB_PRINTER_GRAPHICS_RECTANGLE,
 USB_PRINTER_GRAPHICS_RECTANGLE_FILLED,
 USB_PRINTER_GRAPHICS_POLYGON,
 USB_PRINTER_VECTOR_GRAPHICS_END,
 USB_PRINTER_POS_START,
 USB_PRINTER_POS_PAGE_MODE,
 USB_PRINTER_POS_STANDARD_MODE,
 USB_PRINTER_POS_FEED,
 USB_PRINTER_POS_TEXT_LINE,
 USB_PRINTER_POS_CUT,
 USB_PRINTER_POS_CUT_PARTIAL,
 USB_PRINTER_POS_JUSTIFICATION_CENTER,
 USB_PRINTER_POS_JUSTIFICATION_LEFT,
 USB_PRINTER_POS_JUSTIFICATION_RIGHT,
 USB_PRINTER_POS_FONT_REVERSE,
 USB_PRINTER_POS_FONT_UNDERLINE,
 USB_PRINTER_POS_COLOR_BLACK,
 USB_PRINTER_POS_COLOR_RED,
 USB_PRINTER_POS_BARCODE,
 USB_PRINTER_POS_END
} USB_PRINTER_COMMAND;

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

785

Members

Members Description

USB_PRINTER_ATTACHED This command is used internally by the printer client driver.
Applications do not issue this command. This command informs the
language support code that a new device has attached. Some
language support requires the maintenance of certain information
about the printering status. This command, with the
USB_PRINTER_DETACHED command, allows the language support
information to be maintained properly as printers are attached and
detached. The data and size parameters are not used by this
command, and can be passed as USB_NULL(page 783) and 0
respectively.

USB_PRINTER_DETACHED This command is used internally by the printer client driver.
Applications do not issue this command. This command informs the
language support code that a device has detached. Some language
support requires the maintenance of certain information about the
printering status. This command, with the
USB_PRINTER_ATTACHED command, allows the language support
information to be maintained properly as printers are attached and
detached. The data and size parameters are not used by this
command, and can be passed as USB_NULL(page 783) and 0
respectively.

USB_PRINTER_TRANSPARENT This command instructs the printer driver to send the buffer directly to
the printer, without interpretation by the printer driver. This is normally
used only when debugging new commands. The data parameter
should point to the data to be sent, and size should indicate the
number of bytes to send. This command supports sending data from
either RAM or ROM. If the data is in ROM, be sure to set the
USB_PRINTER_TRANSFER_FROM_ROM(page 815) flag. If the
data is in RAM but the application may overwrite it, set the
USB_PRINTER_TRANSFER_COPY_DATA(page 813) flag to tell
the printer client driver to make a local copy of the data, allowing the
application to overwrite the original buffer when
USBHostPrinterCommand(page 679)() terminates.

USB_PRINTER_JOB_START This command should be issued at the beginning of every print job. It
ensures that the printer is set back to a default state. The data and
size parameters are not used by this command, and can be passed
as USB_NULL(page 783) and 0 respectively.

USB_PRINTER_JOB_STOP This command should be issued at the end of every print job. It ejects
the currently printing page, and ensures that the printer is set back to
a default state. The data and size parameters are not used by this
command, and can be passed as USB_NULL(page 783) and 0
respectively.

USB_PRINTER_ORIENTATION_PORTRAIT This command sets the current page orientation to portrait. This
command must be issued immediately after the
USB_PRINTER_JOB_START and USB_PRINTER_EJECT_PAGE
commands in order for the command to take effect properly. Only one
orientation command should be sent per page, or the output may not
be properly generated. The default orientation is portrait. The data
and size parameters are not used by this command, and can be
passed as USB_NULL(page 783) and 0 respectively.

USB_PRINTER_ORIENTATION_LANDSCAPE This command sets the current page orientation to landscape. This
command must be issued immediately after the
USB_PRINTER_JOB_START and USB_PRINTER_EJECT_PAGE
commands in order for the command to take effect properly. Only one
orientation command should be sent per page, or the output may not
be properly generated. The default orientation is portrait. The data
and size parameters are not used by this command, and can be
passed as USB_NULL(page 783) and 0 respectively.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

786

USB_PRINTER_FONT_NAME This command selects the text font. To make usage easier, the size
parameter is used to hold the font name indication. The data pointer
should be passed in as USB_NULL(page 783). Refer to the enums
USB_PRINTER_FONTS(page 796) and
USB_PRINTER_FONTS_POS(page 797) for the valid values for
the font name. With POS printers, the font name also indicates the
font size.

USB_PRINTER_FONT_SIZE (Full sheet printers only.) This command selects the font size in terms
of points. To make usage easier, the size parameter is used to hold
the font size. The data pointer should be passed in as USB_NULL(
page 783). For POS printers, the size is specified as a scale factor.
The value of bits [3:0] plus one is the vertical scale, and the value of
bits [7:4] plus one is the horizontal scale. Each direction can be
scaled a maximum of x10. For example, the value 0x00 is x1 scaling
in both directions, and 0x95 is x10 scaling horizontally and x6 scaling
vertically.

USB_PRINTER_FONT_ITALIC This command sets the current font to italic. The data and size
parameters are not used by this command, and can be passed as
USB_NULL(page 783) and 0 respectively.

USB_PRINTER_FONT_UPRIGHT This command sets the current font to upright (not italic). The data
and size parameters are not used by this command, and can be
passed as USB_NULL(page 783) and 0 respectively.

USB_PRINTER_FONT_BOLD This command sets the current font to bold. The data and size
parameters are not used by this command, and can be passed as
USB_NULL(page 783) and 0 respectively.

USB_PRINTER_FONT_MEDIUM This command sets the current font to regular weight (not bold). The
data and size parameters are not used by this command, and can be
passed as USB_NULL(page 783) and 0 respectively.

USB_PRINTER_EJECT_PAGE This command ejects the currently printing page. The command
USB_PRINTER_JOB_STOP will also eject the page. After this
command, the selected paper orientation (portrait or landscape) and
selected font must be reset. The data and size parameters are not
used by this command, and can be passed as USB_NULL(page
783) and 0 respectively.

USB_PRINTER_TEXT_START This command initiates a text print. To print text, first issue a
USB_PRINTER_TEXT_START command. Then issue a
USB_PRINTER_TEXT command with the text to be printed, setting
the transferFlags parameter correctly for the location of the source
text (RAM, ROM, or external memory. Finally, use the
USB_PRINTER_TEXT_STOP command to terminate the text print.
For best compatibility across printers, do not insert other commands
into this sequence. The data and size parameters are not used by this
command, and can be passed as USB_NULL(page 783) and 0
respectively.

USB_PRINTER_TEXT This command specifies text to print. The data parameter should
point to the buffer of data to send, and size should indicate how many
bytes of data to print. This command supports printing text from either
RAM or ROM. Be sure to set the transferFlags parameter correctly for
the location of the data source. If the data is in RAM but the
application may overwrite it, set the
USB_PRINTER_TRANSFER_COPY_DATA(page 813) flag to tell
the printer client driver to make a local copy of the data, allowing the
application to overwrite the original buffer when
USBHostPrinterCommand(page 679)() terminates. Refer to the
USB_PRINTER_TEXT_START command for the sequence required
to print text.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

787

USB_PRINTER_TEXT_STOP This command terminates a text print. Refer to the
USB_PRINTER_TEXT_START command for the sequence required
to print text. The data and size parameters are not used by this
command, and can be passed as USB_NULL(page 783) and 0
respectively. For POS printers, size is the number of lines to feed
after the print. To get the best result, a minimum of one line is
recommended. The data parameter is not used, and can be passed
as USB_NULL(page 783).

USB_PRINTER_SET_POSITION This command sets the current printing position on the page. Refer to
the documentation for a description of the page coordinates. Both X
and Y coordinates are passed in the size parameter. The X
coordinate is passed in the most significant (upper) WORD, and the Y
coordinate is passed in the least significant (lower) WORD. The
macro USBHostPrinterPosition(page 700)(X, Y) can be used to
create the paramater. POS printers support specifying the Y-axis
position while in page mode only. The data pointer should be passed
in as USB_NULL(page 783).

USB_PRINTER_IMAGE_START This command is used to initialize the printing of a bitmapped image.
This command requires a pointer to a variable of type
USB_PRINTER_IMAGE_INFO(page 805). To print a bitmapped
image, obtain the information required by the
USB_PRINTER_IMAGE_INFO(page 805) structure, and issue this
command. Each row of bitmapped data can now be sent to the
printer. For each row, first issue the
USB_PRINTER_IMAGE_DATA_HEADER command. Then issue the
USB_PRINTER_IMAGE_DATA command, with the transferFlags
parameter set appropriately for the location of the bitmapped data.
After all rows of data have been sent, terminate the image print with
the USB_PRINTER_IMAGE_STOP command. Be sure that adequate
heap space is available, particularly when printing from ROM or
external memory, and when printing to a POS printer. When printing
images on POS printers, ensure that the dot density capabilities of
the printer are set correctly. If they are not, the printer will print
garbage characters. Refer to the Printer Client Driver section of the
Help file for more information about printing images.

USB_PRINTER_IMAGE_DATA_HEADER This command is issued before each row of bitmapped image data.
The size parameter is the width of the image in terms of pixels. The
*data parameter is not used and should be passed in as
USB_NULL(page 783). Refer to the
USB_PRINTER_IMAGE_START command for the sequence
required to print an image. When printing images on POS printers,
ensure that the dot density capabilities of the printer are set correctly.
If they are not, the printer will print garbage characters.

USB_PRINTER_IMAGE_DATA This command is issued for each row of bitmapped image data. The
*data parameter should point to the data, and size should be the
number of bits of data to send to the printer, which should match the
value passed in the USB_PRINTER_IMAGE_DATA_HEADER
command. This command supports reading image data from either
RAM or ROM. Be sure to set the transferFlags parameter
appropriately to indicate the location of the bitmapped data. If the
data is in RAM but the application may overwrite it, set the
USB_PRINTER_TRANSFER_COPY_DATA(page 813) flag to tell
the printer client driver to make a local copy of the data, allowing the
application to overwrite the original buffer when
USBHostPrinterCommand(page 679)() terminates. Refer to the
USB_PRINTER_IMAGE_START command for the sequence
required to print an image. Be sure that adequate heap space is
available, particularly when printing from ROM or external memory,
and when printing to a POS printer. When printing images on POS
printers, ensure that the dot density capabilities of the printer are set
correctly. If they are not, the printer will print garbage characters.
Refer to the Printer Client Driver section of the Help file for more
information about printing images.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

788

USB_PRINTER_IMAGE_STOP This command is used to terminate printing a bitmapped image. Refer
to the USB_PRINTER_IMAGE_START command for the sequence
required to print an image.

USB_PRINTER_VECTOR_GRAPHICS_START Commands between USB_PRINTER_VECTOR_GRAPHICS_START
and USB_PRINTER_VECTOR_GRAPHICS_END are valid only with
printers that support vector graphics. This support is determined by
the interface function of the type
USB_PRINTER_LANGUAGE_SUPPORTED(page 809) that is
specified in the usb_config.c configuration file.

USB_PRINTER_GRAPHICS_LINE_TYPE (Vector graphics support required.) This command sets the line type
for drawing graphics. The line type indication is passed in the size
parameter. Valid values are PRINTER_LINE_TYPE_SOLID(page
764), PRINTER_LINE_TYPE_DOTTED(page 763), and
PRINTER_LINE_TYPE_DASHED(page 762). The data pointer
parameter is not used and should be set to USB_NULL(page 783).

USB_PRINTER_GRAPHICS_LINE_WIDTH (Vector graphics support required.) This command sets the width of
the line for drawing vector graphics. The width indication is passed in
the size parameter. For full sheet printers, valid values are
PRINTER_LINE_WIDTH_NORMAL(page 765) and
PRINTER_LINE_WIDTH_THICK(page 766). For POS printers, the
size is specified in dots (1-255). The data pointer parameter is not
used and should be set to USB_NULL(page 783).

USB_PRINTER_GRAPHICS_LINE_END (Vector graphics support required.) This command sets the style of
the end of the lines used for drawing vector graphics. The style
indication is passed in the size parameter. Valid values are
PRINTER_LINE_END_BUTT(page 756),
PRINTER_LINE_END_ROUND(page 757), and
PRINTER_LINE_END_SQUARE(page 758). The data pointer
parameter is not used and should be set to USB_NULL(page 783).

USB_PRINTER_GRAPHICS_LINE_JOIN (Vector graphics support required.) This commands sets the style of
how lines are joined when drawing vector graphics. The style
indication is passed in the size parameter. Valid values are
PRINTER_LINE_JOIN_BEVEL(page 759),
PRINTER_LINE_JOIN_MITER(page 760), and
PRINTER_LINE_JOIN_ROUND(page 761). The data pointer
parameter is not used and should be set to USB_NULL(page 783).

USB_PRINTER_GRAPHICS_FILL_TYPE (Vector graphics support required.) This command sets the fill type for
drawing filled vector graphics. The data pointer should point to a data
structure that matches the sFillType structure in the
USB_PRINTER_GRAPHICS_PARAMETERS(page 801) union.
Valid values for the fillType member are:

• PRINTER_FILL_SOLID(page 755). Other structure members
are ignored.

• PRINTER_FILL_SHADED(page 754). 0 <= shading <= 100

• PRINTER_FILL_HATCHED(page 753). The spacing is
specified in points, angle is specified in degrees.

• PRINTER_FILL_CROSS_HATCHED(page 752). The spacing
is specified in points, angle is specified in degrees.

USB_PRINTER_GRAPHICS_COLOR (Vector graphics support required.) This command sets the color of
the line for drawing vector graphics. The color indication is passed in
the size parameter. Valid values are PRINTER_COLOR_BLACK(
page 747) and PRINTER_COLOR_WHITE(page 748). The data
pointer parameter is not used and should be set to USB_NULL(
page 783).

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

789

USB_PRINTER_GRAPHICS_MOVE_TO (Vector graphics support required.) This command moves the
graphics pen to the specified position. The position is specified in
terms of points. The X-axis position value is passed in the most
significant word of the size parameter, and the Y-axis position value is
passed in the least significant word of the size parameter. POS
printers support specifying the Y-axis position while in page mode
only. The data pointer parameter is not used and should be set to
USB_NULL(page 783).

USB_PRINTER_GRAPHICS_MOVE_RELATIVE (Vector graphics support required.) This command moves the
graphics pen to the specified relative position. The change in position
is specified in terms of points. The X-axis position change is passed
in the most significant word of the size parameter, and the Y-axis
position change is passed in the least significant word of the size
parameter. POS printers do not support specifying the Y-axis position.

USB_PRINTER_GRAPHICS_LINE (Vector graphics support required.) This command draws a line from
one specified x,y position to another specified x,y position. The data
pointer should point to a data structure that matches the sLine
structure in the USB_PRINTER_GRAPHICS_PARAMETERS(page
801) union.

USB_PRINTER_GRAPHICS_LINE_TO (Vector graphics support required.) This command draws a line from
the current x,y position to the specified x,y position. The new x,y
position is passed in the size parameter. The X-axis position value is
passed in the most significant word of the size parameter, and the
Y-axis position value is passed in the least significant word of the size
parameter. The data pointer parameter is not used and should be set
to USB_NULL(page 783).

USB_PRINTER_GRAPHICS_LINE_TO_RELATIVE (Vector graphics support required.) This command draws a line from
the current x,y position to the x,y position defined by the indicated
displacement. The x and y displacements are passed in the size
parameter. The X-axis displacement is passed in the most significant
word of the size parameter, and the Y-axis displacement is passed in
the least significant word of the size parameter. The data pointer
parameter is not used and should be set to USB_NULL(page 783).

USB_PRINTER_GRAPHICS_ARC (Vector graphics support required.) This command draws an arc, or a
piece of a circle. The data pointer should point to a data structure that
matches the sArc structure in the
USB_PRINTER_GRAPHICS_PARAMETERS(page 801) union.
This command can print only one arc of a circle, unlike the Graphics
library, which can print multiple separated arcs of the same circle.

USB_PRINTER_GRAPHICS_CIRCLE (Vector graphics support required.) This command draws a circle
using the current pen color and width. The inside of the circle is not
filled. To draw a filled circle, use the command
USB_PRINTER_GRAPHICS_CIRCLE_FILLED. The data pointer
should point to a data structure that matches the sCircle structure in
the USB_PRINTER_GRAPHICS_PARAMETERS(page 801) union.

USB_PRINTER_GRAPHICS_CIRCLE_FILLED (Vector graphics support required.) This command draws a filled
circle using the current pen color. To draw the outline of a circle, use
the command USB_PRINTER_GRAPHICS_CIRCLE_FILLED. The
data pointer should point to a data structure that matches the sCircle
structure in the USB_PRINTER_GRAPHICS_PARAMETERS(page
801) union.

USB_PRINTER_GRAPHICS_BEVEL (Vector graphics support required.) This command draws an outlined
bevel (rectangle with rounded corners) using the current pen color
and width. The inside of the bevel is not filled. To draw a filled bevel,
use the command USB_PRINTER_GRAPHICS_BEVEL_FILLED.
The data pointer should point to a data structure that matches the
sBevel structure in the
USB_PRINTER_GRAPHICS_PARAMETERS(page 801) union.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

790

USB_PRINTER_GRAPHICS_BEVEL_FILLED (Vector graphics support required.) This command draws a filled
bevel using the current pen color. To draw the outline of a bevel, use
the command USB_PRINTER_GRAPHICS_BEVEL_FILLED. The
data pointer should point to a data structure that matches the sBevel
structure in the USB_PRINTER_GRAPHICS_PARAMETERS(page
801) union.

USB_PRINTER_GRAPHICS_RECTANGLE (Vector graphics support required.) This command draws a rectangle
using the current pen color and width. The inside of the rectangle is
not filled. To draw a filled rectangle, use the command
USB_PRINTER_GRAPHICS_RECTANGLE_FILLED. The data
pointer should point to a data structure that matches the sRectangle
structure in the USB_PRINTER_GRAPHICS_PARAMETERS(page
801) union.

USB_PRINTER_GRAPHICS_RECTANGLE_FILLED (Vector graphics support required.) This command draws a filled
rectangle using the current pen color. To draw the outline of a
rectangle, use the command
USB_PRINTER_GRAPHICS_RECTANGLE. The data pointer should
point to a data structure that matches the sRectangle structure in the
USB_PRINTER_GRAPHICS_PARAMETERS(page 801) union.

USB_PRINTER_GRAPHICS_POLYGON (Vector graphics support required.) This command draws the outline
of a polygon with a specified number of sides, using the current pen
color and width. The data pointer should point to a data structure that
matches the sPolygon structure in the
USB_PRINTER_GRAPHICS_PARAMETERS(page 801) union.
This structure contains the number of verticies of the polygon and a
pointer to an array containing x,y coordinates of the verticies. Line
segments are drawn to each vertex in the order that they appear in
the array.

USB_PRINTER_VECTOR_GRAPHICS_END Commands between USB_PRINTER_VECTOR_GRAPHICS_START
and USB_PRINTER_VECTOR_GRAPHICS_END are valid only with
printers that support vector graphics. This support is determined by
the interface function of the type
USB_PRINTER_LANGUAGE_SUPPORTED(page 809) that is
specified in the usb_config.c configuration file.

USB_PRINTER_POS_START Commands between USB_PRINTER_POS_START and
USB_PRINTER_POS_END are valid only with point-of-sale printers.
This support is determined by the interface function of the type
USB_PRINTER_LANGUAGE_SUPPORTED(page 809) that is
specified in the usb_config.c configuration file.

USB_PRINTER_POS_PAGE_MODE (POS support required.) This command sets the printer into page
mode. In this mode, print commands are retained by the printer until it
receives the USB_PRINTER_EJECT_PAGE command. This allows
the application to create more sophisticated output. The data pointer
should point to a data struture that matches the sPage structure in the
USB_PRINTER_GRAPHICS_PARAMETERS(page 801) union.
This structure contains the horizontal and vertical starting point, the
horizontal and vertical print length, and the print direction and starting
point. Valid values for the print direction and starting point are:

• PRINTER_POS_LEFT_TO_RIGHT(page 776)

• PRINTER_POS_BOTTOM_TO_TOP(page 771)

• PRINTER_POS_RIGHT_TO_LEFT(page 777)

• PRINTER_POS_TOP_TO_BOTTOM(page 778)

USB_PRINTER_POS_STANDARD_MODE (POS support required.) This command sets the printer into standard
mode. In this mode, print commands are processed and printed
immediately. This is typically the default mode for a POS printer.

USB_PRINTER_POS_FEED (POS support required.) This command feeds the specified number of
lines, as dictated by the size parameter (between 0 and 255). The
data parameter is not used, and should be set to USB_NULL(page
783).

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

791

USB_PRINTER_POS_TEXT_LINE (POS support required.) This command is a simplified method of
printing a text line to a POS printer. This command prints a single,
null terminated string and feeds a specified number of lines after the
print. The data pointer must point to a null terminated string located in
RAM. Printing strings from ROM is not supported. The size parameter
should be set to the number of lines to feed after the text is printed.

USB_PRINTER_POS_CUT (POS support required.) This command cuts the paper completely.
The data parameter is not used, and should be passed as
USB_NULL(page 783). The least significant byte of the size
parameter indicates the number of vertical motion units (printer
dependent, typical values are 1/360 inch to 1/144 inch) to feed before
the cut. Not all POS printer models support this command.

USB_PRINTER_POS_CUT_PARTIAL (POS support required.) This command cuts the paper, leaving one
point uncut. The data parameter is not used, and should be passed
as USB_NULL(page 783). The least significant byte of the size
parameter indicates the number of vertical motion units (printer
dependent, typical values are 1/360 inch to 1/144 inch) to feed before
the cut. Not all POS printer models support this command.

USB_PRINTER_POS_JUSTIFICATION_CENTER (POS support required.) This command sets the printing justification
to the center of the print area. The data and size parameters are not
used, and should be set to USB_NULL(page 783) and 0
respectively.

USB_PRINTER_POS_JUSTIFICATION_LEFT (POS support required.) This command sets the printing justification
to the left side of the print area. The data and size parameters are not
used, and should be set to USB_NULL(page 783) and 0
respectively.

USB_PRINTER_POS_JUSTIFICATION_RIGHT (POS support required.) This command sets the printing justification
to the right side of the print area. The data and size parameters are
not used, and should be set to USB_NULL(page 783) and 0
respectively.

USB_PRINTER_POS_FONT_REVERSE (POS support required.) This command enables or disables
white/black reverse printing of characters. When enabled, characters
are printed in white on a black background, and underlining is not
performed. To enable reverse printing, set the size parameter to 1. To
disable reverse printing, set the size parameter to 0. (Only the least
significant bit of the size parameter is examined.) The data parameter
is not used, and should be set to USB_NULL(page 783). Not all
POS printer models support this command.

USB_PRINTER_POS_FONT_UNDERLINE (POS support required.) This command enables or disables
underlining. Underlining is not performed if reverse printing is
enabled. To enable underlining, set the size parameter to 1. To
disable underlining, set the size parameter to 0. (Only the least
significant bit of the size parameter is examined.) The data parameter
is not used, and should be set to USB_NULL(page 783).

USB_PRINTER_POS_COLOR_BLACK (POS support required.) This command changes the print color to
black. This command is available only with printers that support two
color printing. The data and size parameters are not used, and should
be set to USB_NULL(page 783) and 0 respectively.

USB_PRINTER_POS_COLOR_RED (POS support required.) This command changes the print color to
red. This command is available only with printers that support two
color printing. The data and size parameters are not used, and should
be set to USB_NULL(page 783) and 0 respectively.

USB_PRINTER_POS_BARCODE (POS support required.) This command prints a bar code. Not all
POS printers provide bar code support, and the types of bar codes
supported may vary; check the technical documentation for the
desired target printer. The data pointer should point to a data
structure that matches the sBarCode structure in the
USB_PRINTER_GRAPHICS_PARAMETERS(page 801) union.
This structure contains the type of bar code (as specified by the
USB_PRINTER_POS_BARCODE_FORMAT(page 810)
enumeration) and the bar code data.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

792

USB_PRINTER_POS_END Commands between USB_PRINTER_POS_START and
USB_PRINTER_POS_END are valid only with point-of-sale printers.
This support is determined by the interface function of the type
USB_PRINTER_LANGUAGE_SUPPORTED(page 809) that is
specified in the usb_config.c configuration file.

