Getting Started: Running the “Device
– CDC – Basic Demo” demo
Configuration
1: PICDEM FS USB
Configuration
2: PIC18F87J50 PIM
Configuration
4: Low Pin Count USB Development Kit
Configuration
5: PIC24F Starter Kit 1
Configuration
6: PIC18F46J50 Full Speed USB Demo Board
Configuration
7: PIC32 USB Starter Board
Configuration
8: PIC18F Starter Kit
Configuration
1: PICDEM FS USB
Configuration
2: PIC18F87J50 PIM
Configuration
4: Low Pin Count USB Development Kit
Configuration
5: PIC24F Starter Kit 1
Configuration
6: PIC18F46J50 Full Speed USB Demo Board
Configuration
7: PIC32 USB Starter Board
Configuration
8: PIC18F Starter Kit
To run this project, you will need one of the
following sets of hardware:
PICDEM
FS USB (DM163025)
PIC18F87J50
Plug-In-Module (PIM) (MA180021)
Explorer
16 (DM240001)
USB
PICtail™ Plus Daughter Card (AC164131)
And one of the following PIMs
PIC24FJ256GB110 Plug-In-Module (PIM) (MA240014)
PIC32MX USB Plug-In-Module (PIM) (MA320002)
dsPIC33EP512MU810 Plug-In-Module (PIM)
PIC24EP512GU810 Plug-In-Module (PIM)
Low
Pin Count USB Development Kit with PICKit 2 Debugger/Programmer (DV164126)
or without Debugger/Programmer (DM164127)
PIC24F
Starter Kit 1 (DM240011)
PIC18F46J50
Full Speed USB Demo Board (MA180024)
PIC32 USB Starter Board (DM320003)
PIC18F Starter Kit (DM180021)
This
section describes how to set up the various configurations of hardware to run
this demo.
Configuration 1: PICDEM FS USB
Configuration 2: PIC18F87J50 PIM
Configuration 4: Low Pin Count USB Development
Kit
Configuration 5: PIC24F Starter Kit 1
Configuration 6: PIC18F46J50 Full Speed USB Demo Board
Configuration 7: PIC32 USB Starter Kit
Configuration
8: PIC18F Starter Kit
1)
If using the PICDEM FS USB Demo Board, no hardware related configuration or
jumper setting changes should be necessary.
The demo board need only be programmed with appropriate firmware.
1)
Short JP4 on the PIC18F87J50 PIM. This
allows the demo board to be powered through bus power.
2)
Short JP1 such that the “R” and “U” options are shorted.
3) Short JP5 on
PIC18F87J50 PIM. This connects the LEDs to RE0 and RE1 pins of the
Microcontroller.
1)
Before attaching the PIM to the Explorer 16 board, insure that the processor
selector switch (S2) is in the “PIM” position as seen in the image below.
2)
Short the J7 jumper to the “PIC24” setting
3)
Before connecting the PIM to the Explorer 16 board, remove all attached cables
from both boards. Connect the PIM to the
Explorer 16 board. Be careful when
connecting the boards to insure that no pins are bent or damaged during the
process. Also insure that the PIM is not
shifted in any direction and that all of the headers are properly aligned.
3a)
If using the PIC24FJ64GB004 PIM, please insure that the programming port
switch is switched in the PGX1 direction.
4) On the USB PICTail Plus board, short jumper
JP1. Remove all other shorts on the
board.
5) Connect the USB PICTail Plus board to either
of the female PICTail Plus connectors or on the card edge connector (J9) at the
edge of the Explorer 16 board.
Note: When using the HID bootloader for PIC32, it is
important to modify the procdefs.ld file to relocate the sections of code that
will hold the bootloader and those sections that will hold the user
application. Example modified
procdefs.ld files have been provided with each project. This file is currently named
“Procdefs.ld.boot”. When using the
example project with the bootloader it is required to remove the “.boot”
section of the file. This will allow MPLAB
to use this file instead of the default linker file. Once the linker file is renamed, however, the
project will no longer work without the bootloader. Please rename the file in order to get the
project working again with PIC32.
1) Short pins 2 and 3 of J14. Make sure J12 is left open.
The PIC24F Starter Kit does not require any hardware setup
to run this demo. This demo does,
however, require the user to change the default selected device in the project
before compiling the demo.
1) Open the associated project file
for C30
2) In MPLAB Select
“Configure->Select Device”
3) In the device list box in the top
left corner of that window, select “PIC24FJ256GB106”
1) Short JP3 to allow the board to
be powered from the USB.
No specific hardware configuration is required for this
demo. Use the OTG cable provided with the starter kit to connect OTG connector
J5 (on the bottom side of the starter kit) to the PC.
No specific hardware configuration is required for this
demo.
To
run this project, you will need to load the corresponding firmware into the
devices. There are two methods available
for loading the demos: Precompiled demos and source code projects.
Precompiled
Demos are available in the “<Install Directory>\USB – Precompiled Demos”
folders. Each demo should be prefaced
with the hardware platform it is compiled for.
Select the file that matches the hardware that you have and the demo
that you want to run. For more
information about how to load a precompiled project, please see the “Getting
Started – Loading a precompiled demo” guide.
The
source code for this demo is available in the “<Install Directory\USB Device
– CDC – Basic Demo” directory. In this
directory you will find all of the user level source and header files as well
as project and workspace files for each of the hardware platforms. Find the project (*.mcp) or workspace (*.mcw)
file that corresponds to the hardware platform you wish to test. Compile and program the demo code into the
hardware platform. For more help on how
to compile and program projects, please refer to the MPLAB® IDE help available
through the help menu of MPLAB IDE (Help->Topics…->MPLAB IDE).
Please
note that when using either the C30 or C32 demo projects you will be required
to select the correct processor for the demo board.
1) Open the associated project file
2) In MPLAB Select
“Configure->Select Device”
3) In the device list box in the top
left corner of that window, select the desired device.
This
demo allows the device to appear like a serial (COM) port to the host. In order to run this demo first compile and
program the target device. Attach the
device to the host. If the host is a PC
and this is the first time you have plugged this device into the computer then
you may be asked for a .inf file.
Select
the “Install from a list or specific location (Advanced)” option. Point to the “<Install Directory>\USB
Device - CDC – Basic Demo\inf\win2k_winxp” directory
Once
the device is successfully installed, open up a terminal program, such as
hyperterminal. Select the appropriate
COM port. On most machines this will be
COM5 or higher.
Once
connected to the device, there are two ways to run this example project. Typing a key in the terminal window will
result in the device echoing that key plus one.
So if the user presses “a”, the device will echo “b”. If the pushbutton is pressed the device will
echo “ – Button Pressed – “ to the terminal window.
Note:
Some terminal programs, like hyperterminal, require users to click the
disconnect button before removing the device from the computer. Failing to do so may result in having to
close and open the program again in order to reconnect to the device.
PICDEM
FS USB:
PIC18F87J50
PIM:
Explorer
16:
Low pin count USB development kit:
PIC24F Starter Kit 1:
The PIC24F
Starter Kit 1 does not implement the pushbutton for these demos. This functionality is not present in this
demo.
PIC18F46J50 Full Speed USB Demo Board:
PIC32 USB Starter Kit
PIC18 Starter Kit
The Microchip name and logo, the Microchip logo,
MPLAB, and PIC are registered trademarks of Microchip Technology Incorporated
in the
PICDEM and PICTail are registered trademarks of
Microchip Technology Incorporated in the
Microsoft, Windows, and Windows Vista are either
registered trademarks or trademarks of Microsoft Corporation in the