
Microchip TCP/IP Stack
Help

Copyright (c) 2011 Microchip Technology, Inc. All rights reserved.

Table of Contents

Introduction 1
Getting Help 1

Directory Structure 1

SW License Agreement 3

Release Notes 6
Stack Performance 55

Memory Usage 55

Peripheral Usage 55

Silicon Solutions 57

Software 58
TCP/IP Configuration Wizard 58

MPFS2 Utility 58

Building MPFS2 Images 59

Uploading Pre-built MPFS2 Images 59

Advanced MPFS2 Settings 60

MPFS2 Command Line Options 60

Hash Table Filter Entry Calculator 61

Microchip TCP/IP Discoverer 61

Getting Started 63
Hardware Setup 63

Daughter Boards 63

PICDEM.net 2 64

PIC18 Explorer 66

Explorer 16 and PIC32 Starter Kit 67

PIC24FJ256DA210 Dev Board 70

Programming and First Run 70

Configure your WiFi Access Point 71

Connecting to the Network 73

Microchip TCP/IP Stack Help

ii

Uploading Web Pages 73

Accessing the Demo Application 74

Configuring WiFi Security 75

Demo Information 78
Demo Compatibility Table 78

Available Demos 82

Demo App 82

TCPIP Demo App Features by Hardware Platform 82

Demo Modules 83

Web Page Demos 83

E-mail (SMTP) Demo 92

Generic TCP Client 93

Generic TCP Server 96

Ping (ICMP) Demo 97

Network Management (SNMP) Server 99

UART-to-TCP Bridge 114

Zero Configuration (ZeroConf) 115

Internet Bootloader 116

Bootloader Design 116

Using the Bootloader 119

WebVend 121

Internet Radio 122

WiFi Console 123

Standalone Commands 123

iwconfig Commands 123

ifconfig Commands 125

iwpriv Commands 126

iperf Example 127

WiFi EZConfig 129

Demo App MDD 131

Google PowerMeter 131

Energy Monitoring 131

Using the Stack 132
Stack Architecture 132

How the Stack Works 132

Required Files 132

APP_CONFIG Structure 133

Microchip TCP/IP Stack Help

iii

Main File 133

Initialization 133

Main Loop 133

Cooperative Multitasking 134

RTOS 136

Configuring the Stack 137
Hardware Configuration 137

Clock Frequency 137

External Storage 137

ENC28J60 Config 138

ENCX24J600 Config 139

PIC18F97J60 Config 141

PIC32MX7XX Config 141

Address 142

MAC Address 142

IP Address 143

Protocol Configuration 144

Protocol Macros and Files 145

Additional Features 146

Sockets 147

Memory Allocation 147

Socket Types 147

Initialization Structure 148

UDP Sockets 149

BSD Sockets 149

Stack API 150
Announce 150

Stack Members 151

AnnounceIP Function 151

DiscoveryTask Function 151

ARP 152

Public Members 152

ARPResolve Function 153

ARPIsResolved Function 154

ARPDeRegisterCallbacks Function 154

ARPRegisterCallbacks Function 155

ARPSendPkt Function 155

arp_app_callbacks Structure 156

Microchip TCP/IP Stack Help

iv

ARP_REQ Macro 156

ARP_RESP Macro 156

MAX_REG_APPS Macro 156

Stack Members 157

ARPInit Function 157

ARPProcess Function 157

Internal Members 158

ARPPut Function 159

SwapARPPacket Function 159

ARP_OPERATION_REQ Macro 160

ARP_OPERATION_RESP Macro 160

HW_ETHERNET Macro 160

ARP_IP Macro 160

Cache Variable 160

reg_apps Variable 161

Types 161

ARP_PACKET Structure 161

BSD Sockets 162

Public Members 163

accept Function 164

AF_INET Macro 165

bind Function 165

BSDSocket Structure 165

closesocket Function 166

connect Function 166

gethostname Function 167

in_addr Structure 168

INADDR_ANY Macro 168

INVALID_TCP_PORT Macro 169

IP_ADDR_ANY Macro 169

IPPROTO_IP Macro 169

IPPROTO_TCP Macro 169

IPPROTO_UDP Macro 169

listen Function 170

recv Function 170

recvfrom Function 171

send Function 172

sendto Function 172

SOCK_DGRAM Macro 173

SOCK_STREAM Macro 173

sockaddr Structure 173

SOCKADDR Type 174

Microchip TCP/IP Stack Help

v

sockaddr_in Structure 174

SOCKADDR_IN Type 174

socket Function 175

SOCKET Type 175

SOCKET_CNXN_IN_PROGRESS Macro 175

SOCKET_DISCONNECTED Macro 176

SOCKET_ERROR Macro 176

Stack Members 176

BerkeleySocketInit Function 176

Internal Members 177

BSD_SCK_STATE Enumeration 177

BSDSocketArray Variable 178

gAutoPortNumber Variable 178

HandlePossibleTCPDisconnection Function 178

DNS 179

Public Members 179

DNSBeginUsage Function 180

DNSEndUsage Function 180

DNSResolve Function 181

DNSResolveROM Function 181

DNSIsResolved Function 182