Description

USB Printer Client Driver Commands

The main interface to the USB Printer Client Driver is through the function USBHostPrinterCommand(page 679)(). These
are the commands that can be passed to that function.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

793

7.3.10.2.72 USB_PRINTER_DEVICE_ID Structure
File

usb_host_printer.h

C

typedef struct _USB_PRINTER_DEVICE_ID {
 WORD vid;
 WORD pid;
 USB_PRINTER_FUNCTION_SUPPORT support;
 BYTE deviceAddress;
} USB_PRINTER_DEVICE_ID;

Members

Members Description

WORD vid; Vendor ID of the device

WORD pid; Product ID of the device

USB_PRINTER_FUNCTION_SUPPORT
support;

Function support flags.

BYTE deviceAddress; Address of the device on the USB

Description

Printer Device ID Information

This structure contains identification information about an attached device.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

794

7.3.10.2.73 USB_PRINTER_ERRORS Enumeration
File

usb_host_printer.h

C

typedef enum {
 USB_PRINTER_SUCCESS = 0,
 USB_PRINTER_BUSY = USB_ERROR_CLASS_DEFINED,
 USB_PRINTER_UNKNOWN_COMMAND,
 USB_PRINTER_UNKNOWN_DEVICE,
 USB_PRINTER_OUT_OF_MEMORY,
 USB_PRINTER_TOO_MANY_DEVICES,
 USB_PRINTER_BAD_PARAMETER
} USB_PRINTER_ERRORS;

Members

Members Description

USB_PRINTER_SUCCESS = 0 The command was successful.

USB_PRINTER_BUSY =
USB_ERROR_CLASS_DEFINED

The command cannot be performed because the printer client driver's
command queue is full. Use the function USBHostPrinterCommandReady(
page 681)() to determine if there is space available in the queue.

USB_PRINTER_UNKNOWN_COMMAND An invalid printer command was requested. Refer to the enumeration
USB_PRINTER_COMMAND(page 785) for the list of valid commands.

USB_PRINTER_UNKNOWN_DEVICE A device with the indicated address is not attached or is not a printer.

USB_PRINTER_OUT_OF_MEMORY Not enough free heap space is available to perform the command.

USB_PRINTER_TOO_MANY_DEVICES The number of attached printers exceeds the maximum specified by
USB_MAX_PRINTER_DEVICES(page 782). Refer to the USB configuration
tool.

USB_PRINTER_BAD_PARAMETER An invalid or out of range parameter was passed. Run time checking of
graphics coordinates must be enabled by defining
PRINTER_GRAPHICS_COORDINATE_CHECKING.

Description

Printer Errors

These are errors that can be returned by the printer client driver. Note that USB Embedded Host errors can also be returned.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

795

7.3.10.2.74 USB_PRINTER_FONTS Enumeration
File

usb_host_printer.h

C

typedef enum {
 USB_PRINTER_FONT_AVANT_GARDE = 0,
 USB_PRINTER_FONT_BOOKMAN,
 USB_PRINTER_FONT_COURIER,
 USB_PRINTER_FONT_HELVETICA,
 USB_PRINTER_FONT_HELVETICA_NARROW,
 USB_PRINTER_FONT_NEW_CENTURY_SCHOOLBOOK,
 USB_PRINTER_FONT_PALATINO,
 USB_PRINTER_FONT_TIMES_NEW_ROMAN,
 USB_PRINTER_FONT_MAX_FONT
} USB_PRINTER_FONTS;

Members

Members Description

USB_PRINTER_FONT_AVANT_GARDE = 0 Avant Garde font

USB_PRINTER_FONT_BOOKMAN Bookman font

USB_PRINTER_FONT_COURIER Courier font

USB_PRINTER_FONT_HELVETICA Helvetica font

USB_PRINTER_FONT_HELVETICA_NARROW Helvetica Narrow font

USB_PRINTER_FONT_NEW_CENTURY_SCHOOLBOOK New Century Schoolbook font

USB_PRINTER_FONT_PALATINO Palatino font

USB_PRINTER_FONT_TIMES_NEW_ROMAN Times New Roman font

USB_PRINTER_FONT_MAX_FONT Font out of range

Description

Printer Fonts

This enumeration defines the various printer fonts. If new fonts are added, they must be added at the end of the list, just
before the USB_PRINTER_FONT_MAX_FONT definition, as the printer language support files may utilize them for indexing
purposes.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

796

7.3.10.2.75 USB_PRINTER_FONTS_POS Enumeration
File

usb_host_printer.h

C

typedef enum {
 USB_PRINTER_FONT_POS_18x36,
 USB_PRINTER_FONT_POS_18x72,
 USB_PRINTER_FONT_POS_36x36,
 USB_PRINTER_FONT_POS_36x72,
 USB_PRINTER_FONT_POS_12x24,
 USB_PRINTER_FONT_POS_12x48,
 USB_PRINTER_FONT_POS_24x24,
 USB_PRINTER_FONT_POS_24x48,
 USB_PRINTER_FONT_POS_MAX_FONT
} USB_PRINTER_FONTS_POS;

Members

Members Description

USB_PRINTER_FONT_POS_18x36 Character size 18x36

USB_PRINTER_FONT_POS_18x72 Character size 18x36, double height

USB_PRINTER_FONT_POS_36x36 Character size 18x36, double width

USB_PRINTER_FONT_POS_36x72 Character size 18x36, double height and width

USB_PRINTER_FONT_POS_12x24 Character size 12x24

USB_PRINTER_FONT_POS_12x48 Character size 12x24, double height

USB_PRINTER_FONT_POS_24x24 Character size 12x24, double width

USB_PRINTER_FONT_POS_24x48 Character size 12x24, double height and width

USB_PRINTER_FONT_POS_MAX_FONT Font out of range

Description

POS Printer Fonts

This enumeration defines the various printer fonts used by POS printers. If new fonts are added, they must be added at the
end of the list, just before the USB_PRINTER_FONT_POS_MAX_FONT definition, as the printer language support files may
utilize them for indexing purposes.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

797

7.3.10.2.76 USB_PRINTER_FUNCTION_SUPPORT Union
File

usb_host_printer.h

C

typedef union {
 WORD val;
 struct {
 WORD supportsVectorGraphics : 1;
 WORD supportsPOS : 1;
 } supportFlags;
} USB_PRINTER_FUNCTION_SUPPORT;

Members

Members Description

WORD val; The WORD representation of the support flags.

struct {
WORD supportsVectorGraphics : 1;
WORD supportsPOS : 1;
} supportFlags;

Various printer function support flags.

WORD supportsVectorGraphics : 1; The printer supports vector graphics.

WORD supportsPOS : 1; The printer is a POS printer.

Description

Printer Device Function support Information

This structure contains information about the functions that the attached printer supports. See the related constants for
setting these flags via the val member:

• USB_PRINTER_FUNCTION_SUPPORT_POS(page 799)

• USB_PRINTER_FUNCTION_SUPPORT_VECTOR_GRAPHICS(page 800)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

798

7.3.10.2.77 USB_PRINTER_FUNCTION_SUPPORT_POS Macro
File

usb_host_printer.h

C

#define USB_PRINTER_FUNCTION_SUPPORT_POS 0x0002

Description

Constant to use to set the supportsPOS member of the USB_PRINTER_FUNCTION_SUPPORT(page 798) union.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

799

7.3.10.2.78 USB_PRINTER_FUNCTION_SUPPORT_VECTOR_GRAPHICS
Macro
File

usb_host_printer.h

C

#define USB_PRINTER_FUNCTION_SUPPORT_VECTOR_GRAPHICS 0x0001

Description

Constant to use to set the supportsVectorGraphics member of the USB_PRINTER_FUNCTION_SUPPORT(page 798)
union.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

800

7.3.10.2.79 USB_PRINTER_GRAPHICS_PARAMETERS Union
File

usb_host_printer.h

C

typedef union {
 struct {
 WORD xL;
 WORD yT;
 WORD xR;
 WORD yB;
 WORD r1;
 WORD r2;
 WORD octant;
 } sArc;
 struct {
 BYTE height;
 BYTE type;
 BYTE textPosition;
 BYTE textFont;
 BYTE * data;
 BYTE dataLength;
 union {
 BYTE value;
 struct {
 BYTE bPrintCheckDigit : 1;
 } bits;
 } flags;
 } sBarCode;
 struct {
 WORD xL;
 WORD yT;
 WORD xR;
 WORD yB;
 WORD r;
 } sBevel;
 struct {
 WORD x;
 WORD y;
 WORD r;
 } sCircle;
 struct {
 WORD fillType;
 WORD spacing;
 WORD angle;
 WORD shading;
 } sFillType;
 struct {
 WORD x1;
 WORD y1;
 WORD x2;
 WORD y2;
 } sLine;
 struct {
 WORD startPointHorizontal;
 WORD startPointVertical;
 WORD lengthHorizontal;
 WORD lengthVertical;
 BYTE printDirection;
 } sPage;
 struct {
 SHORT numPoints;
 WORD * points;
 } sPolygon;
 struct {
 WORD xL;
 WORD yT;

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

801

 WORD xR;
 WORD yB;
 } sRectangle;
} USB_PRINTER_GRAPHICS_PARAMETERS;

Members

Members Description

struct {
WORD xL;
WORD yT;
WORD xR;
WORD yB;
WORD r1;
WORD r2;
WORD octant;
} sArc;

This structure is used by the USB_PRINTER_GRAPHICS_ARC command
(USB_PRINTER_COMMAND(page 785)).

WORD xL; X-axis position of the upper left corner.

WORD yT; Y-axis position of the upper left corner.

WORD xR; X-axis position of the lower right corner.

WORD yB; Y-axis position of the lower right corner.

WORD r1; The inner radius of the two concentric cicles that defines the thickness of the
arc.

WORD r2; The outer of radius the two concentric circles that defines the thickness of the
arc.

WORD octant; Bitmask of the octant that will be drawn. Moving in a clockwise direction from x
= 0, y = +radius

• bit0 : first octant

• bit1 : second octant

• bit2 : third octant

• bit3 : fourth octant

• bit4 : fifth octant

• bit5 : sixth octant

• bit6 : seventh octant

• bit7 : eigth octant

struct {
BYTE height;
BYTE type;
BYTE textPosition;
BYTE textFont;
BYTE * data;
BYTE dataLength;
union {
BYTE value;
struct {
BYTE bPrintCheckDigit : 1;
} bits;
} flags;
} sBarCode;

This structure is used by the USB_PRINTER_POS_BARCODE command
(USB_PRINTER_COMMAND(page 785)).

BYTE height; Bar code height in dots.

BYTE type; Bar code type. See the USB_PRINTER_POS_BARCODE_FORMAT(page
810) enumeration.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

802

BYTE textPosition; Position of the readable text. Valid values are BARCODE_TEXT_OMIT(page
729), BARCODE_TEXT_ABOVE(page 726), BARCODE_TEXT_BELOW(
page 728), BARCODE_TEXT_ABOVE_AND_BELOW(page 727).

BYTE textFont; Font of the readable text. Valid values are dependent on the particular POS
printer (BARCODE_TEXT_12x24(page 724) and BARCODE_TEXT_18x36(
page 725) for ESC/POS).

BYTE * data; Pointer to the bar code data.

BYTE dataLength; Number of bytes of bar code data.

BYTE bPrintCheckDigit : 1; Whether or not to print an optional check digit. Valid for Code39
(USB_PRINTER_POS_BARCODE_FORMAT(page 810)
USB_PRINTER_POS_BARCODE_CODE39) and CODABAR
(USB_PRINTER_POS_BARCODE_FORMAT(page 810)
USB_PRINTER_POS_BARCODE_CODABAR) formats only.

struct {
WORD xL;
WORD yT;
WORD xR;
WORD yB;
WORD r;
} sBevel;

This structure is used by the USB_PRINTER_GRAPHICS_BEVEL and
USB_PRINTER_GRAPHICS_BEVEL_FILLED commands
(USB_PRINTER_COMMAND(page 785)).

WORD xL; X-axis position of the left side of the bevel.

WORD yT; Y-axis position of the top of the bevel.

WORD xR; X-axis position of the right side of the bevel.

WORD yB; Y-axis position of the bottom of the bevel.

WORD r; The radius of the cicle that defines the rounded corner

struct {
WORD x;
WORD y;
WORD r;
} sCircle;

This structure is used by the USB_PRINTER_GRAPHICS_CIRCLE and
USB_PRINTER_GRAPHICS_CIRCLE_FILLED commands
(USB_PRINTER_COMMAND(page 785)).

WORD x; X-axis position of the center of the circle.

WORD y; Y-axis position of the center of the circle.

WORD r; Radius of the circle.

struct {
WORD fillType;
WORD spacing;
WORD angle;
WORD shading;
} sFillType;

This structure is used by the USB_PRINTER_GRAPHICS_FILL_TYPE
command (USB_PRINTER_COMMAND(page 785)).

WORD fillType; The type of fill. See USB_PRINTER_GRAPHICS_FILL_TYPE for valid values.

WORD spacing; Line spacing for hatched fill (if supported).

WORD angle; Line angle for hatched fill (if supported).

WORD shading; Shading level for shaded fill. Printer support may be limited.

struct {
WORD x1;
WORD y1;
WORD x2;
WORD y2;
} sLine;

This structure is used by the USB_PRINTER_GRAPHICS_LINE command
(USB_PRINTER_COMMAND(page 785)).

WORD x1; X-axis position of the first point.

WORD y1; Y-axis position of the first point.

WORD x2; X-axis position of the second point.

WORD y2; Y-axis position of the second point.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

803

struct {
WORD startPointHorizontal;
WORD startPointVertical;
WORD lengthHorizontal;
WORD lengthVertical;
BYTE printDirection;
} sPage;

This structure is used by POS printers and the
USB_PRINTER_POS_PAGE_MODE command
(USB_PRINTER_COMMAND(page 785)).

WORD startPointHorizontal; The horizontal page starting point.

WORD startPointVertical; The vertical page starting point.

WORD lengthHorizontal; The horizontal print length.

WORD lengthVertical; The vertical print length.

BYTE printDirection; The print direction and starting point.

struct {
SHORT numPoints;
WORD * points;
} sPolygon;

This structure is used by the USB_PRINTER_GRAPHICS_POLYGON
command (USB_PRINTER_COMMAND(page 785)).

SHORT numPoints; The number of points of the polygon.

WORD * points; The array of polygon points {x1, y1, x2, y2, ... xn, yn}.

struct {
WORD xL;
WORD yT;
WORD xR;
WORD yB;
} sRectangle;

This structure is used by the USB_PRINTER_GRAPHICS_RECTANGLE and
USB_PRINTER_GRAPHICS_RECTANGLE_FILLED commands
(USB_PRINTER_COMMAND(page 785)).

WORD xL; X-axis position of the left side of the rectangle.

WORD yT; Y-axis position of the top of the rectangle.

WORD xR; X-axis position of the right side of the rectangle.

WORD yB; Y-axis position of the bottom of the rectangle.

Description

USB Printer Graphics Parameter Structures

This union can be used to declare a variable that can hold the parameters for any printer graphics or POS printer command
(USB_PRINTER_COMMAND(page 785)). The union allows a single variable to be declared and then reused for any
printer graphics command.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

804

7.3.10.2.80 USB_PRINTER_IMAGE_INFO Structure
File

usb_host_printer.h

C

typedef struct {
 WORD width;
 WORD height;
 WORD positionX;
 WORD positionY;
 union {
 struct {
 WORD resolution;
 float scale;
 }
 struct {
 BYTE densityVertical;
 BYTE densityHorizontal;
 }
 }
} USB_PRINTER_IMAGE_INFO;

Members

Members Description

WORD width; The width of the image in pixels.

WORD height; The height of the image in pixels.

WORD positionX; The position of the image on the X axis.

WORD positionY; The position of the image on the Y axis.

WORD resolution; (Full sheet printers only.) The resolution of the printed image. This parameter is
not supported by all printer languages.

float scale; (Full sheet printers only.) The scaling of the printed image. Both the X axis and
the Y axis are scaled by this amount. This parameter is not supported by all
printer languages.

BYTE densityVertical; (POS printers only.) The vertical dot density of the bit image. Valid values are
printer dependent. See above.

BYTE densityHorizontal; (POS printers only.) The horizontal dot density of the bit image. Valid values are
1 (single) and 2 (double). See above.

Description

Bitmapped Image Information

This structure contains the information needed to print a bitmapped graphic image.

When using a full sheet printer, utilize the resolution and the scale members to specify the size of the image. Some printer
languages (e.g. PostScript) utilize a scale factor, while others (e.g. PCL 5) utilize a dots-per-inch resolution. Also, some
printers that utilize the resolution specification support only certain values for the resolution. For maximum compatibility,
specify both members of this structure. The following table shows example values that will generate similarly sized output.

Resolution (DPI) Scale
---------------- -----
 75 1.0
 100 0.75
 150 0.5
 200 0.37
 300 0.25
 600 0.13

When using a POS printer, utilize the densityVertical and densityHorizontal members to specify the size of the image. The
densityHorizontal can be either single (1) or double (2). The valid values for densityVertical are printer dependent. Most
printers support 8-dot, many support 8 and 24-dot, and a few support 8, 24, and 36-dot (represented by the values 8, 24,
and 36 respectively). This value affects how the bit image data is sent to the printer. The set of allowable values must be

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

805

configured correctly, since the image configuration method differs depending on the set of allowed values. To maintain the
aspect ratio, the following selections are recommended:

Supported Horizontal Densities densityVertical densityHorizontal
--
8-dot 8 1 (single)
8 and 24-dot 24 2 (double)
8, 24, and 36-dot 24 2 (double)

The 36-bit density is not recommended, as it requires a great deal of available heap space, is not supported by the
USBHostPrinterPOSImageDataFormat(page 698)() function, and produces the same output as the 24-dot density print.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

806

7.3.10.2.81 USB_PRINTER_INTERFACE Structure
File

usb_host_printer.h

C

typedef struct {
 USB_PRINTER_LANGUAGE_HANDLER languageCommandHandler;
 USB_PRINTER_LANGUAGE_SUPPORTED isLanguageSupported;
} USB_PRINTER_INTERFACE;

Members

Members Description

USB_PRINTER_LANGUAGE_HANDLER
languageCommandHandler;

Function in the printer language support file that handles all printer
commands.

USB_PRINTER_LANGUAGE_SUPPORTED
isLanguageSupported;

Function in the printer language support file that determines if the printer
supports this particular printer language.

Description

USB Printer Interface Structure

This structure represents the information needed to interface with a printer language. An array of these structures must be
created in usb_config.c, so the USB printer client driver can determine what printer language to use to communicate with the
printer.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

807

7.3.10.2.82 USB_PRINTER_LANGUAGE_HANDLER Type
This is a typedef to use when defining a printer language command handler.

File

usb_host_printer.h

C

typedef BYTE (* USB_PRINTER_LANGUAGE_HANDLER)(BYTE address, USB_PRINTER_COMMAND command,
USB_DATA_POINTER data, DWORD size, BYTE flags);

Description

This data type defines a pointer to a call-back function that must be implemented by a printer language driver. When the
user calls the printer interface function, the appropriate language driver with this prototype will be called to generate the
proper commands for the requested operation.

Not all printer commands support data from both RAM and ROM. Unless otherwise noted, the data pointer is assumed to
point to RAM, regardless of the value of transferFlags. Refer to the specific command to see if ROM data is supported.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BYTE address Device's address on the bus

USB_PRINTER_COMMAND command Command to execute. See the enumeration USB_PRINTER_COMMAND(
page 785) for the list of valid commands and their requirements.

USB_DATA_POINTER data Pointer to the required data. Note that the caller must set transferFlags
appropriately to indicate if the pointer is a RAM pointer or a ROM pointer.

DWORD size Size of the data. For some commands, this parameter is used to hold the data
itself.

BYTE transferFlags Flags that indicate details about the transfer operation. Refer to these flags

• USB_PRINTER_TRANSFER_COPY_DATA(page 813)

• USB_PRINTER_TRANSFER_STATIC_DATA(page 817)

• USB_PRINTER_TRANSFER_NOTIFY(page 816)

• USB_PRINTER_TRANSFER_FROM_ROM(page 815)

• USB_PRINTER_TRANSFER_FROM_RAM(page 814)

Return Values

Return Values Description

USB_PRINTER_SUCCESS The command was executed successfully.

USB_PRINTER_UNKNOWN_DEVICE A printer with the indicated address is not attached

USB_PRINTER_TOO_MANY_DEVICES The printer status array does not have space for another printer.

USB_PRINTER_OUT_OF_MEMORY Not enough available heap space to execute the command.

other See possible return codes from the function USBHostPrinterWrite(page
705)().

Function

BYTE (*USB_PRINTER_LANGUAGE_HANDLER) (BYTE address,

USB_PRINTER_COMMAND(page 785) command, USB_DATA_POINTER(page 779) data, DWORD size, BYTE
flags)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

808

7.3.10.2.83 USB_PRINTER_LANGUAGE_SUPPORTED Type
This is a typedef to use when defining a function that determines if the printer with the given "COMMAND SET:" portion of
the device ID string supports the particular printer language.

File

usb_host_printer.h

C

typedef BOOL (* USB_PRINTER_LANGUAGE_SUPPORTED)(char *deviceID,
USB_PRINTER_FUNCTION_SUPPORT *support);

Description

This data type defines a pointer to a call-back function that must be implemented by a printer language driver. When the
user calls a function of this type, the language driver will return a BOOL indicating if the language driver supports a printer
with the indicated "COMMAND SET:" portion of the device ID string. If the printer is supported, this function also returns
information about the types of operations that the printer supports.

Remarks

The caller must first locate the "COMMAND SET:" section of the device ID string. To ensure that only the "COMMAND SET:"
section of the device ID string is checked, the ";" at the end of the section should be temporarily replaced with a NULL.
Otherwise, this function may find the printer language string in the comments or other section, and incorrectly indicate that
the printer supports the language.

Device ID strings are case sensitive.

Preconditions

None

Parameters

Parameters Description

char *deviceID Pointer to the "COMMAND SET:" portion of the device ID string of the attached
printer.

USB_PRINTER_FUNCTION_SUPPORT
*support

Pointer to returned information about what types of functions this printer
supports.

Return Values

Return Values Description

TRUE The printer language can be used with the attached printer.

FALSE The printer language cannot be used with the attached printer.

Function

BOOL (*USB_PRINTER_LANGUAGE_SUPPORTED) (char *deviceID,

USB_PRINTER_FUNCTION_SUPPORT(page 798) *support)

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

809

7.3.10.2.84 USB_PRINTER_POS_BARCODE_FORMAT Enumeration
File

usb_host_printer.h

C

typedef enum {
 USB_PRINTER_POS_BARCODE_UPC_A = 0,
 USB_PRINTER_POS_BARCODE_UPC_E,
 USB_PRINTER_POS_BARCODE_EAN13,
 USB_PRINTER_POS_BARCODE_EAN8,
 USB_PRINTER_POS_BARCODE_CODE39,
 USB_PRINTER_POS_BARCODE_ITF,
 USB_PRINTER_POS_BARCODE_CODABAR,
 USB_PRINTER_POS_BARCODE_CODE93,
 USB_PRINTER_POS_BARCODE_CODE128,
 USB_PRINTER_POS_BARCODE_EAN128,
 USB_PRINTER_POS_BARCODE_MAX
} USB_PRINTER_POS_BARCODE_FORMAT;

Members

Members Description

USB_PRINTER_POS_BARCODE_UPC_A =
0

UPC-A bar code format. Typically used for making products with a unique
code,as well as for coupons, periodicals, and paperback books. The data
for this bar code must consist of 11 values from '0' to '9' (ASCII), and the
data length for this bar code must be 11. The first digit is the number
system character:

• 0, 6, 7 Regular UPC codes

• 2 Random weight items

• 3 National Drug Code and National Health Related Items Code

• 4 In-store marking of non-food items

• 5 Coupons

• 1, 8, 9 Reserved

A check digit will be automatically calculated and appended. For more
information, refer to the UPC Symbol Specification Manual from the
Uniform Code Council.

USB_PRINTER_POS_BARCODE_UPC_E UPC-E bar code format. Similar to UPC-A but with restrictions. Data lengths
of 6, 7, or 11 bytes are supported. Not all printers support the 6 or 7 byte
widths; 11 byte data is recommended. If the data length is not 6, then the
first the first digit (the number system character) must be set to '0'. If 11
data bytes are presented, the printer will generate a shortened 6-digit code.
The check digit will be automatically calculated and appended.

USB_PRINTER_POS_BARCODE_EAN13 EAN/JAN-13 bar code format. Similar to UPC-A, but there are 12 numeric
digits plus a checksum digit. The check digit will be automatically calculated
and appended.

USB_PRINTER_POS_BARCODE_EAN8 EAN/JAN-8 bar code format. Similar to UPC-E, but there are 7 numeric
digits, and the first digit (the number system character) must be set to '0'.
The check digit will be automatically calculated and appended.

USB_PRINTER_POS_BARCODE_CODE39 CODE39 bar code format. Typically used in applications where the data
length may change. This format uses encoded numeric characters,
uppercase alphabet characters, and the symbols '-' (dash), '.' (period), ' '
(space), '$' (dollar sign), '/' (forward slash), '+' (plus), and '%' (percent). If the
bPrintCheckDigit flag is set, then the check digit will be automatically
calculated and appended. Otherwise, no check digit will be printed.

USB_PRINTER_POS_BARCODE_ITF ITF, or Interleaved 2 of 5, bar code format. Used in applications that have a
fixed data length for all items. Only the digits 0-9 can be encoded, and there
must be an even number of digits.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

810

USB_PRINTER_POS_BARCODE_CODABAR Codabar bar code format. Useful in applications that contain mostly numeric
digits and variable data sizes. This format utilizes the digits 0-9, letters A-D
(used as start/stop characters), '-' (dash), '$' (dollar sign), ':' (colon), '/'
(forward slash), '.' (period), and '+' (plus). If the bPrintCheckDigit flag is set,
then the check digit will be automatically calculated and appended.
Otherwise, no check digit will be printed.

USB_PRINTER_POS_BARCODE_CODE93 (Available only if the printer supports extended bar code formats.) CODE93
bar code format. Used in applications that require heavy error checking. It
has a variable data size, and uses 128-bit ASCII characters. The start code,
stop code, and check digits are added automatically.

USB_PRINTER_POS_BARCODE_CODE128 (Available only if the printer supports extended bar code formats.) Code 128
bar code format. Used in applications that require a large amount of
variable length data and extra error checking. It uses 128-bit ASCII plus
special symbols. The first two data bytes must be the code set selection
character. The first byte must be BARCODE_CODE128_CODESET (0x7B),
and the second byte must be 'A', 'B', or 'C'. In general Code A should be
used if the data contains control characters (0x00 - 0x1F), and Code B
should be used if the data contains lower case letters and higher ASCII
values (0x60-0x7F). If an ASCII '{' (left brace, 0x7B) is contained in the
data, it must be encoded as two bytes with the value 0x7B.

USB_PRINTER_POS_BARCODE_EAN128 NOT YET SUPPORTED (Available only if the printer supports extended bar
code formats.) EAN-128 or UCC-128 bar code format. Used in shipping
applications. Refer to the Application Standard for Shopping Container
Codes from the Uniform Code Council.

USB_PRINTER_POS_BARCODE_MAX Bar code type out of range.

Description

Bar Code Formats

These are the bar code formats for printing bar codes on POS printers. They are used in conjuction with the
USB_PRINTER_POS_BARCODE command (USB_PRINTER_COMMAND(page 785)). Bar code information is passed
using the sBarCode structure within the USB_PRINTER_GRAPHICS_PARAMETERS(page 801) union. The exact values
to send for each bar code type can vary for the particular POS printer, and not all printers support all bar code types. Be sure
to test the output on the target printer, and adjust the values specified in usb_host_printer_esc_pos.c if necessary. Refer to
the printer's technical documentation for the required values. Do not alter this enumeration.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

811

7.3.10.2.85 USB_PRINTER_SPECIFIC_INTERFACE Structure
File

usb_host_printer.h

C

typedef struct {
 WORD vid;
 WORD pid;
 WORD languageIndex;
 USB_PRINTER_FUNCTION_SUPPORT support;
} USB_PRINTER_SPECIFIC_INTERFACE;

Members

Members Description

WORD vid; Printer vendor ID.

WORD pid; Printer product ID.

WORD languageIndex; Index into the usbPrinterClientLanguages[] array of
USB_PRINTER_INTERFACE(page 807) structures defined in usb_config.c.

USB_PRINTER_FUNCTION_SUPPORT
support;

Support flags that are set by this printer.

Description

USB Printer Specific Interface Structure

This structure is used to explicitly specify what printer language to use for a particular printer, and what print functions the
printer supports. It can be used when a printer supports multiple languages with one language preferred over the others. It is
required for printers that do not support the GET_DEVICE_ID printer class request. These printers do not report what printer
languages they support. Typically, these printers also do not report Printer Class support in their Interface Descriptors, and
must be explicitly supported by their VID and PID in the TPL. This structure links the VID and PID of the printer to the index
in the usbPrinterClientLanguages[] array of USB_PRINTER_INTERFACE(page 807) structures in usb_config.c that
contains the appropriate printer language functions.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

812

7.3.10.2.86 USB_PRINTER_TRANSFER_COPY_DATA Macro
File

usb_host_printer.h

C

#define USB_PRINTER_TRANSFER_COPY_DATA 0x01

Description

This flag indicates that the printer client driver should make a copy of the data passed to the command. This allows the
application to reuse the data storage immediately instead of waiting until the transfer is sent to the printer. The client driver
will allocate space in the heap for the data copy. If there is not enough available memory, the command will terminate with a
USB_PRINTER_OUT_OF_MEMORY error. Otherwise, the original data will be copied to the temporary data space. This
temporary data will be freed upon completion, regardless of whether or not the command was performed successfully.
NOTE: If the data is located in ROM, the flag USB_PRINTER_TRANSFER_FROM_ROM(page 815) must be used instead.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

813

7.3.10.2.87 USB_PRINTER_TRANSFER_FROM_RAM Macro
File

usb_host_printer.h

C

#define USB_PRINTER_TRANSFER_FROM_RAM 0x00

Description

This flag indicates that the source of the command data is in RAM. The application can then choose whether or not to have
the printer client driver make a copy of the data.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

814

7.3.10.2.88 USB_PRINTER_TRANSFER_FROM_ROM Macro
File

usb_host_printer.h

C

#define USB_PRINTER_TRANSFER_FROM_ROM 0x04

Description

This flag indicates that the source of the command data is in ROM. The data will be copied to RAM, since the USB Host
layer cannot read data from ROM. If there is not enough available heap space to make a copy of the data, the command will
fail. If using this flag, do not set the USB_PRINTER_TRANSFER_COPY_DATA(page 813) flag.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

815

7.3.10.2.89 USB_PRINTER_TRANSFER_NOTIFY Macro
File

usb_host_printer.h

C

#define USB_PRINTER_TRANSFER_NOTIFY 0x02

Description

This flag indicates that the application layer wants to receive an event notification when the command completes.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

816

7.3.10.2.90 USB_PRINTER_TRANSFER_STATIC_DATA Macro
File

usb_host_printer.h

C

#define USB_PRINTER_TRANSFER_STATIC_DATA 0x00

Description

This flag indicates that the data will not change in the time between the printer command being issued and the data actually
being sent to the printer.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

817

7.3.10.2.91 USBHOSTPRINTER_SETFLAG_COPY_DATA Macro
File

usb_host_printer.h

C

#define USBHOSTPRINTER_SETFLAG_COPY_DATA(x) {x |= USB_PRINTER_TRANSFER_COPY_DATA;}

Description

Use this macro to set the USB_PRINTER_TRANSFER_COPY_DATA(page 813) flag in a variable.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

818

7.3.10.2.92 USBHOSTPRINTER_SETFLAG_NOTIFY Macro
File

usb_host_printer.h

C

#define USBHOSTPRINTER_SETFLAG_NOTIFY(x) {x |= USB_PRINTER_TRANSFER_NOTIFY;}

Description

Use this macro to set the USB_PRINTER_TRANSFER_NOTIFY(page 816) flag in a variable.

7.3 Embedded Host API MCHPFSUSB Library Help Printer Client Driver

819

7.3.10.2.93 USBHOSTPRINTER_SETFLAG_STATIC_DATA Macro
File

usb_host_printer.h

C

#define USBHOSTPRINTER_SETFLAG_STATIC_DATA(x) {x &= ~USB_PRINTER_TRANSFER_COPY_DATA;}

Description

Use this macro to clear the USB_PRINTER_TRANSFER_COPY_DATA(page 813) flag in a variable.

7.4 On-The-Go (OTG)
This module provides support for USB OTG (On-The-Go) functionality.

Description

USB OTG (On-The-Go)

USB OTG was defined by the USB-IF to standardize connectivity in mobile devices. USB OTG allows devices to be dual role
(Host or Peripheral) and dynamically switch between the two. For example, you could have all in one product, a device that
is a peripheral when plugged into a PC, a device that is an embedded host when plugged into a digital camera, a device that
is an embedded host when plugged into a printer, and a device that is an embedded host when plugged into a keyboard.

A USB OTG device uses a Micro A/B style receptacle. When a Micro A plug is inserted, the device will take on the default
role of being a host. When a Micro B plug is inserted, the device will take on the default role of being a peripheral. When no
plug is inserted, the device will take on the role of being a peripheral.

The USB OTG layer provides an interface for a USB OTG device to dynamically switch roles between either being an
embedded host or a peripheral. The USB OTG layer is called into by the the Embedded Host and Peripheral Device Stacks.
The USB OTG layer is responsible for switching roles using the Host Negotiation Protocol (HNP), requesting sessions using
the Session Request Protocol(SRP), providing role status to the application, and displaying any errors.

Switching Roles using Host Negotiation Protocol (HNP)

Switching Roles is easily accomplished using the USBOTGSelectRole(page 828)() function call. This function is called on
the A-side Host when it is ready to become a peripheral and give the B-side peripheral the opportunity to become Host.

Requesting Sessions using Session Request Protocol (SRP)

If the A-side Host has ended a session (turned off VBUS power), the B-side can request a new VBUS session. This is easily
accomplished by using the USBOTGRequestSession(page 826)() function call. This function should only be called on a
B-side peripheral.

Main Application

The main application should have the following code at a minimum for initialization, re-initialization of the system when a role
switch occurs, maintaining the stack tasks, and maintaining the application tasks.

InitializeSystem();
USBOTGInitialize();

while(1)
{
 //If Role Switch Occurred Then
 if (USBOTGRoleSwitch())
 {

7.4 On-The-Go (OTG) MCHPFSUSB Library Help

820

 //Re-Initialize
 InitializeSystem();

 //Clear Role Switch Flag
 USBOTGClearRoleSwitch();
 }

 //If currently a Peripheral and HNP is not Active Then
 if (USBOTGCurrentRoleIs() == ROLE_DEVICE && !USBOTGHnpIsActive())
 {
 //Call Device Tasks
 USBDeviceTasks();

 //Call Process IO
 ProcessIO();
 }

 //If currently a Host and HNP is not Active Then
 else if (USBOTGCurrentRoleIs() == ROLE_HOST && !USBOTGHnpIsActive())
 {
 //Call Host Tasks
 USBHostTasks();

 //Call Manage Demo
 ManageDemoState();
 }
}

See AN1140 USB Embedded Host Stack for more information about the Embedded Host Stack layer.

See the Microchip USB Device Firmware Framework User's Guide from the www.microchip.com/usb Documentation link
for more information about the USB Device Stack layer.

7.4.1 Interface Routines

Functions

Name Description

USBOTGClearRoleSwitch(
page 822)

This function clears the RoleSwitch variable. After the main function detects the
RoleSwitch and re-initializes the system, this function should be called to clear
the RoleSwitch flag

USBOTGCurrentRoleIs(
page 823)

This function returns whether the current role is ROLE_HOST(page 858) or
ROLE_DEVICE(page 857)

USBOTGDefaultRoleIs(
page 824)

This function returns whether the default role is ROLE_HOST(page 858) or
ROLE_DEVICE(page 857)

USBOTGInitialize(page
825)

This function initializes an OTG application and initializes a default role of Host
or Device

USBOTGRequestSession(
page 826)

This function requests a Session from an A side Host using the Session
Request Protocol (SRP). The function will return TRUE if the request was
successful or FALSE otherwise.

USBOTGRoleSwitch(page
827)

This function returns whether a role switch occurred or not. This is used by the
main application function to determine when to reinitialize the system
(InitializeSystem())

USBOTGSelectRole(page
828)

This function initiates a role switch via the Host Negotiation Protocol (HNP).
The parameter role that is passed to this function is the desired role to switch to.

USBOTGSession(page
829)

This function starts, ends, or toggles a VBUS session.

Description

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Interface Routines

821

7.4.1.1 USBOTGClearRoleSwitch Function
File

usb_otg.h

C

void USBOTGClearRoleSwitch();

Description

This function clears the RoleSwitch variable. After the main function detects the RoleSwitch and re-initializes the system, this
function should be called to clear the RoleSwitch flag

Remarks

None

Preconditions

None

Function

void USBOTGClearRoleSwitch()

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Interface Routines

822

7.4.1.2 USBOTGCurrentRoleIs Function
File

usb_otg.h

C

BYTE USBOTGCurrentRoleIs();

Description

This function returns whether the current role is ROLE_HOST(page 858) or ROLE_DEVICE(page 857)

Remarks

None

Preconditions

None

Return Values

Return Values Description

BYTE ROLE_HOST(page 858) or ROLE_DEVICE(page 857)

Function

BYTE USBOTGCurrentRoleIs()

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Interface Routines

823

7.4.1.3 USBOTGDefaultRoleIs Function
File

usb_otg.h

C

BYTE USBOTGDefaultRoleIs();

Description

This function returns whether the default role is ROLE_HOST(page 858) or ROLE_DEVICE(page 857)

Remarks

If using a Micro AB USB OTG Cable, the A-side plug of the cable when plugged in will assign a default role of
ROLE_HOST(page 858). The B-side plug of the cable when plugged in will assign a default role of ROLE_DEVICE(
page 857).

If using a Standard USB Cable, ROLE_HOST(page 858) or ROLE_DEVICE(page 857) needs to be manually configured
in usb_config.h.

Both of these items can be easily configured using the USB Config Tool which will automatically generate the apropriate
information for your application

Preconditions

None

Return Values

Return Values Description

BYTE ROLE_HOST(page 858) or ROLE_DEVICE(page 857)

Function

BYTE USBOTGDefaultRoleIs()

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Interface Routines

824

7.4.1.4 USBOTGInitialize Function
File

usb_otg.h

C

void USBOTGInitialize();

Description

This function initializes an OTG application and initializes a default role of Host or Device

Remarks

#define USB_MICRO_AB_OTG_CABLE should be commented out in usb_config.h if not using a micro AB OTG cable

Preconditions

None

Function

void USBOTGInitialize()

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Interface Routines

825

7.4.1.5 USBOTGRequestSession Function
File

usb_otg.h

C

BOOL USBOTGRequestSession();

Description

This function requests a Session from an A side Host using the Session Request Protocol (SRP). The function will return
TRUE if the request was successful or FALSE otherwise.

Remarks

This function should only be called by a B side Device.

Preconditions

None

Function

void USBOTGRequestSession()

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Interface Routines

826

7.4.1.6 USBOTGRoleSwitch Function
File

usb_otg.h

C

BOOL USBOTGRoleSwitch();

Description

This function returns whether a role switch occurred or not. This is used by the main application function to determine when
to reinitialize the system (InitializeSystem())

Remarks

None

Preconditions

None

Return Values

Return Values Description

BOOL TRUE or FALSE

Function

BOOL USBOTGRoleSwitch()

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Interface Routines

827

7.4.1.7 USBOTGSelectRole Function
File

usb_otg.h

C

void USBOTGSelectRole(
 BOOL role
);

Description

This function initiates a role switch via the Host Negotiation Protocol (HNP). The parameter role that is passed to this
function is the desired role to switch to.

Remarks

None

Preconditions

None

Parameters

Parameters Description

BOOL role ROLE_DEVICE(page 857) or ROLE_HOST(page 858)

Function

void USBOTGSelectRole(BOOL role)

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Interface Routines

828

7.4.1.8 USBOTGSession Function
File

usb_otg.h

C

BOOL USBOTGSession(
 BYTE Value
);

Description

This function starts, ends, or toggles a VBUS session.

Remarks

This function should only be called by an A-side Host

Preconditions

This function assumes I/O controlling DC/DC converter has already been initialized

Parameters

Parameters Description

Value START_SESSION(page 859), END_SESSION(page 844),
TOGGLE_SESSION(page 860)

Return Values

Return Values Description

TRUE Session Started, FALSE - Session Not Started

Function

void USBOTGSession(BYTE Value)

7.4.2 Data Types and Constants

Macros

Name Description

CABLE_A_SIDE(page 831) Cable Defines

CABLE_B_SIDE(page 832) This is macro CABLE_B_SIDE.

DELAY_TA_AIDL_BDIS(page 833) This is macro DELAY_TA_AIDL_BDIS.

DELAY_TA_BDIS_ACON(page 834) This is macro DELAY_TA_BDIS_ACON.

DELAY_TA_BIDL_ADIS(page 835) 150

DELAY_TA_WAIT_BCON(page 836) This is macro DELAY_TA_WAIT_BCON.

DELAY_TA_WAIT_VRISE(page 837) This is macro DELAY_TA_WAIT_VRISE.

DELAY_TB_AIDL_BDIS(page 838) 100

DELAY_TB_ASE0_BRST(page 839) This is macro DELAY_TB_ASE0_BRST.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

829

DELAY_TB_DATA_PLS(page 840) This is macro DELAY_TB_DATA_PLS.

DELAY_TB_SE0_SRP(page 841) This is macro DELAY_TB_SE0_SRP.

DELAY_TB_SRP_FAIL(page 842) This is macro DELAY_TB_SRP_FAIL.

DELAY_VBUS_SETTLE(page 843) This is macro DELAY_VBUS_SETTLE.

END_SESSION(page 844) This is macro END_SESSION.

OTG_EVENT_CONNECT(page 845) This is macro OTG_EVENT_CONNECT.

OTG_EVENT_DISCONNECT(page
846)

OTG Events

OTG_EVENT_HNP_ABORT(page
847)

This is macro OTG_EVENT_HNP_ABORT.

OTG_EVENT_HNP_FAILED(page
848)

This is macro OTG_EVENT_HNP_FAILED.

OTG_EVENT_NONE(page 849) This is macro OTG_EVENT_NONE.

OTG_EVENT_RESUME_SIGNALING(
page 850)

This is macro OTG_EVENT_RESUME_SIGNALING.

OTG_EVENT_SRP_CONNECT(page
851)

This is macro OTG_EVENT_SRP_CONNECT.

OTG_EVENT_SRP_DPLUS_HIGH(
page 852)

This is macro OTG_EVENT_SRP_DPLUS_HIGH.

OTG_EVENT_SRP_DPLUS_LOW(
page 853)

This is macro OTG_EVENT_SRP_DPLUS_LOW.

OTG_EVENT_SRP_FAILED(page
854)

This is macro OTG_EVENT_SRP_FAILED.

OTG_EVENT_SRP_VBUS_HIGH(
page 855)

This is macro OTG_EVENT_SRP_VBUS_HIGH.

OTG_EVENT_SRP_VBUS_LOW(
page 856)

This is macro OTG_EVENT_SRP_VBUS_LOW.

ROLE_DEVICE(page 857) Role Defines

ROLE_HOST(page 858) This is macro ROLE_HOST.

START_SESSION(page 859) Session Defines

TOGGLE_SESSION(page 860) This is macro TOGGLE_SESSION.

USB_OTG_FW_DOT_VER(page 861) Firmware version, dot release number.

USB_OTG_FW_MAJOR_VER(page
862)

Firmware version, major release number.

USB_OTG_FW_MINOR_VER(page
863)

Firmware version, minor release number.

Description

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

830

7.4.2.1 CABLE_A_SIDE Macro
File

usb_otg.h

C

#define CABLE_A_SIDE 0

Description

Cable Defines

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

831

7.4.2.2 CABLE_B_SIDE Macro
File

usb_otg.h

C

#define CABLE_B_SIDE 1

Description

This is macro CABLE_B_SIDE.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

832

7.4.2.3 DELAY_TA_AIDL_BDIS Macro
File

usb_otg.h

C

#define DELAY_TA_AIDL_BDIS 255

Description

This is macro DELAY_TA_AIDL_BDIS.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

833

7.4.2.4 DELAY_TA_BDIS_ACON Macro
File

usb_otg.h

C

#define DELAY_TA_BDIS_ACON 1

Description

This is macro DELAY_TA_BDIS_ACON.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

834

7.4.2.5 DELAY_TA_BIDL_ADIS Macro
File

usb_otg.h

C

#define DELAY_TA_BIDL_ADIS 10//150

Description

150

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

835

7.4.2.6 DELAY_TA_WAIT_BCON Macro
File

usb_otg.h

C

#define DELAY_TA_WAIT_BCON 1100

Description

This is macro DELAY_TA_WAIT_BCON.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

836

7.4.2.7 DELAY_TA_WAIT_VRISE Macro
File

usb_otg.h

C

#define DELAY_TA_WAIT_VRISE 100

Description

This is macro DELAY_TA_WAIT_VRISE.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

837

7.4.2.8 DELAY_TB_AIDL_BDIS Macro
File

usb_otg.h

C

#define DELAY_TB_AIDL_BDIS 10 //100

Description

100

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

838

7.4.2.9 DELAY_TB_ASE0_BRST Macro
File

usb_otg.h

C

#define DELAY_TB_ASE0_BRST 100

Description

This is macro DELAY_TB_ASE0_BRST.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

839

7.4.2.10 DELAY_TB_DATA_PLS Macro
File

usb_otg.h

C

#define DELAY_TB_DATA_PLS 6

Description

This is macro DELAY_TB_DATA_PLS.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

840

7.4.2.11 DELAY_TB_SE0_SRP Macro
File

usb_otg.h

C

#define DELAY_TB_SE0_SRP 2

Description

This is macro DELAY_TB_SE0_SRP.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

841

7.4.2.12 DELAY_TB_SRP_FAIL Macro
File

usb_otg.h

C

#define DELAY_TB_SRP_FAIL 5100

Description

This is macro DELAY_TB_SRP_FAIL.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

842

7.4.2.13 DELAY_VBUS_SETTLE Macro
File

usb_otg.h

C

#define DELAY_VBUS_SETTLE 500

Description

This is macro DELAY_VBUS_SETTLE.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

843

7.4.2.14 END_SESSION Macro
File

usb_otg.h

C

#define END_SESSION 1

Description

This is macro END_SESSION.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

844

7.4.2.15 OTG_EVENT_CONNECT Macro
File

usb_otg.h

C

#define OTG_EVENT_CONNECT 1

Description

This is macro OTG_EVENT_CONNECT.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

845

7.4.2.16 OTG_EVENT_DISCONNECT Macro
File

usb_otg.h

C

#define OTG_EVENT_DISCONNECT 0

Description

OTG Events

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

846

7.4.2.17 OTG_EVENT_HNP_ABORT Macro
File

usb_otg.h

C

#define OTG_EVENT_HNP_ABORT 8

Description

This is macro OTG_EVENT_HNP_ABORT.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

847

7.4.2.18 OTG_EVENT_HNP_FAILED Macro
File

usb_otg.h

C

#define OTG_EVENT_HNP_FAILED 9

Description

This is macro OTG_EVENT_HNP_FAILED.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

848

7.4.2.19 OTG_EVENT_NONE Macro
File

usb_otg.h

C

#define OTG_EVENT_NONE 2

Description

This is macro OTG_EVENT_NONE.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

849

7.4.2.20 OTG_EVENT_RESUME_SIGNALING Macro
File

usb_otg.h

C

#define OTG_EVENT_RESUME_SIGNALING 11

Description

This is macro OTG_EVENT_RESUME_SIGNALING.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

850

7.4.2.21 OTG_EVENT_SRP_CONNECT Macro
File

usb_otg.h

C

#define OTG_EVENT_SRP_CONNECT 7

Description

This is macro OTG_EVENT_SRP_CONNECT.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

851

7.4.2.22 OTG_EVENT_SRP_DPLUS_HIGH Macro
File

usb_otg.h

C

#define OTG_EVENT_SRP_DPLUS_HIGH 3

Description

This is macro OTG_EVENT_SRP_DPLUS_HIGH.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

852

7.4.2.23 OTG_EVENT_SRP_DPLUS_LOW Macro
File

usb_otg.h

C

#define OTG_EVENT_SRP_DPLUS_LOW 4

Description

This is macro OTG_EVENT_SRP_DPLUS_LOW.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

853

7.4.2.24 OTG_EVENT_SRP_FAILED Macro
File

usb_otg.h

C

#define OTG_EVENT_SRP_FAILED 10

Description

This is macro OTG_EVENT_SRP_FAILED.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

854

7.4.2.25 OTG_EVENT_SRP_VBUS_HIGH Macro
File

usb_otg.h

C

#define OTG_EVENT_SRP_VBUS_HIGH 5

Description

This is macro OTG_EVENT_SRP_VBUS_HIGH.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

855

7.4.2.26 OTG_EVENT_SRP_VBUS_LOW Macro
File

usb_otg.h

C

#define OTG_EVENT_SRP_VBUS_LOW 6

Description

This is macro OTG_EVENT_SRP_VBUS_LOW.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

856

7.4.2.27 ROLE_DEVICE Macro
File

usb_otg.h

C

#define ROLE_DEVICE 0

Description

Role Defines

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

857

7.4.2.28 ROLE_HOST Macro
File

usb_otg.h

C

#define ROLE_HOST 1

Description

This is macro ROLE_HOST.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

858

7.4.2.29 START_SESSION Macro
File

usb_otg.h

C

#define START_SESSION 0

Description

Session Defines

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

859

7.4.2.30 TOGGLE_SESSION Macro
File

usb_otg.h

C

#define TOGGLE_SESSION 2

Description

This is macro TOGGLE_SESSION.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

860

7.4.2.31 USB_OTG_FW_DOT_VER Macro
File

usb_otg.h

C

#define USB_OTG_FW_DOT_VER 0 // Firmware version, dot release number.

Description

Firmware version, dot release number.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

861

7.4.2.32 USB_OTG_FW_MAJOR_VER Macro
File

usb_otg.h

C

#define USB_OTG_FW_MAJOR_VER 1 // Firmware version, major release number.

Description

Firmware version, major release number.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

862

7.4.2.33 USB_OTG_FW_MINOR_VER Macro
File

usb_otg.h

C

#define USB_OTG_FW_MINOR_VER 0 // Firmware version, minor release number.

Description

Firmware version, minor release number.

7.4 On-The-Go (OTG) MCHPFSUSB Library Help Data Types and Constants

863

8 Appendix (Frequently Asked
Questions, Important Information,
Reference Material, etc.)

8.1 Using breakpoints in USB host applications
This section describes how to use breakpoints when running a USB host application without causing communication issues.

Description

This section describes how to use breakpoints when running a USB host application without causing communication issues.

USB has a periodic packet that is sent on the bus once every millisecond, called the start of frame (SOF) packet, that is used
to keep the bus from going into an idle/suspended state. When a the microcontroller hits a breakpoint, both the CPU and the
modules on the device stop operation. This will cause the attached USB device to enter the suspend mode. Some
programmers implement a method that allows specified peripherals to continue to run even after a breakpoint occurs. This
section describes how to enable this feature for the USB peripheral on PIC24F and PIC32 devices.

MPLAB v8.x

1) Select the desired debugger from the debugger menu

2) Go to the “Debugger->Settings” menu option

3) Go to the Freeze on Halt tab. For PIC24F devices, uncheck the UCNFG1 box. For PIC32 devices, uncheck the “All other
peripherals” box located below the scrolling menu.

8.1 Using breakpoints in USB host MCHPFSUSB Library Help

864

PIC24F

PIC32

8.1 Using breakpoints in USB host MCHPFSUSB Library Help

865

MPLAB X

1) In the projects window, right click on the project you are working on and select properties from the menu that appears.

2) In the properties window, select the debugger that you are currently using from the Categories navigation pane.

3) In the resulting form, select "Freeze Peripherals" in the "Option Categories" drop down box.

4) In the resulting list uncheck the box corresponding to the USB peripheral. If there is not one on the list, uncheck "All other
peripherals". Please note that on PIC24F the USB module may be named UCNFG1.

8.2 Bootloader Details MCHPFSUSB Library Help

866

8.2 Bootloader Details
This section covers some of the implementation and usage details about the boot loaders.

Description

The detailed descriptions of the boot loader implementations are very part specific. They often involve modified linker scripts
and discussions of part specific features and architectural differences (like interrupts and resets). For this reason this section
is broken down into sections for each processor product line.

8.2.1 PIC24F Implementation Specific Details

This section covers the PIC24F product line USB boot loaders.

Description

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

867

8.2.1.1 Adding a boot loader to your project
This section covers how to add a boot loader to your application.

Description

The boot loader implementations available in the MCHPFSUSB take a two application approach. What this means is that the
boot loader and the application are development, compiled, and loaded separately.

With this approach there are two separate linker scripts that are required, one for the boot loader, and one for the application.

For the PIC24F applications intended to be used with a boot loader, all that is required is to attach the specific linker file
designed for the applications of that boot loader to the project.

• No modifications are required to the linker file. Just attach the provided application linker file to the application project
without modification.

• No modifications are required to the application code. Just write your code as you always would and attach the provided
application linker file to the application project without modification.

The required application linker files are found in the folders that contain the targeted boot loaders. These linker files can be
referenced directly from the application projects, or can be copied locally to the project folder.

These provided linker files generate the required code to handle the reset and interrupt remapping sections that are required.

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

868

8.2.1.2 Memory Map
This section discusses the various memory regions in the PIC24F device and how they are arranged between the boot
loaders and the target applications.

Description

The PIC24F boot loaders have several different special memory regions. Some of these regions are defined by the
hardware. Others are part of the boot loader implementation and usage. This section discusses what each of these memory
regions are. For more information about how these sections are implemented or how to change them, please refer to the
Understanding and Customizing the Boot Loader Implementation(page 873) section.

The different memory regions are shown below:

1) Reset Vector - the reset vector is defined by the hardware. This is located at address 0x0000. Any reset of the CPU will
go to the reset vector. The main responsibility of the reset vector is to jump to the code that needs to be run. In the case of
the boot loader, this means jumping to the boot loader code (section 4).

2) The interrupt vector table (IVT) is another section that is defined by the PIC24F hardware. The IVT is a fixed set of
addresses that specify where the CPU should jump to in the case of an interrupt event. Each interrupt has it's own vector in
the table. When that interrupt occurs, the CPU fetches the address in the table corresponding to that interrupt and jumps to
that address.

3) The alternate interrupt vector table (AIVT) behaves just like the IVT. The user must set a bit to select if they are using the
IVT or AIVT for their interrupt handling. The IVT is the default. For the current boot loader applications, the AIVT is either
used by the boot loader or is not remapped to user space so the AIVT is not available for application use.

4) The boot loader code - This section is where the boot loader code resides. This section handles all of the loading of the
new application code.

5) User Remapped Reset Vector - This is a section that is defined by the boot loader. The boot loader must always know
how to exit to the application on startup. The User Remapped Reset Vector is used as a fixed address that the boot loader
can jump to in order to start an application. The application must place code at this address that starts their application. In
the PIC24F implementations this is handled by the application linker file.

6) User Remapped Interrupt Vectors - Since the IVT is located in the boot loader space, the boot loader must remap all of
the interrupts to the application space. This is done using the User remapped interrupt vectors. The IVT in the boot loader
will jump to a specific address in the User remapped interrupt vector. The User remapped interrupt vector table jumps to the
interrupt handler code defined in the user code. In the PIC24F implementations this table is generated by the application
linker file and doesn't require any user modifications.

7) The user application code - this is the main application code for the project that needs to be loaded by the boot loader. In
the PIC24F implementation, only the application linker file for the specific boot loader needs to be added to the project. No

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

869

other files are required. No changes or additions are required to the user application code either in order to get the code
working.

The boot loader and application linker files provided with the MCHPFSUSB enforce all of the memory regions specified
above. If an application tries to specify an address outside of the valid range, the user should get a linker error.

Separate linker files are required for the boot loader and the application. These linker files generate the material required for
several of the different memory regions in the device. Below is a diagram showing which sections of the final device image
are created by the linker files. All of the regions of the device are specified within one of the two linker files. This image
merely shows where the content for each of those regions is generated.

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

870

8.2.1.3 Startup Sequence and Reset Remapping
This section discusses how the device comes out of reset and how the control passes between the boot loader and the
application.

Description

Before continuing with this section, please review the preceding sections to understand some of the implementation details
that aren't discussed in detail in this section. Some of the implementation details of how this works is described the
Understanding and Customizing the Boot Loader Implementation(page 873) section. This section covers the basic flow
and how it passes between the boot loader and the application.

In the boot loader implementations provided in MCHPFSUSB library, the boot loader controls the reset vector. This is true for
the PIC24F boot loaders as well. The reset vector resides within the boot loader memory space. This means that the boot
loader must jump to the target application. This processes in show below in the following diagram and described in the
following paragraphs.

1) On PIC24F devices, when a reset occurs the hardware automatically jumps to the reset vector. This is located at address
0x0000. This address resides within the boot loader memory. The compiler/linker for the boot loader code places a 'goto'
instruction at the reset vector to the boot loader startup code.

2) The 'goto" instruction at the reset address will jump to the main() function for the boot loader.

3) In the boot loader startup sequence there is a check to determine if the boot loader should run or if the boot loader should
jump to the application instead. In the provided examples the code checks a switch to determine if it should remain in the
boot loader. If the switch is not pressed then the boot loader jumps to the user_remapped_reset_vector. At this point the
control of the processor has just changed from the boot loader to the application.

4) The code at the user_remapped_reset_vector is controlled by the application project, not the boot loader. This vector
effectively emulates the behavior that the normal reset vector would if a boot loader wasn't used. In this case it should jump
to the startup code for the application. This is done by modified linker script for the application.

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

871

8.2.1.4 Interrupt Remapping
This section discusses how interrupts are handled between the boot loader and application.

Description

Before continuing with this section, please review the preceding sections to understand some of the implementation details
that aren't discussed in detail in this section. Some of the implementation details of how this works is described the
Understanding and Customizing the Boot Loader Implementation(page 873) section. This section covers the basic flow
and how it passes between the boot loader and the application.

In the boot loader implementations provided in MCHPFSUSB library, the boot loader controls the interrupt vectors for
PIC24F devices. The hardware interrupt vector table resides within the boot loader memory space. This means that the boot
loader must jump to the appropriate user target application interrupt handler when an interrupt occurs. This processes in
show below in the following diagram and described in the following paragraphs.

1) During the course of normal code execution, an interrupt occurs. The CPU vectors to the interrupt vector table (IVT) as
described in the appropriate PIC24F datasheet.

2) The IVT is located in boot loader space, but the application needs to handle the interrupt. The boot loader jumps to the
correct entry in the User Remapped Interrupt Vector Table. At this point the CPU is jumping from the boot loader memory
space to the application memory space and effectively transferring control to the application.

3) At the entry in the User Remapped Interrupt Vector table there is placed a 'goto' instruction that will jump to the
appropriate interrupt handler if one is defined in your application and to the default interrupt if there isn't a handler defined. In
this way the behavior of the application with or without the boot loader is identical. The User Remapped Interrupt Vector
table is created by the application linker file for the specific boot loader in use. This table is automatically generated and
doesn't need to be modified. More about how this table is generated can be found in the Understanding and Customizing the
Boot Loader Implementation(page 873).

4) Finally once the interrupt handler code is complete, the code will return from the interrupt handler. This will return the CPU
to the instruction that the interrupt occurred before.

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

872

8.2.1.5 Understanding and Customizing the Boot Loader
Implementation

This sections discusses the customizations that have been made from the default linker scripts in order to make the boot
loader work and how to customize these implementations if you wish to change the behavior or location of the boot loader.

Description

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

873

8.2.1.5.1 Memory Region Definitions
This section describes how each of the memory regions gets defined.

Description

First let's take a look how each of the memory regions are defined. The address ranges for each of the regions seen in the
diagram below must be defined in either the application linker file or the boot loader linker files.

Below is an excerpt from one of the HID boot loader linker files. This is from the linker script for the boot loader itself so this
will be covering sections (1), (2), (3), and (4).

/*
** Memory Regions
*/
MEMORY
{
 data (a!xr) : ORIGIN = 0x800, LENGTH = 0x4000
 reset : ORIGIN = 0x0, LENGTH = 0x4
 ivt : ORIGIN = 0x4, LENGTH = 0xFC
 aivt : ORIGIN = 0x104, LENGTH = 0xFC
 program (xr) : ORIGIN = 0x400, LENGTH = 0x1000
 config4 : ORIGIN = 0x2ABF8, LENGTH = 0x2
 config3 : ORIGIN = 0x2ABFA, LENGTH = 0x2
 config2 : ORIGIN = 0x2ABFC, LENGTH = 0x2
 config1 : ORIGIN = 0x2ABFE, LENGTH = 0x2
}

The region named "reset" is defined to start at address 0x0 and has a length of 0x4. This means that the first two instructions
of the device are used for the reset vector. This is just enough for one 'goto' instruction. This corresponds to hardware
implementation and should not be changed. This defines section (1).

Section (2) is the IVT table. This is defined with the "ivt" memory entry. It starts at address 0x4 and is 0xFC bytes long. This
corresponds to hardware implementation and should not be changed.

Section (3) is the AIVT table. This is defined with the "aivt" memory entry. It starts at address 0x104 and is 0xFC bytes long.
This corresponds to hardware implementation and should not be changed.

Section (4) is the section for the boot loader code. This section is covered by the "program" entry in the memory table. This
section starts at address 0x400 and is 0x1000 bytes long in this example (ends at 0x1400). As you can see with this section
it has been decreased from the total size of the device to limit the boot loader code to this specific area. This is how the
linker knows where the boot loader code is allowed to reside.

Looking in the corresponding application linker file will result in a similar table.

/*
** Memory Regions
*/

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

874

MEMORY
{
 data (a!xr) : ORIGIN = 0x800, LENGTH = 0x4000
 reset : ORIGIN = 0x0, LENGTH = 0x4
 ivt : ORIGIN = 0x4, LENGTH = 0xFC
 aivt : ORIGIN = 0x104, LENGTH = 0xFC
 app_ivt : ORIGIN = 0x1400, LENGTH = 0x10C
 program (xr) : ORIGIN = 0x1510, LENGTH = 0x296E8
 config4 : ORIGIN = 0x2ABF8, LENGTH = 0x2
 config3 : ORIGIN = 0x2ABFA, LENGTH = 0x2
 config2 : ORIGIN = 0x2ABFC, LENGTH = 0x2
 config1 : ORIGIN = 0x2ABFE, LENGTH = 0x2
}

Note that the "reset", "ivt", and "aivt" sections are all still present in the application linker script. These sections remain here
so that applications compiled with the boot loader can be programmed with or without the boot loader. This aids in the
development of the application without having to use the boot loader while maintaining identical interrupt latency and
memory positioning.

Sections (5) and (6) are created in the special "app_ivt" section. The following discussion topic describes how the content of
this section is created. This entry in the memory table is how the space for that area is allocated. Note that the "app_ivt"
section starts at address 0x1400 (the same address that the boot loader ended at). Since different parts have different
number of interrupts, the size of the "app_ivt" section may change.

The "program" memory section has changed for the application space. It starts at address 0x1510 in this example. This will
vary from part to part based on the size of the "app_ivt" section. The "program" memory section corresponds to the user
application code (section (7)). Note that it takes up the rest of the memory of the device that is available to load.

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

875

8.2.1.5.2 Special Region Creation
This section covers how each of the special memory regions are created/populated within the linker files.

Description

The Memory Region Definitions(page 874) section described how each of the memory regions are defined. This allocates
the room for each of the memory regions.

This discussion covers how the values of some of the special memory regions are created/populated. Please refer to the
earlier sections for an understanding of how the reset and interrupt remapping works before proceeding through this section.

Let's take a look at each of the memory regions in order. Please note that there are two linker scripts, one for the boot loader
and one for the application. In order for some of these section definitions to make sense, we will be showing excerpts from
either or both of these files for any given section. Please pay close attention to which linker file we are referring to when we
show an example.

1) Section (1) is the reset vector. This belongs to the boot loader space so this is located in the boot loader linker file. What
we need at the reset vector is a jump to the start of the boot loader code. In the boot loader linker script:

 /*
 ** Reset Instruction
 */
 .reset :
 {
 SHORT(ABSOLUTE(__reset));
 SHORT(0x04);
 SHORT((ABSOLUTE(__reset) >> 16) & 0x7F);
 SHORT(0);
 } >reset

The code in this section generates a "goto __reset" instruction located in the "reset" memory section. This will cause the
CPU to jump to the boot loader startup code after any device reset. This is common code that is present in any default linker
script for PIC24F.

2) The second section is the IVT. In the IVT we need to jump to the user's remapped IVT table.

__APP_IVT_BASE = 0x1400;
.ivt __IVT_BASE :
 {
 LONG(ABSOLUTE(__APP_IVT_BASE) + 0x004); /* __ReservedTrap0*/
 LONG(ABSOLUTE(__APP_IVT_BASE) + 0x008); /* __OscillatorFail*/
 LONG(ABSOLUTE(__APP_IVT_BASE) + 0x00C); /* __AddressError*/
 LONG(ABSOLUTE(__APP_IVT_BASE) + 0x010); /* __StackError*/
 LONG(ABSOLUTE(__APP_IVT_BASE) + 0x014); /* __MathError*/
...
 LONG(ABSOLUTE(__DEFAULT_VECTOR)); /* __Interrupt116 not implemented */
 LONG(ABSOLUTE(__DEFAULT_VECTOR)); /* __Interrupt117 not implemented */

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

876

 } >ivt

This linker code will place the _APP_IVT_BASE constant + an offset address at each of the IVT vector entries. This will
cause the CPU to jump to the specified vector in the user's remapped IVT table.

Note that each entry is 4 bytes away from the previous entry. Is is because the resulting remapped IVT will need to use
"goto" instructions at each entry in order to reach the desired handler. The "goto" instruction takes two instruction words at 2
bytes of memory address each.

3) Section (3), the AIVT, is either not used or is used by the boot loader and shouldn't be used by the application. If the boot
loader requires interrupts, then it uses the AIVT and switches to AIVT interrupts before starting and switches back to the IVT
before jumping to the customer code. No linker modifications are required here. For boot loaders that don't require interrupts,
some have the AIVT section removed since they are not remapped to the user space and not used by the boot loader.

4) Section (4), the boot loader code - the only modification required in the linker script for the boot loader code is the
changes to the memory region definitions discussed previously in the Memory Region Definitions(page 874) section.

5) Section (5) is the user remapped reset. This is the address where the boot loader jumps upon completion. This address
needs to be at a fixed location in code that both the boot loader and the application know about. At this address there needs
to be a jump to the user application code. In the application linker script:

 .application_ivt __APP_IVT_BASE :
 {
 SHORT(ABSOLUTE(__reset)); SHORT(0x04); SHORT((ABSOLUTE(__reset) >> 16) & 0x7F);
SHORT(0);
 SHORT(DEFINED(__ReservedTrap0) ? ABSOLUTE(__ReservedTrap0) :
ABSOLUTE(__DefaultInterrupt)); SHORT(0x04); SHORT(DEFINED(__ReservedTrap0) ?
(ABSOLUTE(__ReservedTrap0) >> 16) & 0x7F : (ABSOLUTE(__DefaultInterrupt) >> 16) & 0x7F);
SHORT(0);
 SHORT(DEFINED(__OscillatorFail) ? ABSOLUTE(__OscillatorFail) :
ABSOLUTE(__DefaultInterrupt)); SHORT(0x04); SHORT(DEFINED(__OscillatorFail) ?
(ABSOLUTE(__OscillatorFail) >> 16) & 0x7F : (ABSOLUTE(__DefaultInterrupt) >> 16) & 0x7F);
SHORT(0);
 SHORT(DEFINED(__AddressError) ? ABSOLUTE(__AddressError) :
ABSOLUTE(__DefaultInterrupt)); SHORT(0x04); SHORT(DEFINED(__AddressError) ?
(ABSOLUTE(__AddressError) >> 16) & 0x7F : (ABSOLUTE(__DefaultInterrupt) >> 16) & 0x7F);
SHORT(0);

This section of code has been added to the default linker script. This creates a section in code located at __APP_IVT_BASE
address. In this case the __APP_IVT_BASE address is also defined in the application linker file:

__APP_IVT_BASE = 0x1400;

This address must match exactly between the boot loader code, boot loader linker file, and the application linker file. If any of
these do not match then the linkage between the interrupt remapping or reset remapping will not work and the application
will fail to run properly.

The first entry in this table is the user remapped reset. This code generates a "goto __reset" at address __APP_IVT_BASE.
This allows the boot loader to jump to this fixed address to then jump to the start of the user code (located at the __reset
label).

6) Section (6) is the remapped IVT table. This section allows the interrupt to be remapped from the boot loader space to the
application space. In order to do this the boot loader must either know the exact address of every interrupt handler, or must
have another jump table that it jumps to in order to redirect it to the correct interrupt handler. The second approach is the
one used in the implemented boot loaders. This is implemented in the following table:

 .application_ivt __APP_IVT_BASE :
 {
 SHORT(ABSOLUTE(__reset)); SHORT(0x04); SHORT((ABSOLUTE(__reset) >> 16) & 0x7F);
SHORT(0);
 SHORT(DEFINED(__ReservedTrap0) ? ABSOLUTE(__ReservedTrap0) :
ABSOLUTE(__DefaultInterrupt)); SHORT(0x04); SHORT(DEFINED(__ReservedTrap0) ?
(ABSOLUTE(__ReservedTrap0) >> 16) & 0x7F : (ABSOLUTE(__DefaultInterrupt) >> 16) & 0x7F);
SHORT(0);
 SHORT(DEFINED(__OscillatorFail) ? ABSOLUTE(__OscillatorFail) :
ABSOLUTE(__DefaultInterrupt)); SHORT(0x04); SHORT(DEFINED(__OscillatorFail) ?
(ABSOLUTE(__OscillatorFail) >> 16) & 0x7F : (ABSOLUTE(__DefaultInterrupt) >> 16) & 0x7F);
SHORT(0);

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

877

 SHORT(DEFINED(__AddressError) ? ABSOLUTE(__AddressError) :
ABSOLUTE(__DefaultInterrupt)); SHORT(0x04); SHORT(DEFINED(__AddressError) ?
(ABSOLUTE(__AddressError) >> 16) & 0x7F : (ABSOLUTE(__DefaultInterrupt) >> 16) & 0x7F);
SHORT(0);

This first entry in the table is the remapped reset vector that we just discussed. The second entry in the table is the first
possible interrupt. In this case it is the ReservedTrap0 interrupt. This line of linker code will look for the __ReservedTrap0
interrupt function. If it exists it will insert a "goto __ReservedTrap0" at the second address in this table. If it doesn't find the
__ReservedTrap0 function, it will put a "goto __DefaultInterrupt" at this entry in the table. In this way just by defining the
appropriate interrupt handler function in the application code, the linker will automatically create the jump table entry
.required.

Looking at an example application_ivt table as generated by the linker script where the ReservedTrap0 interrupt is not
defined and the OscillatorFail and AddressError handlers are defined, starting at address _APP_IVT_BASE you will have the
following entries in program memory:

goto __reset

goto __DefaultInterrupt

goto __OscillatorFail

goto __AddressError

...

7) Section (7), the user application code - the only modification to the linker script required for the application code is the
changes to the memory region definitions discussed previously in the Memory Region Definitions(page 874) section.

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

878

8.2.1.5.3 Changing the memory foot print of the boot loader
This section covers how to modify how much memory is used by the boot loader. This can be useful when adding features to
the boot loader that increase the size beyond the default example or if a version of the compiler is used that doesn't provide
a sufficient level of optimizations to fit the default boot loader.

Description

This section covers how to modify how much memory is used by the boot loader. This can be useful when adding features to
the boot loader that increase the size beyond the default example or if a version of the compiler is used that doesn't provide
a sufficient level of optimizations to fit the default boot loader.

Each boot loader has different memory sections and implementations so there is a section covering each boot loader
individually. Please refer to the section corresponding to the boot loader in question.

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

879

8.2.1.5.3.1 HID boot loader

This section covers how to modify the size of the HID boot loader.

Description

This section covers how to modify the size of the HID boot loader. This can be useful when adding features to the boot
loader that increase the size beyond the default example or if a version of the compiler is used that doesn't provide a
sufficient level of optimizations to fit the default boot loader. The boot loaders provided by default assume full optimizations
and may not work with compilers that don't have access to full optimizations.

Please read all of the other topics in the PIC24F boot loader section before proceeding in this topic. This topic will show
where the modifications need to be made and how they need to match up, but will not describe what the sections that are
being modified are or how they are implemented. This information is in previous sections.

There are three places that require corresponding changes: the boot loader linker script, the application linker script, and the
boot loader code. You may wish to make copies of the original files so that you preserve the original non-modified files.

In the following examples we will be increasing the size of the boot loader from 0x1400 to 0x2400 in length.

First start by determining the size that you want the boot loader to be. This must be a multiple of an erase page. On many
PIC24F devices there is a 512 instruction word erase page (1024 addresses per page). Please insure that the address you
select for the end of the boot loader corresponds to a page boundary. There are several ways to determine the size of the
boot loader application. Below is an example of one method.

1) Remove the boot loader linker script provided if it is causing link errors due either to optimization settings or added code.

2) Build the project

3) Open the memory window and find the last non-blank address in the program memory space.

4) Find the next flash erase page address after this address. Add any additional buffer room that you might want for future
boot loader development, growth, or changes. Use this address as your new boot loader end address.

Once the end address of the boot loader is known, start by modifying the boot loader linker script program memory region to
match that change. The boot loader linker script can either be found in the folder containing the boot loader project file or in a
folder that is specified for boot loader linker scripts. In the linker script find the memory regions.

MEMORY
{
 data (a!xr) : ORIGIN = 0x800, LENGTH = 0x4000
 reset : ORIGIN = 0x0, LENGTH = 0x4
 ivt : ORIGIN = 0x4, LENGTH = 0xFC
 aivt : ORIGIN = 0x104, LENGTH = 0xFC
 program (xr) : ORIGIN = 0x400, LENGTH = 0x2000
 config4 : ORIGIN = 0x2ABF8, LENGTH = 0x2
 config3 : ORIGIN = 0x2ABFA, LENGTH = 0x2
 config2 : ORIGIN = 0x2ABFC, LENGTH = 0x2
 config1 : ORIGIN = 0x2ABFE, LENGTH = 0x2
}

Change the LENGTH field of the program memory section to match the new length. Note that this is length and not the end
address. To get the end address, please add LENGTH + ORIGIN.

Next, locate the __APP_IVT_BASE definition in the linker file. Change this to equal the end address of your boot loader.

__APP_IVT_BASE = 0x2400;

Once the length of the boot loader is changed, you will need to make similar changes in the application boot loader linker
script. The application boot loader linker scripts are typically found in a folder with the boot loader project. In the application
linker file, locate the memory regions section. In this section there are three items that need to change.

1. The first is the ORIGIN of the app_ivt section. This needs to be modified to match the new end address of the boot loader.

2. Second, move the ORIGIN of the program memory section to the ORIGIN of app_ivt + the LENGTH of the app_ivt section
so that the program memory starts immediately after the app_ivt section.

3. Last, change the LENGTH field of the program section so that it goes to the end of the program memory of the device.

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

880

Remember that the LENGTH field is the length starting from the origin and not the end address. An easy way to make
sure that this address is correct is by just subtracting off from the LENGTH the same amount that was added to the
ORIGIN.

MEMORY
{
 data (a!xr) : ORIGIN = 0x800, LENGTH = 0x4000
 reset : ORIGIN = 0x0, LENGTH = 0x4
 ivt : ORIGIN = 0x4, LENGTH = 0xFC
 aivt : ORIGIN = 0x104, LENGTH = 0xFC
 app_ivt : ORIGIN = 0x2400, LENGTH = 0x110
 program (xr) : ORIGIN = 0x2510, LENGTH = 0x286E8
 config4 : ORIGIN = 0x2ABF8, LENGTH = 0x2
 config3 : ORIGIN = 0x2ABFA, LENGTH = 0x2
 config2 : ORIGIN = 0x2ABFC, LENGTH = 0x2
 config1 : ORIGIN = 0x2ABFE, LENGTH = 0x2
}

The final changes that needs to be made are in the boot loader code itself. Open up the boot loader project.

1. Find the ProgramMemStart definition in the main.c file. Change the start address to match the new address.

#define ProgramMemStart 0x00002400

2. Next find the #ifdef section that applies to the device that you are working with. This section will contain definitions used
by the boot loader to determine what memory is should erase and re-write.

#if defined(__PIC24FJ256GB110__) || defined(__PIC24FJ256GB108__) ||
defined(__PIC24FJ256GB106__)
 #define BeginPageToErase 5 //Bootloader and vectors occupy first
six 1024 word (1536 bytes due to 25% unimplemented bytes) pages
 #define MaxPageToEraseNoConfigs 169 //Last full page of flash on the
PIC24FJ256GB110, which does not contain the flash configuration words.
 #define MaxPageToEraseWithConfigs 170 //Page 170 contains the flash
configurations words on the PIC24FJ256GB110. Page 170 is also smaller than the rest of the
(1536 byte) pages.
 #define ProgramMemStopNoConfigs 0x0002A800 //Must be instruction word aligned
address. This address does not get updated, but the one just below it does:
 //IE: If AddressToStopPopulating =
0x200, 0x1FF is the last programmed address (0x200 not programmed)
 #define ProgramMemStopWithConfigs 0x0002ABF8 //Must be instruction word aligned
address. This address does not get updated, but the one just below it does: IE: If
AddressToStopPopulating = 0x200, 0x1FF is the last programmed address (0x200 not programmed)
 #define ConfigWordsStartAddress 0x0002ABF8 //0x2ABFA is start of CW3 on
PIC24FJ256GB110 Family devices
 #define ConfigWordsStopAddress 0x0002AC00

3. Modify the BeginPageToErase to indicate which page is the first page it should erase. This will be the
ProgramMemStart/Page Size. In this case we are starting at 0x2400 and each page is 0x400 so this should now be 9.

 #define BeginPageToErase 9

4. Locate the start of the main() function. In the first few lines of code there is a check to determine of the code should stay
in the boot loader or jump to the application code. Change the address in the "goto" statement to match the new end of
the boot loader and start of the application.

__asm__("goto 0x2400");

This should be all of the changes required in order to change the size of the HID boot loader.

Please note that since the boot loader and the application code are developed as two separate applications, they do not
need to use the same optimization settings.

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

881

8.2.1.5.3.2 MSD boot loader

This section covers how to modify the size of the MSD boot loader.

Description

This section covers how to modify the size of the MSD boot loader. This can be useful when adding features to the boot
loader that increase the size beyond the default example or if a version of the compiler is used that doesn't provide a
sufficient level of optimizations to fit the default boot loader. The boot loaders provided by default assume full optimizations
and may not work with compilers that don't have access to full optimizations.

Please read all of the other topics in the PIC24F boot loader section before proceeding in this topic. This topic will show
where the modifications need to be made and how they need to match up, but will not describe what the sections that are
being modified are or how they are implemented. This information is in previous sections.

There are three places that require corresponding changes: the boot loader linker script, the application linker script, and the
boot loader code. You may wish to make copies of the original files so that you preserve the original non-modified files.

In the following examples we will be increasing the size of the boot loader from 0xA000 to 0xC000.

First start by determining the size that you want the boot loader to be. This must be a multiple of an erase page. On many
PIC24F devices there is a 512 instruction word erase page (1024 addresses per page). Please insure that the address you
select for the end of the boot loader corresponds to a page boundary. There are several ways to determine the size of the
boot loader application. Below is an example of one method.

1) Remove the boot loader linker script provided if it is causing link errors due either to optimization settings or added code.

2) Build the project

3) Open the memory window and find the last non-blank address in the program memory space.

4) Find the next flash erase page address after this address. Add any additional buffer room that you might want for future
boot loader development, growth, or changes. Use this address as your new boot loader end address.

Once the end address of the boot loader is known, start by modifying the boot loader linker script program memory region to
match that change. The boot loader linker script can either be found in the folder containing the boot loader project file or in a
folder that is specified for boot loader linker scripts. In the linker script find the memory regions.

MEMORY
{
 data (a!xr) : ORIGIN = 0x800, LENGTH = 0x4000
 reset : ORIGIN = 0x0, LENGTH = 0x4
 ivt : ORIGIN = 0x4, LENGTH = 0xFC
 aivt : ORIGIN = 0x104, LENGTH = 0xFC
 program (xr) : ORIGIN = 0x400, LENGTH = 0xBC00
 config4 : ORIGIN = 0x2ABF8, LENGTH = 0x2
 config3 : ORIGIN = 0x2ABFA, LENGTH = 0x2
 config2 : ORIGIN = 0x2ABFC, LENGTH = 0x2
 config1 : ORIGIN = 0x2ABFE, LENGTH = 0x2
}

Change the LENGTH field of the program memory section to match the new length. Note that this is length and not the end
address. To get the end address, please add LENGTH + ORIGIN.

Next, locate the __APP_IVT_BASE definition in the linker file. Change this to equal the end address of your boot loader.

__APP_IVT_BASE = 0xC000;

Once the length of the boot loader is changed, you will need to make similar changes in the application boot loader linker
script. The application boot loader linker scripts are typically found in a folder with the boot loader project. In the application
linker file, locate the memory regions section. In this section there are three items that need to change.

1. The first is the ORIGIN of the app_ivt section. This needs to be modified to match the new end address of the boot loader.

2. Second, move the ORIGIN of the program memory section to the ORIGIN of app_ivt + the LENGTH of the app_ivt section
so that the program memory starts immediately after the app_ivt section.

3. Last, change the LENGTH field of the program section so that it goes to the end of the program memory of the device.

8.2 Bootloader Details MCHPFSUSB Library Help PIC24F Implementation Specific Details

882

Remember that the LENGTH field is the length starting from the origin and not the end address. An easy way to make
sure that this address is correct is by just subtracting off from the LENGTH the same amount that was added to the
ORIGIN.

MEMORY
{
 data (a!xr) : ORIGIN = 0x800, LENGTH = 0x4000
 reset : ORIGIN = 0x0, LENGTH = 0x4
 ivt : ORIGIN = 0x4, LENGTH = 0xFC
 aivt : ORIGIN = 0x104, LENGTH = 0xFC
 app_ivt : ORIGIN = 0xC000, LENGTH = 0x110
 program (xr) : ORIGIN = 0xC110, LENGTH = 0x1EAE8
 config4 : ORIGIN = 0x2ABF8, LENGTH = 0x2
 config3 : ORIGIN = 0x2ABFA, LENGTH = 0x2
 config2 : ORIGIN = 0x2ABFC, LENGTH = 0x2
 config1 : ORIGIN = 0x2ABFE, LENGTH = 0x2
}

The final changes that needs to be made are in the boot loader code itself. Open up the boot loader project.

1. Find the processor section in boot_config.h that applies to the processor that you are using. This section should contain a
definition APPLICATION_ADDRESS. This address indicates the address where the user application reset vector resides.
Change this address to match the new user reset address.

#define APPLICATION_ADDRESS 0xC000ul

2. Next find the PROGRAM_FLASH_BASE. This address specifies the starting address of memory where the device will
start to erase and reprogram. Please make sure to make this address at the start of an erase page on the device.

#define PROGRAM_FLASH_BASE 0xC000ul

3. Next modify the PROGRAM_FLASH_LENGTH to match the new flash length. This length specifies the number of bytes
starting from the PROGRAM_FLASH_BASE that is valid for the application.

#define PROGRAM_FLASH_LENGTH 0x1EB00

This should be all of the changes required in order to change the size of the HID boot loader.

Please note that since the boot loader and the application code are developed as two separate applications, they do not
need to use the same optimization settings.

8.2.2 Important Considerations

There are some important topics that need to be considered when developing an application for a boot loader. This section
will cover some of these topics that need to be considered.

8.2 Bootloader Details MCHPFSUSB Library Help Important Considerations

883

8.2.2.1 Configuration Bits
This section covers some topics related to configuration bits.

Description

Matching configuration bits between application and boot loader

While the code code space of the application and the boot loader are separate, they both must run on the same device. As
such they both use the same configuration bits. Some boot loaders are able to update configuration bits. Others are not. If
the boot loader is able to load configuration bits, the application designer should be careful to select a setting that works for
both the application as well as the boot loader. It is possible to change the configuration bits into a setting that isn't
compatible with the boot loader.

For example: if the boot loader wasn't design to handle a watch dog timer (doesn't clear the watch dog timer) and the
application enables the watch dog timer through the configuration bits, it is possible that the boot loader will never be able to
load a new set of code again because it gets a watch dog timer event before the loading of a file is complete.

The previous example is just one of many ways that changes in configuration bits by the loaded application files can be
dangerous to future use of the boot loader. Caution should be used when changing the configuration bits if the boot loader
enables that feature.

8.2 Bootloader Details MCHPFSUSB Library Help Important Considerations

884

8.2.2.2 Boot Loader Entry
This section covers topics related to boot loader entry.

Description

While some applications it is desirable to enter the boot loader after starting the application, designers should consider have
a mechanism to enter the boot loader without jumping to the application in case of an application failure.

Example: An application wants to run and when the user selects that they want to load a new firmware, they go to the boot
loader. If there is a power failure during the loading process it is possible that there isn't a valid application image that will run
successfully. If there isn't a mechanism to detect this failure or a method to enter the boot loader directly without going to the
application, then this device could be rendered useless.

Even if the main method of boot loader entry is directly from the application, a secondary method that doesn't require an
application should be considered for such circumstances.

8.2 Bootloader Details MCHPFSUSB Library Help Important Considerations

885

8.2.2.3 Interrupts
This section covers some topics related to interrupts.

Description

PIC24F

Because the interrupts must be remapped from the the IVT to the application space, there is additional latency from the time
that the interrupt is generated to the time that the first line in the interrupt handler is executed. There is one additional
inserted "goto" instruction resulting in a 2 cycle increased interrupt latency.

Note that the provided application linker files allow projects built for the PIC24F boot loaders to be either programmed or
boot loaded. In both cases the interrupt latency and memory organization are identical allowing users to develop their
application without having to use the boot loader but having identical performance and memory usage as if they were using
the boot loader.

The PIC24F boot loaders only remap the main interrupt vector table (IVT). They don't remap the alternate interrupt vector
table (AIVT). Please see the PIC24F Implementation details for more information.

PIC32MX

The PIC32MX processor has a programmable interrupt vector table address, both the boot loader and the application
projects can have their own interrupt vector tables. The boot loader and application code vector from their interrupt tables
directly thus there are no special requirements or changes in latency for the PIC32MX family while using the USB boot
loaders.

8.3 Notes on .inf Files
Describes important information about .inf file usage and behavior.

Description

Upon initially plugging in a USB device, in some cases Windows will prompt the user for a driver. Rather than having users
manually copy .sys files (driver binary files) into important system directories (such as within the “\Windows\system32\”
directory structure) and manually add registry entries, Windows automates the driver installation process through the use of
.INF files. INF files are plain text (can be edited with notepad) installation instruction script files.

Some types of USB devices will not require .INF files or user provided drivers (for example, a HID class mouse). For these
types of devices, the operating system makes use of drivers already built into/distributed with the operating system, so no
user provided driver or .INF file is necessary.

For other types of devices, Windows will prompt the user for a driver. In these cases, point Windows to the .INF file relevant
for the USB device. All of the example projects included in the MCHPFSUSB framework which need an INF file are provided
with an example INF file. The INF file will need slight modification (most importantly to change the VID and PID) before
commercial distribution.

The INF file for the custom demo can be found in <Install Directory>\USB Tools\MCHPUSB Custom Driver\MCHPUSB
Driver\Release.

The INF file for the CDC demos can be found in <Install Directory>\USB Tools\USB CDC Serial Demo\inf\win2k_winxp.

8.4 Vendor IDs (VID) and Product IDs MCHPFSUSB Library Help

886

8.4 Vendor IDs (VID) and Product IDs (PID)
Describes important information about Vendor IDs (VID) and Product IDs (PID).

Description

Every USB product line must have a unique combination of VID and PID. All firmware examples use Microchip's VID
(0x04d8) and a unique PID. Prior to manufacturing and marketing a new USB product, the VID and PID need to be changed.
New VID and PID numbers can be obtained by purchasing a VID from the USB Implementers Forum:

http://www.usb.org/developers/vendor

Alternatively, Microchip has a free VID sublicensing program. An application form for obtaining a PID (for use with
Microchip’s VID: 0x04d8) from Microchip can be obtained by clicking here for the direct link.

Once a new VID/PID combination is obtained, both the firmware and the .INF file (when applicable) will need to be updated.

To modify the VID/PID in one of the example USB firmware projects, open the usb_descriptors.c file (found in each of the
demo folders). They should appear in the table used for the USB Device Descriptor. Change both values as needed.

To modify the VID/PID in the .INF file, open the relevant INF file and search for the “[DeviceList]” sections. There are two
sections, one for 32-bit and one for 64-bit, both sections should be identical. In these sections, some text will appear with the
form “USB\VID_xxxx&PID_yyyy”. Update the “xxxx” and “yyyy” sections with the new hexadecimal format VID/PID values.

8.5 Using a diff tool
This section will cover the basics of using a diff tool to compare two different sets of code to evaluate the differences. This
section will cover a couple of different tools available and their basic functionality. This section doesn't cover all of the
features available in each tool nor does this section cover all of the possible diff tools available.

8.5.1 Beyond Compare

Beyond Compare is a commercial available differencing software from Scooter Software, Inc
(http://www.scootersoftware.com/).

This demonstration is based on Beyond Compare v2.2.7. There may be interface or features changes in other versions of
this software. Please refer to the software's documentation for a more detailed and updated description of the functionality.

Creating a comparison

There are a couple of ways to create a comparison with Beyond Compare. The first is to open the Beyond Compare program
from the Start menu. This opens a window that allows you to either compare two files or two folders.

8.5 Using a diff tool MCHPFSUSB Library Help Beyond Compare

887

http://www.usb.org/developers/vendor

Beyond compare also has a right click menu option that allows the user to right click on two files and compare them to each
other.

When two files are compared together, the differences between the two files are highlighted. On the left of the main windows
there is also a difference navigation bar that shows where the differences are in the file. You can click on this bar to go to
that location in the code.

Moving changes

Once a difference between two files is detected, it is easy to move that change from one file to the other. In Beyond

8.5 Using a diff tool MCHPFSUSB Library Help Beyond Compare

888

Compare simply highlight the lines that need to move, and click on the "Copy to other side" button that is shown below.

Comparing Folders

A feature of Beyond Compare is that it allows you to compare two folders against each other. Once two folders are selected
in the program (or through the right-click menu option discussed before), the folders are compared against each other. At
this point of time the contents of the folders aren't compared to see if they are different, just if the files are present or not.

8.5 Using a diff tool MCHPFSUSB Library Help Beyond Compare

889

Double clicking on a file will open a file difference instance showing the difference between the two files.

To compare all of the contents against each other you can select all of the files by expanding all of the folders,

selecting all of the files,

and running the file comparison tool.

To see only files that are different, select the "Only mismatch" from the comparison tool.

8.5.2 MPLAB X (NetBeans)

MPLAB X (NetBeans) is an open source IDE that has built in differencing functionality (www.microchip.com/mplabx and
http://netbeans.org/).

This demonstration is based on NetBeans v6.5.1 but also applies to MPLAB X beta 7.02. There may be interface or features
changes in other versions of this software. Please refer to the software's documentation for a more detailed and updated
description of the functionality.

Creating a comparison

To compare two files in MPLAB X (NetBeans), one of the files must first be opened. This can be done using the "File->Open
File" menu option.

Once one file is open, right click on the tab with the file name. In this menu there should be a "Diff to..." option that is
available.

This option will open a new file window. In this file window select the file that you want to compare against. Once this file is

8.5 Using a diff tool MCHPFSUSB Library Help MPLAB X (NetBeans)

890

http://netbeans.org

selected the two files will sit side by side. On the right hand side of the window there is a difference navigation bar. By
clicking on any of these highlighted sections, it will bring you to the difference in the two files.

Moving changes

Changes in MPLAB X (NetBeans) are always made from the left file to the right file. If the files were opened in the opposite
order as the changes that need to be made, you can click the "Swap" button that is just above both of the two files. This will
exchange the position of the two files.

To move a change, click on the icon that is near the center bar between the differences. An arrow "->" indicator on the left
window indicates that the changes in that section will be moved from the left file to the right file. An "X" found on the right file
in a green section indicates that the source found in that section will be deleted when you click the "X".

8.5 Using a diff tool MCHPFSUSB Library Help MPLAB X (NetBeans)

891

Please note that changes made to the files via the MPLAB X (NetBeans) comparison tool may be final. You may not be able
to undo these effects to please use caution when making changes.

8.5 Using a diff tool MCHPFSUSB Library Help MPLAB X (NetBeans)

892

9 Trademark Information

The Microchip name and logo, the Microchip logo, MPLAB, and PIC are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

PICDEM and PICTail are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Microsoft, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

SD is a trademark of the SD Association in the U.S.A and other countries

9 MCHPFSUSB Library Help

893

Index

_
_CLIENT_DRIVER_TABLE structure 362

_COMM_INTERFACE_DETAILS structure 447

_DATA_INTERFACE_DETAILS structure 448

_HID_COLLECTION structure 591

_HID_DATA_DETAILS structure 592

_HID_GLOBALS structure 594

_HID_ITEM_INFO structure 595

_HID_REPORT structure 596

_HID_REPORTITEM structure 597

_HID_STRINGITEM structure 598

_HID_TRANSFER_DATA structure 599

_HID_USAGEITEM structure 600

_HOST_TRANSFER_DATA structure 363

_USB_CDC_ACM_FN_DSC structure 449

_USB_CDC_CALL_MGT_FN_DSC structure 450

_USB_CDC_CONTROL_SIGNAL_BITMAP union 451

_USB_CDC_DEVICE_INFO structure 452

_USB_CDC_HEADER_FN_DSC structure 454

_USB_CDC_LINE_CODING union 455

_USB_CDC_UNION_FN_DSC structure 456

_USB_HID_DEVICE_ID structure 608

_USB_HID_DEVICE_RPT_INFO structure 610

_USB_HID_ITEM_LIST structure 615

_USB_HOST_PRINTER_PRIMITIVES_H macro 715

_USB_PRINTER_DEVICE_ID structure 794

_USB_TPL structure 365

A
Adding a boot loader to your project 868

Android 3.1+ 95

Android Accessory Client Driver 412

Android v3.1+ 142

ANDROID_ACCESSORY_INFORMATION structure 421

ANDROID_BASE_OFFSET macro 423

ANDROID_INIT_FLAG_BYPASS_PROTOCOL macro 428

AndroidAppIsReadComplete function 414

AndroidAppIsWriteComplete function 415

AndroidAppRead function 416

AndroidAppStart function 417

AndroidAppWrite function 418

AndroidTasks function 419

Appendix (Frequently Asked Questions, Important
Information, Reference Material, etc.) 864

Application Programming Interface (API) 199

Audio Client Driver 378

Audio Function Driver 270

Audio MIDI Client Driver 398

B
BARCODE_CODE128_CODESET_A_CHAR macro 716

BARCODE_CODE128_CODESET_A_STRING macro 717

BARCODE_CODE128_CODESET_B_CHAR macro 718

BARCODE_CODE128_CODESET_B_STRING macro 719

BARCODE_CODE128_CODESET_C_CHAR macro 720

BARCODE_CODE128_CODESET_C_STRING macro 721

BARCODE_CODE128_CODESET_CHAR macro 722

BARCODE_CODE128_CODESET_STRING macro 723

BARCODE_TEXT_12x24 macro 724

BARCODE_TEXT_18x36 macro 725

BARCODE_TEXT_ABOVE macro 726

BARCODE_TEXT_ABOVE_AND_BELOW macro 727

BARCODE_TEXT_BELOW macro 728

BARCODE_TEXT_OMIT macro 729

Beyond Compare 887

Boot Loader Entry 885

BOOT_INTF_SUBCLASS macro 308

BOOT_PROTOCOL macro 309

Bootloader Details 867

C
CABLE_A_SIDE macro 831

CABLE_B_SIDE macro 832

CCID (Smart/Sim Card) Function Driver 273

CDC Client Driver 429

CDC Function Driver 278

CDCInitEP function 280

CDCSetBaudRate macro 287

CDCSetCharacterFormat macro 288

CDCSetDataSize macro 289

CDCSetLineCoding macro 290

10 MCHPFSUSB Library Help

a

CDCSetParity macro 291

CDCTxService function 281

Changing the memory foot print of the boot loader 879

Charger Client Driver 519

CLIENT_DRIVER_TABLE structure 362

COMM_INTERFACE_DETAILS structure 447

Configuration Bits 39, 884

Configuration Options 200

Configuring the Demo 35, 43, 56, 59, 61, 64, 66, 82, 85, 88,
97, 100, 106, 109, 119, 137, 144, 147, 148, 150, 154, 156,
158, 159, 161, 162, 164, 166, 168, 169, 173, 175, 179

Configuring the Hardware 22, 26, 33, 45, 52, 72, 75, 79

Creating a Hex File to Load 152

Customizing the Boot Loader and Target Application Linker
Scripts for PIC32 devices 153

D
D+/D- Internal Pull-ups (USB_PULLUP_OPTION) 207

Data Type and Constants 420, 524

Data Types and Constants 257, 273, 293, 307, 317, 360, 391,
408, 444, 541, 574, 638, 707, 829

DATA_INTERFACE_DETAILS structure 448

DELAY_TA_AIDL_BDIS macro 833

DELAY_TA_BDIS_ACON macro 834

DELAY_TA_BIDL_ADIS macro 835

DELAY_TA_WAIT_BCON macro 836

DELAY_TA_WAIT_VRISE macro 837

DELAY_TB_AIDL_BDIS macro 838

DELAY_TB_ASE0_BRST macro 839

DELAY_TB_DATA_PLS macro 840

DELAY_TB_SE0_SRP macro 841

DELAY_TB_SRP_FAIL macro 842

DELAY_VBUS_SETTLE macro 843

Demo Board Information 182

Demo Board Support and Limitations 8

Demos 21

DESC_CONFIG_BYTE macro 268

DESC_CONFIG_DWORD macro 269

DESC_CONFIG_WORD macro 270

Device - Audio Microphone Basic Demo 21

Device - Audio MIDI Demo 25

Device - Audio Speaker Demo 32

Device - Boot Loader - HID 34

Device - Boot Loader - MCHPUSB 43

Device - CCID Smart Card Reader 44

Device - CDC - Serial Emulator 55

Device - CDC Basic Demo 51

Device - Composite - HID + MSD Demo 58

Device - Composite - MSD + CDC Demo 61

Device - Composite - WinUSB + MSD Demo 63

Device - HID - Custom Demo 65

Device - HID - Digitizer Demos 71

Device - HID - Joystick Demo 74

Device - HID - Keyboard Demo 78

Device - HID - Mouse Demo 81

Device - HID - Uninterruptible Power Supply 84

Device - LibUSB Generic Driver Demo 87

Device - Mass Storage - Internal Flash Demo 96

Device - Mass Storage - SD Card Data Logger 99

Device - Mass Storage - SD Card Reader 105

Device - MCHPUSB Generic Driver Demo 108

Device - Personal Healthcare Device Class (PHDC) Demo
118

Device - WinUSB Generic Driver Demo 136

Device - WinUSB High Bandwidth Demo 143

Device Mode Enable (USB_SUPPORT_DEVICE) 208

Device Stack 199

Device/Peripheral 199

DEVICE_CLASS_CDC macro 457

DEVICE_CLASS_HID macro 577

DEVICE_CLASS_MASS_STORAGE macro 639

DEVICE_INTERFACE_PROTOCOL_BULK_ONLY macro 640

DEVICE_SUBCLASS_CD_DVD macro 641

DEVICE_SUBCLASS_FLOPPY_INTERFACE macro 642

DEVICE_SUBCLASS_RBC macro 643

DEVICE_SUBCLASS_REMOVABLE macro 644

DEVICE_SUBCLASS_SCSI macro 645

DEVICE_SUBCLASS_TAPE_DRIVE macro 646

Disable DTS checking
(USB_DEVICE_DISABLE_DTS_CHECKING) 214

DSC_HID macro 578

DSC_PHY macro 579

DSC_RPT macro 580

dsPIC33EP512MU810 Plug-In-Module (PIM) 192

Dual Role - MSD Host + HID Device 146

10 MCHPFSUSB Library Help

b

E
Embedded Host API 334

Embedded Host Stack 335

END_SESSION macro 844

Endpoint 0 size (USB_EP0_BUFF_SIZE) 203

Endpoints Used (USB_MAX_EP_NUMBER) 204

Event Notifications 213

EVENT_ANDROID_ATTACH macro 424

EVENT_ANDROID_DETACH macro 425

EVENT_AUDIO_ATTACH macro 392

EVENT_AUDIO_DETACH macro 393

EVENT_AUDIO_FREQUENCY_SET macro 394

EVENT_AUDIO_INTERFACE_SET macro 395

EVENT_AUDIO_NONE macro 396

EVENT_AUDIO_OFFSET macro 397

EVENT_AUDIO_STREAM_RECEIVED macro 398

EVENT_CDC_COMM_READ_DONE macro 458

EVENT_CDC_COMM_WRITE_DONE macro 459

EVENT_CDC_DATA_READ_DONE macro 460

EVENT_CDC_DATA_WRITE_DONE macro 461

EVENT_CDC_NAK_TIMEOUT macro 462

EVENT_CDC_NONE macro 463

EVENT_CDC_OFFSET macro 464

EVENT_CDC_RESET macro 465

EVENT_CHARGER_ATTACH macro 525

EVENT_CHARGER_DETACH macro 526

EVENT_CHARGER_OFFSET macro 527

EVENT_GENERIC_ATTACH macro 544

EVENT_GENERIC_DETACH macro 545

EVENT_GENERIC_OFFSET macro 546

EVENT_GENERIC_RX_DONE macro 547

EVENT_GENERIC_TX_DONE macro 548

EVENT_HID_ATTACH macro 581

EVENT_HID_BAD_REPORT_DESCRIPTOR macro 582

EVENT_HID_DETACH macro 583

EVENT_HID_NONE macro 584

EVENT_HID_OFFSET macro 585

EVENT_HID_READ_DONE macro 586

EVENT_HID_RESET macro 587

EVENT_HID_RESET_ERROR macro 588

EVENT_HID_RPT_DESC_PARSED macro 589

EVENT_HID_WRITE_DONE macro 590

EVENT_MIDI_ATTACH macro 409

EVENT_MIDI_DETACH macro 410

EVENT_MIDI_OFFSET macro 411

EVENT_MIDI_TRANSFER_DONE macro 412

EVENT_MSD_MAX_LUN macro 647

EVENT_MSD_NONE macro 648

EVENT_MSD_OFFSET macro 649

EVENT_MSD_RESET macro 650

EVENT_MSD_TRANSFER macro 651

EVENT_PRINTER_ATTACH macro 730

EVENT_PRINTER_DETACH macro 731

EVENT_PRINTER_OFFSET macro 732

EVENT_PRINTER_REQUEST_DONE macro 733

EVENT_PRINTER_REQUEST_ERROR macro 734

EVENT_PRINTER_RX_DONE macro 735

EVENT_PRINTER_RX_ERROR macro 736

EVENT_PRINTER_TX_DONE macro 737

EVENT_PRINTER_TX_ERROR macro 738

EVENT_PRINTER_UNSUPPORTED macro 739

Explorer 16 195

F
From v2.5 to v2.6 19

From v2.6 to v2.6a 19

From v2.6a to v2.7 19

From v2.7 to v2.7a 19

From v2.7a to v2.8 18

From v2.8 to v2.9 18

From v2.9 to v2.9a 18

From v2.9a to v2.9b 18

From v2.9b to v2.9c 18

From v2.9c to v2.9d 18

From v2.9d to v2.9e 18

G
Garage Band '08 [Macintosh Computers] 29

Generic Client Driver 528

GENERIC_DEVICE type 542

GENERIC_DEVICE_ID type 543

getsUSBUSART function 282

10 MCHPFSUSB Library Help

c

H
HID boot loader 880

HID Client Driver 549

HID Function Driver 301

HID_COLLECTION structure 591

HID_DATA_DETAILS structure 592

HID_DESIGITEM structure 593

HID_GLOBALS structure 594

HID_ITEM_INFO structure 595

HID_PROTOCOL_KEYBOARD macro 310

HID_PROTOCOL_MOUSE macro 311

HID_PROTOCOL_NONE macro 312

HID_REPORT structure 596

HID_REPORTITEM structure 597

HID_STRINGITEM structure 598

HID_TRANSFER_DATA structure 599

HID_USAGEITEM structure 600

HIDReportTypeEnum enumeration 601

HIDRxHandleBusy macro 303

HIDRxPacket macro 304

HIDTxHandleBusy macro 305

HIDTxPacket macro 306

Host - Audio MIDI Demo 148

Host - Boot Loader - Thumb Drive Boot Loader 150

Host - CDC Serial Demo 154

Host - Charger - Simple Charger 155

Host - Composite - HID + MSD 159

Host - Composite - MSD+ CDC 157

Host - HID - Keyboard Demo 160

Host - HID - Mouse Demo 162

Host - Mass Storage - Thumb Drive Data Logger 165

Host - Mass Storage (MSD) - Simple Demo 163

Host - MCHPUSB - Generic Driver Demo 167

Host - Printer - Print Screen Demo 169

Host - Printer - Simple Full Sheet 172

Host - Printer - Simple Point of Sale (POS) 174

HOST_TRANSFER_DATA structure 363

I
Implementation and Customization Details 38, 43

Important Considerations 883

INIT_CL_SC_P macro 377

INIT_VID_PID macro 378

Installing Windows Drivers 112

Interface Functions 399

Interface mode (USB_POLLING or USB_INTERRUPT) 205

Interface Routines 215, 271, 274, 279, 302, 313, 319, 332,
336, 379, 413, 431, 520, 529, 550, 624, 676, 821

Internal Members 429

Interrupt Remapping 872

Interrupts 886

Introduction 1

L
LANGUAGE_ID_STRING_ESCPOS macro 740

LANGUAGE_ID_STRING_PCL macro 741

LANGUAGE_ID_STRING_POSTSCRIPT macro 742

LANGUAGE_SUPPORT_FLAGS_ESCPOS macro 743

LANGUAGE_SUPPORT_FLAGS_PCL3 macro 744

LANGUAGE_SUPPORT_FLAGS_PCL5 macro 745

LANGUAGE_SUPPORT_FLAGS_POSTSCRIPT macro 746

Library Migration 18

Linux 93

Loading a precompiled demo 176

Low Pin Count USB Development Board 182

LUN_FUNCTIONS type 318

M
Macros 267, 376, 422

Mass Storage Client Driver 623

MCHPUSB PnP Demo 116

Memory Map 869

Memory Region Definitions 874

MPLAB 8 176

MPLAB X (NetBeans) 890

MSD boot loader 882

MSD Function Driver 312

MSD_COMMAND_FAILED macro 652

MSD_COMMAND_PASSED macro 653

MSD_PHASE_ERROR macro 654

MSDTasks function 314

10 MCHPFSUSB Library Help

d

N
Notes on .inf Files 886

NUM_ANDROID_DEVICES_SUPPORTED macro 426

NUM_STOP_BITS_1 macro 294

NUM_STOP_BITS_1_5 macro 295

NUM_STOP_BITS_2 macro 296

Number of Interfaces (USB_MAX_NUM_INT) 210

O
Online Reference and Resources 7

On-The-Go (OTG) 820

Operating System Support and Limitations 9

OTG - MCHPUSB Device/MCHPUSB Host Demo 179

OTG_EVENT_CONNECT macro 845

OTG_EVENT_DISCONNECT macro 846

OTG_EVENT_HNP_ABORT macro 847

OTG_EVENT_HNP_FAILED macro 848

OTG_EVENT_NONE macro 849

OTG_EVENT_RESUME_SIGNALING macro 850

OTG_EVENT_SRP_CONNECT macro 851

OTG_EVENT_SRP_DPLUS_HIGH macro 852

OTG_EVENT_SRP_DPLUS_LOW macro 853

OTG_EVENT_SRP_FAILED macro 854

OTG_EVENT_SRP_VBUS_HIGH macro 855

OTG_EVENT_SRP_VBUS_LOW macro 856

P
PARITY_EVEN macro 297

PARITY_MARK macro 298

PARITY_NONE macro 299

PARITY_ODD macro 300

PARITY_SPACE macro 301

Part Specific Details 41

PC - WM_DEVICECHANGE Demo 177

PC Tools and Example Code 197

PDFSUSB 114

Performing the Continua Precertification Tests 133

Personal Healthcare Device Class (PHDC) Function Driver
318

PHDAppInit function 320

PHDConnect function 322

PHDDisConnect function 323

PHDSendAppBufferPointer function 321

PHDSendMeasuredData function 324

PHDTimeoutHandler function 325

PIC18 Starter Kit 187

PIC18F 42

PIC18F46J50 Plug-In-Module (PIM) 184

PIC18F47J53 Plug-In-Module (PIM) 185

PIC18F87J50 Plug-In-Module (PIM) Demo Board 186

PIC24EP512GU810 Plug-In-Module (PIM) 192

PIC24F 43

PIC24F Implementation Specific Details 867

PIC24F Starter Kit 192

PIC24FJ256DA210 Development Board 191

PIC24FJ256GB110 Plug-In-Module (PIM) 190

PIC24FJ256GB210 Plug-In-Module (PIM) 190

PIC24FJ64GB004 Plug-In-Module (PIM) 188

PIC24FJ64GB502 Microstick 189

PIC32 USB Starter Kit 193

PIC32 USB Starter Kit II 194

PIC32MX460F512L Plug-In-Module (PIM) 193

PIC32MX795F512L Plug-In-Module (PIM) 193

PICDEM FS USB Board 183

Ping Pong buffering (USB_PING_PONG_MODE) 202

Printer Client Driver 672

PRINTER_COLOR_BLACK macro 747

PRINTER_COLOR_WHITE macro 748

PRINTER_DEVICE_REQUEST_GET_DEVICE_ID macro 749

PRINTER_DEVICE_REQUEST_GET_PORT_STATUS
macro 750

PRINTER_DEVICE_REQUEST_SOFT_RESET macro 751

PRINTER_FILL_CROSS_HATCHED macro 752

PRINTER_FILL_HATCHED macro 753

PRINTER_FILL_SHADED macro 754

PRINTER_FILL_SOLID macro 755

PRINTER_LINE_END_BUTT macro 756

PRINTER_LINE_END_ROUND macro 757

PRINTER_LINE_END_SQUARE macro 758

PRINTER_LINE_JOIN_BEVEL macro 759

PRINTER_LINE_JOIN_MITER macro 760

PRINTER_LINE_JOIN_ROUND macro 761

PRINTER_LINE_TYPE_DASHED macro 762

PRINTER_LINE_TYPE_DOTTED macro 763

10 MCHPFSUSB Library Help

e

PRINTER_LINE_TYPE_SOLID macro 764

PRINTER_LINE_WIDTH_NORMAL macro 765

PRINTER_LINE_WIDTH_THICK macro 766

PRINTER_PAGE_LANDSCAPE_HEIGHT macro 767

PRINTER_PAGE_LANDSCAPE_WIDTH macro 768

PRINTER_PAGE_PORTRAIT_HEIGHT macro 769

PRINTER_PAGE_PORTRAIT_WIDTH macro 770

PRINTER_POS_BOTTOM_TO_TOP macro 771

PRINTER_POS_DENSITY_HORIZONTAL_DOUBLE macro
772

PRINTER_POS_DENSITY_HORIZONTAL_SINGLE macro
773

PRINTER_POS_DENSITY_VERTICAL_24 macro 774

PRINTER_POS_DENSITY_VERTICAL_8 macro 775

PRINTER_POS_LEFT_TO_RIGHT macro 776

PRINTER_POS_RIGHT_TO_LEFT macro 777

PRINTER_POS_TOP_TO_BOTTOM macro 778

PrintScreen function 678

putrsUSBUSART function 283

putsUSBUSART function 284

putUSBUSART function 285

R
Release Notes 5

Revision History 11

ROLE_DEVICE macro 857

ROLE_HOST macro 858

Running the demo 174

Running the Demo 23, 27, 34, 36, 43, 48, 53, 57, 60, 63, 65,
68, 73, 77, 80, 83, 86, 90, 98, 102, 108, 111, 138, 145, 147,
149, 151, 155, 157, 158, 160, 161, 163, 165, 167, 169, 170,
176, 180

Running the Demo (Android v3.1+) 117

Running the PHDC Blood Pressure Monitor Demo 120

Running the PHDC Glucose Meter Demo 124

Running the PHDC Themometer Demo 127

Running the PHDC Weigh Scale Demo 130

S
Software License Agreement 2

Special Region Creation 876

Speed selection (USB_SPEED_OPTION) 206

Stack Configuration 199

START_SESSION macro 859

Startup Sequence and Reset Remapping 871

Status Stage Timout Enable
(USB_ENABLE_STATUS_STAGE_TIMEOUTS and
USB_STATUS_STAGE_TIMEOUT) 211

String Descriptor Array size
(USB_NUM_STRING_DESCRIPTORS) 212

Support 6

Supported Demo Boards 21, 25, 32, 35, 43, 45, 51, 55, 58,
61, 63, 66, 71, 75, 78, 81, 84, 87, 96, 100, 106, 109, 118,
136, 143, 146, 148, 150, 154, 155, 157, 159, 160, 162, 163,
165, 168, 169, 172, 174, 179

T
TOGGLE_SESSION macro 860

Tool Information 11

TPL_ALLOW_HNP macro 375

TPL_CLASS_DRV macro 374

TPL_SET_CONFIG macro 373

Trademark Information 893

Transceiver Option (USB_TRANSCEIVER_OPTION) 209

TRANSFER_ATTRIBUTES union 364

Troubleshooting 99

U
Understanding and Customizing the Boot Loader
Implementation 873

USB PICTail Plus Daughter Board 194

USB_APPLICATION_EVENT_HANDLER function 218

USB_CDC_ABSTRACT_CONTROL_MODEL macro 466

USB_CDC_ACM_FN_DSC structure 449

USB_CDC_ATM_NETWORKING_CONTROL_MODEL
macro 467

USB_CDC_CALL_MGT_FN_DSC structure 450

USB_CDC_CAPI_CONTROL_MODEL macro 468

USB_CDC_CLASS_ERROR macro 469

USB_CDC_COMM_INTF macro 470

USB_CDC_COMMAND_FAILED macro 471

USB_CDC_COMMAND_PASSED macro 472

USB_CDC_CONTROL_LINE_LENGTH macro 473

USB_CDC_CONTROL_SIGNAL_BITMAP union 451

USB_CDC_CS_ENDPOINT macro 474

USB_CDC_CS_INTERFACE macro 475

USB_CDC_DATA_INTF macro 476

USB_CDC_DEVICE_BUSY macro 477

USB_CDC_DEVICE_DETACHED macro 478

10 MCHPFSUSB Library Help

f

USB_CDC_DEVICE_HOLDING macro 479

USB_CDC_DEVICE_INFO structure 452

USB_CDC_DEVICE_MANAGEMENT macro 480

USB_CDC_DEVICE_NOT_FOUND macro 481

USB_CDC_DIRECT_LINE_CONTROL_MODEL macro 482

USB_CDC_DSC_FN_ACM macro 483

USB_CDC_DSC_FN_CALL_MGT macro 484

USB_CDC_DSC_FN_COUNTRY_SELECTION macro 485

USB_CDC_DSC_FN_DLM macro 486

USB_CDC_DSC_FN_HEADER macro 487

USB_CDC_DSC_FN_RPT_CAPABILITIES macro 488

USB_CDC_DSC_FN_TEL_OP_MODES macro 489

USB_CDC_DSC_FN_TELEPHONE_RINGER macro 490

USB_CDC_DSC_FN_UNION macro 491

USB_CDC_DSC_FN_USB_TERMINAL macro 492

USB_CDC_ETHERNET_EMULATION_MODEL macro 493

USB_CDC_ETHERNET_NETWORKING_CONTROL_MODE
L
macro 494

USB_CDC_GET_COMM_FEATURE macro 495

USB_CDC_GET_ENCAPSULATED_REQUEST macro 496

USB_CDC_GET_LINE_CODING macro 497

USB_CDC_HEADER_FN_DSC structure 454

USB_CDC_ILLEGAL_REQUEST macro 498

USB_CDC_INITIALIZING macro 499

USB_CDC_INTERFACE_ERROR macro 500

USB_CDC_LINE_CODING union 455

USB_CDC_LINE_CODING_LENGTH macro 501

USB_CDC_MOBILE_DIRECT_LINE_MODEL macro 502

USB_CDC_MULTI_CHANNEL_CONTROL_MODEL macro
503

USB_CDC_NO_PROTOCOL macro 504

USB_CDC_NO_REPORT_DESCRIPTOR macro 505

USB_CDC_NORMAL_RUNNING macro 506

USB_CDC_OBEX macro 507

USB_CDC_PHASE_ERROR macro 508

USB_CDC_REPORT_DESCRIPTOR_BAD macro 509

USB_CDC_RESET_ERROR macro 510

USB_CDC_RESETTING_DEVICE macro 511

USB_CDC_SEND_BREAK macro 512

USB_CDC_SEND_ENCAPSULATED_COMMAND macro 513

USB_CDC_SET_COMM_FEATURE macro 514

USB_CDC_SET_CONTROL_LINE_STATE macro 515

USB_CDC_SET_LINE_CODING macro 516

USB_CDC_TELEPHONE_CONTROL_MODEL macro 517

USB_CDC_UNION_FN_DSC structure 456

USB_CDC_V25TER macro 518

USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL
macro 519

USB_CLIENT_EVENT_HANDLER type 367

USB_CLIENT_INIT type 366

usb_config.h 201

USB_DATA_POINTER union 779

USB_DATA_POINTER_RAM macro 780

USB_DATA_POINTER_ROM macro 781

USB_DEVICE_STACK_EVENTS enumeration 259

USB_DEVICE_STATE enumeration 258

USB_EP0_BUSY macro 260

USB_EP0_INCLUDE_ZERO macro 261

USB_EP0_NO_DATA macro 262

USB_EP0_NO_OPTIONS macro 263

USB_EP0_RAM macro 264

USB_EP0_ROM macro 265

USB_ERROR_BUFFER_TOO_SMALL macro 427

USB_GENERIC_EP macro 549

USB_HANDLE macro 266

USB_HID_CLASS_ERROR macro 602

USB_HID_COMMAND_FAILED macro 603

USB_HID_COMMAND_PASSED macro 604

USB_HID_DEVICE_BUSY macro 605

USB_HID_DEVICE_DETACHED macro 606

USB_HID_DEVICE_HOLDING macro 607

USB_HID_DEVICE_ID structure 608

USB_HID_DEVICE_NOT_FOUND macro 609

USB_HID_DEVICE_RPT_INFO structure 610

USB_HID_ILLEGAL_REQUEST macro 612

USB_HID_INITIALIZING macro 613

USB_HID_INTERFACE_ERROR macro 614

USB_HID_ITEM_LIST structure 615

USB_HID_NO_REPORT_DESCRIPTOR macro 616

USB_HID_NORMAL_RUNNING macro 617

USB_HID_PHASE_ERROR macro 618

USB_HID_REPORT_DESCRIPTOR_BAD macro 619

USB_HID_RESET_ERROR macro 620

USB_HID_RESETTING_DEVICE macro 621

USB_HID_RPT_DESC_ERROR enumeration 622

10 MCHPFSUSB Library Help

g

USB_HOST_APP_EVENT_HANDLER function 337

USB_MAX_CHARGING_DEVICES macro 528

USB_MAX_PRINTER_DEVICES macro 782

USB_MSD_CBW_ERROR macro 655

USB_MSD_COMMAND_FAILED macro 656

USB_MSD_COMMAND_PASSED macro 657

USB_MSD_CSW_ERROR macro 658

USB_MSD_DEVICE_BUSY macro 659

USB_MSD_DEVICE_DETACHED macro 660

USB_MSD_DEVICE_NOT_FOUND macro 661

USB_MSD_ERROR macro 662

USB_MSD_ERROR_STATE macro 663

USB_MSD_ILLEGAL_REQUEST macro 664

USB_MSD_INITIALIZING macro 665

USB_MSD_INVALID_LUN macro 666

USB_MSD_MEDIA_INTERFACE_ERROR macro 667

USB_MSD_NORMAL_RUNNING macro 668

USB_MSD_OUT_OF_MEMORY macro 669

USB_MSD_PHASE_ERROR macro 670

USB_MSD_RESET_ERROR macro 671

USB_MSD_RESETTING_DEVICE macro 672

USB_NULL macro 783

USB_NUM_BULK_NAKS macro 368

USB_NUM_COMMAND_TRIES macro 369

USB_NUM_CONTROL_NAKS macro 370

USB_NUM_ENUMERATION_TRIES macro 371

USB_NUM_INTERRUPT_NAKS macro 372

USB_OTG_FW_DOT_VER macro 861

USB_OTG_FW_MAJOR_VER macro 862

USB_OTG_FW_MINOR_VER macro 863

USB_PRINT_SCREEN_INFO structure 784

USB_PRINTER_COMMAND enumeration 785

USB_PRINTER_DEVICE_ID structure 794

USB_PRINTER_ERRORS enumeration 795

USB_PRINTER_FONTS enumeration 796

USB_PRINTER_FONTS_POS enumeration 797

USB_PRINTER_FUNCTION_SUPPORT union 798

USB_PRINTER_FUNCTION_SUPPORT_POS macro 799

USB_PRINTER_FUNCTION_SUPPORT_VECTOR_GRAPHI
CS
macro 800

USB_PRINTER_GRAPHICS_PARAMETERS union 801

USB_PRINTER_IMAGE_INFO structure 805

USB_PRINTER_INTERFACE structure 807

USB_PRINTER_LANGUAGE_HANDLER type 808

USB_PRINTER_LANGUAGE_SUPPORTED type 809

USB_PRINTER_POS_BARCODE_FORMAT enumeration
810

USB_PRINTER_SPECIFIC_INTERFACE structure 812

USB_PRINTER_TRANSFER_COPY_DATA macro 813

USB_PRINTER_TRANSFER_FROM_RAM macro 814

USB_PRINTER_TRANSFER_FROM_ROM macro 815

USB_PRINTER_TRANSFER_NOTIFY macro 816

USB_PRINTER_TRANSFER_STATIC_DATA macro 817

USB_PROCESSING_REPORT_DESCRIPTOR macro 623

USB_TPL structure 365

USBCancelIO function 219

USBCCIDBulkInService function 275

USBCCIDInitEP function 276

USBCCIDSendDataToHost function 277

USBCheckAudioRequest function 272

USBCheckCCIDRequest function 278

USBCheckCDCRequest function 286

USBCheckMSDRequest function 315

USBCtrlEPAllowDataStage function 220

USBCtrlEPAllowStatusStage function 221

USBDeferINDataStage function 222

USBDeferOUTDataStage function 224

USBDeferStatusStage function 226

USBDeviceAttach function 227

USBDeviceDetach function 228

USBDeviceInit function 230

USBDevicePHDCCheckRequest function 330

USBDevicePHDCInit function 326

USBDevicePHDCReceiveData function 327

USBDevicePHDCSendData function 328

USBDevicePHDCTxRXService function 329

USBDevicePHDCUpdateStatus function 331

USBDeviceTasks function 231

USBEnableEndpoint function 233

USBEP0Receive function 235

USBEP0SendRAMPtr function 236

USBEP0SendROMPtr function 237

USBEP0Transmit function 238

USBGenRead macro 333

USBGenWrite macro 334

10 MCHPFSUSB Library Help

h

USBGetDeviceState function 239

USBGetNextHandle function 240

USBGetRemoteWakeupStatus function 242

USBGetSuspendState function 243

USBHandleBusy function 244

USBHandleGetAddr function 245

USBHandleGetLength function 246

USBHostAudioV1DataEventHandler function 380

USBHostAudioV1EventHandler function 381

USBHostAudioV1Initialize function 382

USBHostAudioV1ReceiveAudioData function 383

USBHostAudioV1SetInterfaceFullBandwidth function 384

USBHostAudioV1SetInterfaceZeroBandwidth function 385

USBHostAudioV1SetSamplingFrequency function 386

USBHostAudioV1SupportedFrequencies function 388

USBHostAudioV1TerminateTransfer function 390

USBHostCDC_Api_ACM_Request function 432

USBHostCDC_Api_Get_IN_Data function 433

USBHostCDC_ApiTransferIsComplete function 434

USBHostCDCDeviceStatus function 435

USBHostCDCEventHandler function 436

USBHostCDCInitAddress function 437

USBHostCDCInitialize function 438

USBHostCDCRead_DATA macro 439

USBHostCDCResetDevice function 440

USBHostCDCSend_DATA macro 441

USBHostCDCTransfer function 442

USBHostCDCTransferIsComplete function 443

USBHostChargerDeviceDetached function 521

USBHostChargerEventHandler function 522

USBHostChargerGetDeviceAddress function 523

USBHostClearEndpointErrors function 338

USBHostDeviceSpecificClientDriver function 339

USBHostDeviceStatus function 340

USBHostGenericDeviceDetached macro 530

USBHostGenericEventHandler function 531

USBHostGenericGetDeviceAddress function 532

USBHostGenericGetRxLength macro 533

USBHostGenericInit function 534

USBHostGenericRead function 535

USBHostGenericRxIsBusy macro 536

USBHostGenericRxIsComplete function 537

USBHostGenericTxIsBusy macro 538

USBHostGenericTxIsComplete function 539

USBHostGenericWrite function 540

USBHostGetCurrentConfigurationDescriptor macro 341

USBHostGetDeviceDescriptor macro 342

USBHostGetStringDescriptor macro 343

USBHostHID_ApiFindBit function 552

USBHostHID_ApiFindValue function 553

USBHostHID_ApiGetCurrentInterfaceNum function 554

USBHostHID_ApiGetReport macro 555

USBHostHID_ApiImportData function 556

USBHostHID_ApiSendReport macro 557

USBHostHID_ApiTransferIsComplete macro 558

USBHostHID_GetCurrentReportInfo macro 559

USBHostHID_GetItemListPointers macro 560

USBHostHID_HasUsage function 561

USBHostHIDDeviceDetect function 562

USBHostHIDDeviceStatus function 563

USBHostHIDEventHandler function 564

USBHostHIDInitialize function 565

USBHostHIDRead macro 566

USBHostHIDResetDevice function 567

USBHostHIDResetDeviceWithWait function 568

USBHostHIDTasks function 569

USBHostHIDTerminateTransfer function 570

USBHostHIDTransfer function 571

USBHostHIDTransferIsComplete function 572

USBHostHIDWrite macro 573

USBHostInit function 345

USBHostMIDIDeviceDetached macro 400

USBHostMIDIEndpointDirection macro 401

USBHostMIDINumberOfEndpoints macro 402

USBHostMIDIRead function 403

USBHostMIDISizeOfEndpoint macro 404

USBHostMIDITransferIsBusy macro 405

USBHostMIDITransferIsComplete function 406

USBHostMIDIWrite function 407

USBHostMSDDeviceStatus function 625

USBHostMSDEventHandler function 626

USBHostMSDInitialize function 627

USBHostMSDRead macro 628

USBHostMSDResetDevice function 629

10 MCHPFSUSB Library Help

i

USBHostMSDSCSIEventHandler function 630

USBHostMSDSCSIInitialize function 631

USBHostMSDSCSISectorRead function 632

USBHostMSDSCSISectorWrite function 633

USBHostMSDTerminateTransfer function 634

USBHostMSDTransfer function 635

USBHostMSDTransferIsComplete function 636

USBHostMSDWrite macro 637

USBHOSTPRINTER_SETFLAG_COPY_DATA macro 818

USBHOSTPRINTER_SETFLAG_NOTIFY macro 819

USBHOSTPRINTER_SETFLAG_STATIC_DATA macro 820

USBHostPrinterCommand function 679

USBHostPrinterCommandReady function 681

USBHostPrinterCommandWithReadyWait macro 682

USBHostPrinterDeviceDetached function 684

USBHostPrinterEventHandler function 685

USBHostPrinterGetRxLength function 686

USBHostPrinterGetStatus function 687

USBHostPrinterInitialize function 688

USBHostPrinterLanguageESCPOS function 689

USBHostPrinterLanguageESCPOSIsSupported function 691

USBHostPrinterLanguagePCL5 function 692

USBHostPrinterLanguagePCL5IsSupported function 694

USBHostPrinterLanguagePostScript function 695

USBHostPrinterLanguagePostScriptIsSupported function 697

USBHostPrinterPOSImageDataFormat function 698

USBHostPrinterPosition macro 700

USBHostPrinterPositionRelative macro 701

USBHostPrinterRead function 702

USBHostPrinterReset function 703

USBHostPrinterRxIsBusy function 704

USBHostPrinterWrite function 705

USBHostPrinterWriteComplete function 706

USBHostRead function 346

USBHostResetDevice function 348

USBHostResumeDevice function 349

USBHostSetDeviceConfiguration function 350

USBHostSetNAKTimeout function 352

USBHostSuspendDevice function 353

USBHostTerminateTransfer function 354

USBHostTransferIsComplete function 355

USBHostVbusEvent function 357

USBHostWrite function 358

USBINDataStageDeferred function 247

USBIsBusSuspended function 248

USBIsDeviceSuspended function 249

USBMSDInit function 316

USBOTGClearRoleSwitch function 822

USBOTGCurrentRoleIs function 823

USBOTGDefaultRoleIs function 824

USBOTGInitialize function 825

USBOTGRequestSession function 826

USBOTGRoleSwitch function 827

USBOTGSelectRole function 828

USBOTGSession function 829

USBOUTDataStageDeferred function 252

USBRxOnePacket function 250

USBSoftDetach function 251

USBStallEndpoint function 253

USBTransferOnePacket function 254

USBTxOnePacket function 256

USBUSARTIsTxTrfReady macro 292

Using a diff tool 887

Using breakpoints in USB host applications 864

Using Linux MultiMedia Studio (LMMS) [Linux and Windows
Computers] 31

V
v2.7 16

v2.7a 16

v2.8 15

v2.9 14

v2.9a 14

v2.9b 13

v2.9c 12

v2.9d 12

v2.9e 11

Vendor Class (Generic) Function Driver 331

Vendor ID (VID) and Product ID (PID) 40

Vendor IDs (VID) and Product IDs (PID) 887

W
What's New 5

What's Next 6

10 MCHPFSUSB Library Help

j

Windows 91, 140

10 MCHPFSUSB Library Help

k

	MCHPFSUSB Library Help
	Table of Contents
	Introduction
	Software License Agreement
	Release Notes
	What's New
	What's Next
	Support
	Online Reference and Resources
	Demo Board Support and Limitations
	Operating System Support and Limitations
	Tool Information
	Revision History
	v2.9e
	v2.9d
	v2.9c
	v2.9b
	v2.9a
	v2.9
	v2.8
	v2.7a
	v2.7

	Library Migration
	From v2.9d to v2.9e
	From v2.9c to v2.9d
	From v2.9b to v2.9c
	From v2.9a to v2.9b
	From v2.9 to v2.9a
	From v2.8 to v2.9
	From v2.7a to v2.8
	From v2.7 to v2.7a
	From v2.6a to v2.7
	From v2.6 to v2.6a
	From v2.5 to v2.6

	Demos
	Device - Audio Microphone Basic Demo
	Supported Demo Boards
	Configuring the Hardware
	Running the Demo

	Device - Audio MIDI Demo
	Supported Demo Boards
	Configuring the Hardware
	Running the Demo
	Garage Band '08 [Macintosh Computers]
	Using Linux MultiMedia Studio (LMMS) [Linux and Windows Computers]

	Device - Audio Speaker Demo
	Supported Demo Boards
	Configuring the Hardware
	Running the Demo

	Device - Boot Loader - HID
	Supported Demo Boards
	Configuring the Demo
	Running the Demo
	Implementation and Customization Details
	Configuration Bits
	Vendor ID (VID) and Product ID (PID)
	Part Specific Details
	PIC18F
	PIC24F

	Device - Boot Loader - MCHPUSB
	Supported Demo Boards
	Configuring the Demo
	Running the Demo
	Implementation and Customization Details

	Device - CCID Smart Card Reader
	Supported Demo Boards
	Configuring the Hardware
	Running the Demo

	Device - CDC Basic Demo
	Supported Demo Boards
	Configuring the Hardware
	Running the Demo

	Device - CDC - Serial Emulator
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Device - Composite - HID + MSD Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Device - Composite - MSD + CDC Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Device - Composite - WinUSB + MSD Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Device - HID - Custom Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Device - HID - Digitizer Demos
	Supported Demo Boards
	Configuring the Hardware
	Running the Demo

	Device - HID - Joystick Demo
	Supported Demo Boards
	Configuring the Hardware
	Running the Demo

	Device - HID - Keyboard Demo
	Supported Demo Boards
	Configuring the Hardware
	Running the Demo

	Device - HID - Mouse Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Device - HID - Uninterruptible Power Supply
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Device - LibUSB Generic Driver Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo
	Windows
	Linux
	Android 3.1+

	Device - Mass Storage - Internal Flash Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo
	Troubleshooting

	Device - Mass Storage - SD Card Data Logger
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Device - Mass Storage - SD Card Reader
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Device - MCHPUSB Generic Driver Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo
	Installing Windows Drivers
	PDFSUSB
	MCHPUSB PnP Demo
	Running the Demo (Android v3.1+)

	Device - Personal Healthcare Device Class (PHDC) Demo
	Supported Demo Boards
	Configuring the Demo
	Running the PHDC Blood Pressure Monitor Demo
	Running the PHDC Glucose Meter Demo
	Running the PHDC Themometer Demo
	Running the PHDC Weigh Scale Demo
	Performing the Continua Precertification Tests

	Device - WinUSB Generic Driver Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo
	Windows
	Android v3.1+

	Device - WinUSB High Bandwidth Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Dual Role - MSD Host + HID Device
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Host - Audio MIDI Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Host - Boot Loader - Thumb Drive Boot Loader
	Supported Demo Boards
	Configuring the Demo
	Running the Demo
	Creating a Hex File to Load
	Customizing the Boot Loader and Target Application Linker Scripts for PIC32 devices

	Host - CDC Serial Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Host - Charger - Simple Charger
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Host - Composite - MSD+ CDC
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Host - Composite - HID + MSD
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Host - HID - Keyboard Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Host - HID - Mouse Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Host - Mass Storage (MSD) - Simple Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Host - Mass Storage - Thumb Drive Data Logger
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Host - MCHPUSB - Generic Driver Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Host - Printer - Print Screen Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Host - Printer - Simple Full Sheet
	Supported Demo Boards
	Configuring the Demo
	Running the demo

	Host - Printer - Simple Point of Sale (POS)
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Loading a precompiled demo
	MPLAB 8

	PC - WM_DEVICECHANGE Demo
	OTG - MCHPUSB Device/MCHPUSB Host Demo
	Supported Demo Boards
	Configuring the Demo
	Running the Demo

	Demo Board Information
	Low Pin Count USB Development Board
	PICDEM FS USB Board
	PIC18F46J50 Plug-In-Module (PIM)
	PIC18F47J53 Plug-In-Module (PIM)
	PIC18F87J50 Plug-In-Module (PIM) Demo Board
	PIC18 Starter Kit
	PIC24FJ64GB004 Plug-In-Module (PIM)
	PIC24FJ64GB502 Microstick
	PIC24FJ256GB110 Plug-In-Module (PIM)
	PIC24FJ256GB210 Plug-In-Module (PIM)
	PIC24FJ256DA210 Development Board
	PIC24F Starter Kit
	PIC24EP512GU810 Plug-In-Module (PIM)
	dsPIC33EP512MU810 Plug-In-Module (PIM)
	PIC32MX460F512L Plug-In-Module (PIM)
	PIC32MX795F512L Plug-In-Module (PIM)
	PIC32 USB Starter Kit
	PIC32 USB Starter Kit II
	USB PICTail Plus Daughter Board
	Explorer 16

	PC Tools and Example Code
	Application Programming Interface (API)
	Stack Configuration
	Device/Peripheral
	Device Stack
	Configuration Options
	usb_config.h
	Ping Pong buffering (USB_PING_PONG_MODE)
	Endpoint 0 size (USB_EP0_BUFF_SIZE)
	Endpoints Used (USB_MAX_EP_NUMBER)
	Interface mode (USB_POLLING or USB_INTERRUPT)
	Speed selection (USB_SPEED_OPTION)
	D+/D- Internal Pull-ups (USB_PULLUP_OPTION)
	Device Mode Enable (USB_SUPPORT_DEVICE)
	Transceiver Option (USB_TRANSCEIVER_OPTION)
	Number of Interfaces (USB_MAX_NUM_INT)
	Status Stage Timout Enable (USB_ENABLE_STATUS_STAGE_TIMEOUTS and USB_STATUS_STAGE_TIMEOUT)
	String Descriptor Array size (USB_NUM_STRING_DESCRIPTORS)
	Event Notifications
	Disable DTS checking (USB_DEVICE_DISABLE_DTS_CHECKING)

	Interface Routines
	USB_APPLICATION_EVENT_HANDLER Function
	USBCancelIO Function
	USBCtrlEPAllowDataStage Function
	USBCtrlEPAllowStatusStage Function
	USBDeferINDataStage Function
	USBDeferOUTDataStage Function
	USBDeferStatusStage Function
	USBDeviceAttach Function
	USBDeviceDetach Function
	USBDeviceInit Function
	USBDeviceTasks Function
	USBEnableEndpoint Function
	USBEP0Receive Function
	USBEP0SendRAMPtr Function
	USBEP0SendROMPtr Function
	USBEP0Transmit Function
	USBGetDeviceState Function
	USBGetNextHandle Function
	USBGetRemoteWakeupStatus Function
	USBGetSuspendState Function
	USBHandleBusy Function
	USBHandleGetAddr Function
	USBHandleGetLength Function
	USBINDataStageDeferred Function
	USBIsBusSuspended Function
	USBIsDeviceSuspended Function
	USBRxOnePacket Function
	USBSoftDetach Function
	USBOUTDataStageDeferred Function
	USBStallEndpoint Function
	USBTransferOnePacket Function
	USBTxOnePacket Function

	Data Types and Constants
	USB_DEVICE_STATE Enumeration
	USB_DEVICE_STACK_EVENTS Enumeration
	USB_EP0_BUSY Macro
	USB_EP0_INCLUDE_ZERO Macro
	USB_EP0_NO_DATA Macro
	USB_EP0_NO_OPTIONS Macro
	USB_EP0_RAM Macro
	USB_EP0_ROM Macro
	USB_HANDLE Macro

	Macros
	DESC_CONFIG_BYTE Macro
	DESC_CONFIG_DWORD Macro
	DESC_CONFIG_WORD Macro

	Audio Function Driver
	Interface Routines
	USBCheckAudioRequest Function

	Data Types and Constants

	CCID (Smart/Sim Card) Function Driver
	Interface Routines
	USBCCIDBulkInService Function
	USBCCIDInitEP Function
	USBCCIDSendDataToHost Function
	USBCheckCCIDRequest Function

	CDC Function Driver
	Interface Routines
	CDCInitEP Function
	CDCTxService Function
	getsUSBUSART Function
	putrsUSBUSART Function
	putsUSBUSART Function
	putUSBUSART Function
	USBCheckCDCRequest Function
	CDCSetBaudRate Macro
	CDCSetCharacterFormat Macro
	CDCSetDataSize Macro
	CDCSetLineCoding Macro
	CDCSetParity Macro
	USBUSARTIsTxTrfReady Macro

	Data Types and Constants
	NUM_STOP_BITS_1 Macro
	NUM_STOP_BITS_1_5 Macro
	NUM_STOP_BITS_2 Macro
	PARITY_EVEN Macro
	PARITY_MARK Macro
	PARITY_NONE Macro
	PARITY_ODD Macro
	PARITY_SPACE Macro

	HID Function Driver
	Interface Routines
	HIDRxHandleBusy Macro
	HIDRxPacket Macro
	HIDTxHandleBusy Macro
	HIDTxPacket Macro

	Data Types and Constants
	BOOT_INTF_SUBCLASS Macro
	BOOT_PROTOCOL Macro
	HID_PROTOCOL_KEYBOARD Macro
	HID_PROTOCOL_MOUSE Macro
	HID_PROTOCOL_NONE Macro

	MSD Function Driver
	Interface Routines
	MSDTasks Function
	USBCheckMSDRequest Function
	USBMSDInit Function

	Data Types and Constants
	LUN_FUNCTIONS Type

	Personal Healthcare Device Class (PHDC) Function Driver
	Interface Routines
	PHDAppInit Function
	PHDSendAppBufferPointer Function
	PHDConnect Function
	PHDDisConnect Function
	PHDSendMeasuredData Function
	PHDTimeoutHandler Function
	USBDevicePHDCInit Function
	USBDevicePHDCReceiveData Function
	USBDevicePHDCSendData Function
	USBDevicePHDCTxRXService Function
	USBDevicePHDCCheckRequest Function
	USBDevicePHDCUpdateStatus Function

	Vendor Class (Generic) Function Driver
	Interface Routines
	USBGenRead Macro
	USBGenWrite Macro

	Embedded Host API
	Embedded Host Stack
	Interface Routines
	USB_HOST_APP_EVENT_HANDLER Function
	USBHostClearEndpointErrors Function
	USBHostDeviceSpecificClientDriver Function
	USBHostDeviceStatus Function
	USBHostGetCurrentConfigurationDescriptor Macro
	USBHostGetDeviceDescriptor Macro
	USBHostGetStringDescriptor Macro
	USBHostInit Function
	USBHostRead Function
	USBHostResetDevice Function
	USBHostResumeDevice Function
	USBHostSetDeviceConfiguration Function
	USBHostSetNAKTimeout Function
	USBHostSuspendDevice Function
	USBHostTerminateTransfer Function
	USBHostTransferIsComplete Function
	USBHostVbusEvent Function
	USBHostWrite Function

	Data Types and Constants
	CLIENT_DRIVER_TABLE Structure
	HOST_TRANSFER_DATA Structure
	TRANSFER_ATTRIBUTES Union
	USB_TPL Structure
	USB_CLIENT_INIT Type
	USB_CLIENT_EVENT_HANDLER Type
	USB_NUM_BULK_NAKS Macro
	USB_NUM_COMMAND_TRIES Macro
	USB_NUM_CONTROL_NAKS Macro
	USB_NUM_ENUMERATION_TRIES Macro
	USB_NUM_INTERRUPT_NAKS Macro
	TPL_SET_CONFIG Macro
	TPL_CLASS_DRV Macro
	TPL_ALLOW_HNP Macro

	Macros
	INIT_CL_SC_P Macro
	INIT_VID_PID Macro

	Audio Client Driver
	Interface Routines
	USBHostAudioV1DataEventHandler Function
	USBHostAudioV1EventHandler Function
	USBHostAudioV1Initialize Function
	USBHostAudioV1ReceiveAudioData Function
	USBHostAudioV1SetInterfaceFullBandwidth Function
	USBHostAudioV1SetInterfaceZeroBandwidth Function
	USBHostAudioV1SetSamplingFrequency Function
	USBHostAudioV1SupportedFrequencies Function
	USBHostAudioV1TerminateTransfer Function

	Data Types and Constants
	EVENT_AUDIO_ATTACH Macro
	EVENT_AUDIO_DETACH Macro
	EVENT_AUDIO_FREQUENCY_SET Macro
	EVENT_AUDIO_INTERFACE_SET Macro
	EVENT_AUDIO_NONE Macro
	EVENT_AUDIO_OFFSET Macro
	EVENT_AUDIO_STREAM_RECEIVED Macro

	Audio MIDI Client Driver
	Interface Functions
	USBHostMIDIDeviceDetached Macro
	USBHostMIDIEndpointDirection Macro
	USBHostMIDINumberOfEndpoints Macro
	USBHostMIDIRead Function
	USBHostMIDISizeOfEndpoint Macro
	USBHostMIDITransferIsBusy Macro
	USBHostMIDITransferIsComplete Function
	USBHostMIDIWrite Function

	Data Types and Constants
	EVENT_MIDI_ATTACH Macro
	EVENT_MIDI_DETACH Macro
	EVENT_MIDI_OFFSET Macro
	EVENT_MIDI_TRANSFER_DONE Macro

	Android Accessory Client Driver
	Interface Routines
	AndroidAppIsReadComplete Function
	AndroidAppIsWriteComplete Function
	AndroidAppRead Function
	AndroidAppStart Function
	AndroidAppWrite Function
	AndroidTasks Function

	Data Type and Constants
	ANDROID_ACCESSORY_INFORMATION Structure

	Macros
	ANDROID_BASE_OFFSET Macro
	EVENT_ANDROID_ATTACH Macro
	EVENT_ANDROID_DETACH Macro
	NUM_ANDROID_DEVICES_SUPPORTED Macro
	USB_ERROR_BUFFER_TOO_SMALL Macro
	ANDROID_INIT_FLAG_BYPASS_PROTOCOL Macro

	Internal Members

	CDC Client Driver
	Interface Routines
	USBHostCDC_Api_ACM_Request Function
	USBHostCDC_Api_Get_IN_Data Function
	USBHostCDC_ApiTransferIsComplete Function
	USBHostCDCDeviceStatus Function
	USBHostCDCEventHandler Function
	USBHostCDCInitAddress Function
	USBHostCDCInitialize Function
	USBHostCDCRead_DATA Macro
	USBHostCDCResetDevice Function
	USBHostCDCSend_DATA Macro
	USBHostCDCTransfer Function
	USBHostCDCTransferIsComplete Function

	Data Types and Constants
	COMM_INTERFACE_DETAILS Structure
	DATA_INTERFACE_DETAILS Structure
	USB_CDC_ACM_FN_DSC Structure
	USB_CDC_CALL_MGT_FN_DSC Structure
	USB_CDC_CONTROL_SIGNAL_BITMAP Union
	USB_CDC_DEVICE_INFO Structure
	USB_CDC_HEADER_FN_DSC Structure
	USB_CDC_LINE_CODING Union
	USB_CDC_UNION_FN_DSC Structure
	DEVICE_CLASS_CDC Macro
	EVENT_CDC_COMM_READ_DONE Macro
	EVENT_CDC_COMM_WRITE_DONE Macro
	EVENT_CDC_DATA_READ_DONE Macro
	EVENT_CDC_DATA_WRITE_DONE Macro
	EVENT_CDC_NAK_TIMEOUT Macro
	EVENT_CDC_NONE Macro
	EVENT_CDC_OFFSET Macro
	EVENT_CDC_RESET Macro
	USB_CDC_ABSTRACT_CONTROL_MODEL Macro
	USB_CDC_ATM_NETWORKING_CONTROL_MODEL Macro
	USB_CDC_CAPI_CONTROL_MODEL Macro
	USB_CDC_CLASS_ERROR Macro
	USB_CDC_COMM_INTF Macro
	USB_CDC_COMMAND_FAILED Macro
	USB_CDC_COMMAND_PASSED Macro
	USB_CDC_CONTROL_LINE_LENGTH Macro
	USB_CDC_CS_ENDPOINT Macro
	USB_CDC_CS_INTERFACE Macro
	USB_CDC_DATA_INTF Macro
	USB_CDC_DEVICE_BUSY Macro
	USB_CDC_DEVICE_DETACHED Macro
	USB_CDC_DEVICE_HOLDING Macro
	USB_CDC_DEVICE_MANAGEMENT Macro
	USB_CDC_DEVICE_NOT_FOUND Macro
	USB_CDC_DIRECT_LINE_CONTROL_MODEL Macro
	USB_CDC_DSC_FN_ACM Macro
	USB_CDC_DSC_FN_CALL_MGT Macro
	USB_CDC_DSC_FN_COUNTRY_SELECTION Macro
	USB_CDC_DSC_FN_DLM Macro
	USB_CDC_DSC_FN_HEADER Macro
	USB_CDC_DSC_FN_RPT_CAPABILITIES Macro
	USB_CDC_DSC_FN_TEL_OP_MODES Macro
	USB_CDC_DSC_FN_TELEPHONE_RINGER Macro
	USB_CDC_DSC_FN_UNION Macro
	USB_CDC_DSC_FN_USB_TERMINAL Macro
	USB_CDC_ETHERNET_EMULATION_MODEL Macro
	USB_CDC_ETHERNET_NETWORKING_CONTROL_MODEL Macro
	USB_CDC_GET_COMM_FEATURE Macro
	USB_CDC_GET_ENCAPSULATED_REQUEST Macro
	USB_CDC_GET_LINE_CODING Macro
	USB_CDC_ILLEGAL_REQUEST Macro
	USB_CDC_INITIALIZING Macro
	USB_CDC_INTERFACE_ERROR Macro
	USB_CDC_LINE_CODING_LENGTH Macro
	USB_CDC_MOBILE_DIRECT_LINE_MODEL Macro
	USB_CDC_MULTI_CHANNEL_CONTROL_MODEL Macro
	USB_CDC_NO_PROTOCOL Macro
	USB_CDC_NO_REPORT_DESCRIPTOR Macro
	USB_CDC_NORMAL_RUNNING Macro
	USB_CDC_OBEX Macro
	USB_CDC_PHASE_ERROR Macro
	USB_CDC_REPORT_DESCRIPTOR_BAD Macro
	USB_CDC_RESET_ERROR Macro
	USB_CDC_RESETTING_DEVICE Macro
	USB_CDC_SEND_BREAK Macro
	USB_CDC_SEND_ENCAPSULATED_COMMAND Macro
	USB_CDC_SET_COMM_FEATURE Macro
	USB_CDC_SET_CONTROL_LINE_STATE Macro
	USB_CDC_SET_LINE_CODING Macro
	USB_CDC_TELEPHONE_CONTROL_MODEL Macro
	USB_CDC_V25TER Macro
	USB_CDC_WIRELESS_HANDSET_CONTROL_MODEL Macro

	Charger Client Driver
	Interface Routines
	USBHostChargerDeviceDetached Function
	USBHostChargerEventHandler Function
	USBHostChargerGetDeviceAddress Function

	Data Type and Constants
	EVENT_CHARGER_ATTACH Macro
	EVENT_CHARGER_DETACH Macro
	EVENT_CHARGER_OFFSET Macro
	USB_MAX_CHARGING_DEVICES Macro

	Generic Client Driver
	Interface Routines
	USBHostGenericDeviceDetached Macro
	USBHostGenericEventHandler Function
	USBHostGenericGetDeviceAddress Function
	USBHostGenericGetRxLength Macro
	USBHostGenericInit Function
	USBHostGenericRead Function
	USBHostGenericRxIsBusy Macro
	USBHostGenericRxIsComplete Function
	USBHostGenericTxIsBusy Macro
	USBHostGenericTxIsComplete Function
	USBHostGenericWrite Function

	Data Types and Constants
	GENERIC_DEVICE Type
	GENERIC_DEVICE_ID Type
	EVENT_GENERIC_ATTACH Macro
	EVENT_GENERIC_DETACH Macro
	EVENT_GENERIC_OFFSET Macro
	EVENT_GENERIC_RX_DONE Macro
	EVENT_GENERIC_TX_DONE Macro
	USB_GENERIC_EP Macro

	HID Client Driver
	Interface Routines
	USBHostHID_ApiFindBit Function
	USBHostHID_ApiFindValue Function
	USBHostHID_ApiGetCurrentInterfaceNum Function
	USBHostHID_ApiGetReport Macro
	USBHostHID_ApiImportData Function
	USBHostHID_ApiSendReport Macro
	USBHostHID_ApiTransferIsComplete Macro
	USBHostHID_GetCurrentReportInfo Macro
	USBHostHID_GetItemListPointers Macro
	USBHostHID_HasUsage Function
	USBHostHIDDeviceDetect Function
	USBHostHIDDeviceStatus Function
	USBHostHIDEventHandler Function
	USBHostHIDInitialize Function
	USBHostHIDRead Macro
	USBHostHIDResetDevice Function
	USBHostHIDResetDeviceWithWait Function
	USBHostHIDTasks Function
	USBHostHIDTerminateTransfer Function
	USBHostHIDTransfer Function
	USBHostHIDTransferIsComplete Function
	USBHostHIDWrite Macro

	Data Types and Constants
	DEVICE_CLASS_HID Macro
	DSC_HID Macro
	DSC_PHY Macro
	DSC_RPT Macro
	EVENT_HID_ATTACH Macro
	EVENT_HID_BAD_REPORT_DESCRIPTOR Macro
	EVENT_HID_DETACH Macro
	EVENT_HID_NONE Macro
	EVENT_HID_OFFSET Macro
	EVENT_HID_READ_DONE Macro
	EVENT_HID_RESET Macro
	EVENT_HID_RESET_ERROR Macro
	EVENT_HID_RPT_DESC_PARSED Macro
	EVENT_HID_WRITE_DONE Macro
	HID_COLLECTION Structure
	HID_DATA_DETAILS Structure
	HID_DESIGITEM Structure
	HID_GLOBALS Structure
	HID_ITEM_INFO Structure
	HID_REPORT Structure
	HID_REPORTITEM Structure
	HID_STRINGITEM Structure
	HID_TRANSFER_DATA Structure
	HID_USAGEITEM Structure
	HIDReportTypeEnum Enumeration
	USB_HID_CLASS_ERROR Macro
	USB_HID_COMMAND_FAILED Macro
	USB_HID_COMMAND_PASSED Macro
	USB_HID_DEVICE_BUSY Macro
	USB_HID_DEVICE_DETACHED Macro
	USB_HID_DEVICE_HOLDING Macro
	USB_HID_DEVICE_ID Structure
	USB_HID_DEVICE_NOT_FOUND Macro
	USB_HID_DEVICE_RPT_INFO Structure
	USB_HID_ILLEGAL_REQUEST Macro
	USB_HID_INITIALIZING Macro
	USB_HID_INTERFACE_ERROR Macro
	USB_HID_ITEM_LIST Structure
	USB_HID_NO_REPORT_DESCRIPTOR Macro
	USB_HID_NORMAL_RUNNING Macro
	USB_HID_PHASE_ERROR Macro
	USB_HID_REPORT_DESCRIPTOR_BAD Macro
	USB_HID_RESET_ERROR Macro
	USB_HID_RESETTING_DEVICE Macro
	USB_HID_RPT_DESC_ERROR Enumeration
	USB_PROCESSING_REPORT_DESCRIPTOR Macro

	Mass Storage Client Driver
	Interface Routines
	USBHostMSDDeviceStatus Function
	USBHostMSDEventHandler Function
	USBHostMSDInitialize Function
	USBHostMSDRead Macro
	USBHostMSDResetDevice Function
	USBHostMSDSCSIEventHandler Function
	USBHostMSDSCSIInitialize Function
	USBHostMSDSCSISectorRead Function
	USBHostMSDSCSISectorWrite Function
	USBHostMSDTerminateTransfer Function
	USBHostMSDTransfer Function
	USBHostMSDTransferIsComplete Function
	USBHostMSDWrite Macro

	Data Types and Constants
	DEVICE_CLASS_MASS_STORAGE Macro
	DEVICE_INTERFACE_PROTOCOL_BULK_ONLY Macro
	DEVICE_SUBCLASS_CD_DVD Macro
	DEVICE_SUBCLASS_FLOPPY_INTERFACE Macro
	DEVICE_SUBCLASS_RBC Macro
	DEVICE_SUBCLASS_REMOVABLE Macro
	DEVICE_SUBCLASS_SCSI Macro
	DEVICE_SUBCLASS_TAPE_DRIVE Macro
	EVENT_MSD_MAX_LUN Macro
	EVENT_MSD_NONE Macro
	EVENT_MSD_OFFSET Macro
	EVENT_MSD_RESET Macro
	EVENT_MSD_TRANSFER Macro
	MSD_COMMAND_FAILED Macro
	MSD_COMMAND_PASSED Macro
	MSD_PHASE_ERROR Macro
	USB_MSD_CBW_ERROR Macro
	USB_MSD_COMMAND_FAILED Macro
	USB_MSD_COMMAND_PASSED Macro
	USB_MSD_CSW_ERROR Macro
	USB_MSD_DEVICE_BUSY Macro
	USB_MSD_DEVICE_DETACHED Macro
	USB_MSD_DEVICE_NOT_FOUND Macro
	USB_MSD_ERROR Macro
	USB_MSD_ERROR_STATE Macro
	USB_MSD_ILLEGAL_REQUEST Macro
	USB_MSD_INITIALIZING Macro
	USB_MSD_INVALID_LUN Macro
	USB_MSD_MEDIA_INTERFACE_ERROR Macro
	USB_MSD_NORMAL_RUNNING Macro
	USB_MSD_OUT_OF_MEMORY Macro
	USB_MSD_PHASE_ERROR Macro
	USB_MSD_RESET_ERROR Macro
	USB_MSD_RESETTING_DEVICE Macro

	Printer Client Driver
	Interface Routines
	PrintScreen Function
	USBHostPrinterCommand Function
	USBHostPrinterCommandReady Function
	USBHostPrinterCommandWithReadyWait Macro
	USBHostPrinterDeviceDetached Function
	USBHostPrinterEventHandler Function
	USBHostPrinterGetRxLength Function
	USBHostPrinterGetStatus Function
	USBHostPrinterInitialize Function
	USBHostPrinterLanguageESCPOS Function
	USBHostPrinterLanguageESCPOSIsSupported Function
	USBHostPrinterLanguagePCL5 Function
	USBHostPrinterLanguagePCL5IsSupported Function
	USBHostPrinterLanguagePostScript Function
	USBHostPrinterLanguagePostScriptIsSupported Function
	USBHostPrinterPOSImageDataFormat Function
	USBHostPrinterPosition Macro
	USBHostPrinterPositionRelative Macro
	USBHostPrinterRead Function
	USBHostPrinterReset Function
	USBHostPrinterRxIsBusy Function
	USBHostPrinterWrite Function
	USBHostPrinterWriteComplete Function

	Data Types and Constants
	_USB_HOST_PRINTER_PRIMITIVES_H Macro
	BARCODE_CODE128_CODESET_A_CHAR Macro
	BARCODE_CODE128_CODESET_A_STRING Macro
	BARCODE_CODE128_CODESET_B_CHAR Macro
	BARCODE_CODE128_CODESET_B_STRING Macro
	BARCODE_CODE128_CODESET_C_CHAR Macro
	BARCODE_CODE128_CODESET_C_STRING Macro
	BARCODE_CODE128_CODESET_CHAR Macro
	BARCODE_CODE128_CODESET_STRING Macro
	BARCODE_TEXT_12x24 Macro
	BARCODE_TEXT_18x36 Macro
	BARCODE_TEXT_ABOVE Macro
	BARCODE_TEXT_ABOVE_AND_BELOW Macro
	BARCODE_TEXT_BELOW Macro
	BARCODE_TEXT_OMIT Macro
	EVENT_PRINTER_ATTACH Macro
	EVENT_PRINTER_DETACH Macro
	EVENT_PRINTER_OFFSET Macro
	EVENT_PRINTER_REQUEST_DONE Macro
	EVENT_PRINTER_REQUEST_ERROR Macro
	EVENT_PRINTER_RX_DONE Macro
	EVENT_PRINTER_RX_ERROR Macro
	EVENT_PRINTER_TX_DONE Macro
	EVENT_PRINTER_TX_ERROR Macro
	EVENT_PRINTER_UNSUPPORTED Macro
	LANGUAGE_ID_STRING_ESCPOS Macro
	LANGUAGE_ID_STRING_PCL Macro
	LANGUAGE_ID_STRING_POSTSCRIPT Macro
	LANGUAGE_SUPPORT_FLAGS_ESCPOS Macro
	LANGUAGE_SUPPORT_FLAGS_PCL3 Macro
	LANGUAGE_SUPPORT_FLAGS_PCL5 Macro
	LANGUAGE_SUPPORT_FLAGS_POSTSCRIPT Macro
	PRINTER_COLOR_BLACK Macro
	PRINTER_COLOR_WHITE Macro
	PRINTER_DEVICE_REQUEST_GET_DEVICE_ID Macro
	PRINTER_DEVICE_REQUEST_GET_PORT_STATUS Macro
	PRINTER_DEVICE_REQUEST_SOFT_RESET Macro
	PRINTER_FILL_CROSS_HATCHED Macro
	PRINTER_FILL_HATCHED Macro
	PRINTER_FILL_SHADED Macro
	PRINTER_FILL_SOLID Macro
	PRINTER_LINE_END_BUTT Macro
	PRINTER_LINE_END_ROUND Macro
	PRINTER_LINE_END_SQUARE Macro
	PRINTER_LINE_JOIN_BEVEL Macro
	PRINTER_LINE_JOIN_MITER Macro
	PRINTER_LINE_JOIN_ROUND Macro
	PRINTER_LINE_TYPE_DASHED Macro
	PRINTER_LINE_TYPE_DOTTED Macro
	PRINTER_LINE_TYPE_SOLID Macro
	PRINTER_LINE_WIDTH_NORMAL Macro
	PRINTER_LINE_WIDTH_THICK Macro
	PRINTER_PAGE_LANDSCAPE_HEIGHT Macro
	PRINTER_PAGE_LANDSCAPE_WIDTH Macro
	PRINTER_PAGE_PORTRAIT_HEIGHT Macro
	PRINTER_PAGE_PORTRAIT_WIDTH Macro
	PRINTER_POS_BOTTOM_TO_TOP Macro
	PRINTER_POS_DENSITY_HORIZONTAL_DOUBLE Macro
	PRINTER_POS_DENSITY_HORIZONTAL_SINGLE Macro
	PRINTER_POS_DENSITY_VERTICAL_24 Macro
	PRINTER_POS_DENSITY_VERTICAL_8 Macro
	PRINTER_POS_LEFT_TO_RIGHT Macro
	PRINTER_POS_RIGHT_TO_LEFT Macro
	PRINTER_POS_TOP_TO_BOTTOM Macro
	USB_DATA_POINTER Union
	USB_DATA_POINTER_RAM Macro
	USB_DATA_POINTER_ROM Macro
	USB_MAX_PRINTER_DEVICES Macro
	USB_NULL Macro
	USB_PRINT_SCREEN_INFO Structure
	USB_PRINTER_COMMAND Enumeration
	USB_PRINTER_DEVICE_ID Structure
	USB_PRINTER_ERRORS Enumeration
	USB_PRINTER_FONTS Enumeration
	USB_PRINTER_FONTS_POS Enumeration
	USB_PRINTER_FUNCTION_SUPPORT Union
	USB_PRINTER_FUNCTION_SUPPORT_POS Macro
	USB_PRINTER_FUNCTION_SUPPORT_VECTOR_GRAPHICS Macro
	USB_PRINTER_GRAPHICS_PARAMETERS Union
	USB_PRINTER_IMAGE_INFO Structure
	USB_PRINTER_INTERFACE Structure
	USB_PRINTER_LANGUAGE_HANDLER Type
	USB_PRINTER_LANGUAGE_SUPPORTED Type
	USB_PRINTER_POS_BARCODE_FORMAT Enumeration
	USB_PRINTER_SPECIFIC_INTERFACE Structure
	USB_PRINTER_TRANSFER_COPY_DATA Macro
	USB_PRINTER_TRANSFER_FROM_RAM Macro
	USB_PRINTER_TRANSFER_FROM_ROM Macro
	USB_PRINTER_TRANSFER_NOTIFY Macro
	USB_PRINTER_TRANSFER_STATIC_DATA Macro
	USBHOSTPRINTER_SETFLAG_COPY_DATA Macro
	USBHOSTPRINTER_SETFLAG_NOTIFY Macro
	USBHOSTPRINTER_SETFLAG_STATIC_DATA Macro

	On-The-Go (OTG)
	Interface Routines
	USBOTGClearRoleSwitch Function
	USBOTGCurrentRoleIs Function
	USBOTGDefaultRoleIs Function
	USBOTGInitialize Function
	USBOTGRequestSession Function
	USBOTGRoleSwitch Function
	USBOTGSelectRole Function
	USBOTGSession Function

	Data Types and Constants
	CABLE_A_SIDE Macro
	CABLE_B_SIDE Macro
	DELAY_TA_AIDL_BDIS Macro
	DELAY_TA_BDIS_ACON Macro
	DELAY_TA_BIDL_ADIS Macro
	DELAY_TA_WAIT_BCON Macro
	DELAY_TA_WAIT_VRISE Macro
	DELAY_TB_AIDL_BDIS Macro
	DELAY_TB_ASE0_BRST Macro
	DELAY_TB_DATA_PLS Macro
	DELAY_TB_SE0_SRP Macro
	DELAY_TB_SRP_FAIL Macro
	DELAY_VBUS_SETTLE Macro
	END_SESSION Macro
	OTG_EVENT_CONNECT Macro
	OTG_EVENT_DISCONNECT Macro
	OTG_EVENT_HNP_ABORT Macro
	OTG_EVENT_HNP_FAILED Macro
	OTG_EVENT_NONE Macro
	OTG_EVENT_RESUME_SIGNALING Macro
	OTG_EVENT_SRP_CONNECT Macro
	OTG_EVENT_SRP_DPLUS_HIGH Macro
	OTG_EVENT_SRP_DPLUS_LOW Macro
	OTG_EVENT_SRP_FAILED Macro
	OTG_EVENT_SRP_VBUS_HIGH Macro
	OTG_EVENT_SRP_VBUS_LOW Macro
	ROLE_DEVICE Macro
	ROLE_HOST Macro
	START_SESSION Macro
	TOGGLE_SESSION Macro
	USB_OTG_FW_DOT_VER Macro
	USB_OTG_FW_MAJOR_VER Macro
	USB_OTG_FW_MINOR_VER Macro

	Appendix (Frequently Asked Questions, Important Information, Reference Material, etc.)
	Using breakpoints in USB host applications
	Bootloader Details
	PIC24F Implementation Specific Details
	Adding a boot loader to your project
	Memory Map
	Startup Sequence and Reset Remapping
	Interrupt Remapping
	Understanding and Customizing the Boot Loader Implementation
	Memory Region Definitions
	Special Region Creation
	Changing the memory foot print of the boot loader
	HID boot loader
	MSD boot loader

	Important Considerations
	Configuration Bits
	Boot Loader Entry
	Interrupts

	Notes on .inf Files
	Vendor IDs (VID) and Product IDs (PID)
	Using a diff tool
	Beyond Compare
	MPLAB X (NetBeans)

	Trademark Information
	Index