DNS_TYPE_A Macro 182

DNS_TYPE_MX Macro 183

Internal Members 183

DNSPutString Function 184

DNSPutROMString Function 184

DNS_PORT Macro 185

DNS_TIMEOUT Macro 185

DNSHostName Variable 185

DNSHostNameROM Variable 185

Flags Variable 186

RecordType Variable 186

ResolvedInfo Variable 186

smDNS Variable 186

DNS_HEADER Structure 187

DNSDiscardName Function 187

Dynamic DNS Client 188

Public Members 188

DDNS_POINTERS Structure 189

DDNS_SERVICES Enumeration 190

DDNS_STATUS Enumeration 190

Microchip TCP/IP Stack Help

vi

DDNSClient Variable 191

DDNSForceUpdate Function 191

DDNSGetLastIP Function 192

DDNSGetLastStatus Function 192

DDNSSetService Function 192

Stack Members 193

DDNSInit Function 193

DDNSTask Function 193

Internal Members 194

bForceUpdate Variable 195

ddnsServiceHosts Variable 195

ddnsServicePorts Variable 195

dwUpdateAt Variable 195

lastKnownIP Variable 195

lastStatus Variable 196

_checkIpSrvrResponse Variable 196

_updateIpSrvrResponse Variable 196

DDNS_CHECKIP_SERVER Macro 196

DDNS_DEFAULT_PORT Macro 197

Hashes 197

Public Members 197

HashAddData Function 198

HashAddROMData Function 198

MD5Calculate Function 199

MD5Initialize Function 200

SHA1Calculate Function 200

SHA1Initialize Function 200

HASH_SUM Structure 201

Stack Members 202

MD5AddROMData Function 202

SHA1AddROMData Function 203

SHA1AddData Function 203

MD5AddData Function 204

Internal Members 204

_MD5_k Variable 205

_MD5_r Variable 205

lastBlock Variable 205

HASH_TYPE Enumeration 205

SHA1HashBlock Function 206

MD5HashBlock Function 207

Helpers 207

Microchip TCP/IP Stack Help

vii

Public Members 208

Base64Decode Function 209

Base64Encode Function 209

btohexa_high Function 210

btohexa_low Function 210

CalcIPBufferChecksum Function 211

CalcIPChecksum Function 211

ExtractURLFields Function 212

FormatNetBIOSName Function 215

GenerateRandomDWORD Function 215

hexatob Function 216

leftRotateDWORD Function 216

leftRotateDWORD Macro 217

Replace Function 217

ROMStringToIPAddress Function 218

ROMStringToIPAddress Macro 219

stricmppgm2ram Function 219

StringToIPAddress Function 219

strupr Function 220

strnchr Function 220

swapl Function 221

swaps Function 221

uitoa Function 222

ultoa Function 222

UnencodeURL Function 223

Functions 223

LFSRRand Function 223

LFSRSeedRand Function 224

Variables 225

dwLFSRRandSeed Variable 225

HTTP2 Server 225

Features 226

Dynamic Variables 226

Form Processing 228

Authentication 231

Cookies 233

Compression 233

Public Members 234

curHTTP Variable 235

HTTP_CONN Structure 235

HTTP_IO_RESULT Enumeration 236

HTTP_READ_STATUS Enumeration 236

Microchip TCP/IP Stack Help

viii

HTTPCheckAuth Function 236

HTTPExecuteGet Function 237

HTTPExecutePost Function 238

HTTPGetArg Function 239

HTTPGetROMArg Function 240

HTTPNeedsAuth Function 240

HTTPPrint_varname Function 241

HTTPReadPostName Function 242

HTTPReadPostPair Macro 243

HTTPReadPostValue Function 243

HTTPURLDecode Function 244

sktHTTP Macro 245

Stack Members 245

HTTPInit Function 245

HTTPServer Function 246

Internal Members 246

curHTTPID Variable 247

HTTP_CACHE_LEN Macro 248

HTTP_FILE_TYPE Enumeration 248

HTTP_MAX_DATA_LEN Macro 249

HTTP_MAX_HEADER_LEN Macro 249

HTTP_MIN_CALLBACK_FREE Macro 249

HTTP_PORT Macro 249

HTTP_STATUS Enumeration 249

HTTP_STUB Structure 250

HTTP_TIMEOUT Macro 251

httpContentTypes Variable 251

httpFileExtensions Variable 251

HTTPHeaderParseAuthorization Function 251

HTTPHeaderParseContentLength Function 252

HTTPHeaderParseCookie Function 252

HTTPHeaderParseLookup Function 253

HTTPIncFile Function 253

HTTPLoadConn Function 254

HTTPMPFSUpload Function 254

HTTPProcess Function 255

HTTPReadTo Function 255

HTTPRequestHeaders Variable 256

HTTPResponseHeaders Variable 256

HTTPS_PORT Macro 256

HTTPSendFile Function 257

httpStubs Variable 257

Microchip TCP/IP Stack Help

ix

SM_HTTP2 Enumeration 257

smHTTP Macro 258

RESERVED_HTTP_MEMORY Macro 258

ICMP 258

Public Members 259

ICMPBeginUsage Function 259

ICMPSendPing Function 260

ICMPSendPingToHost Function 260

ICMPSendPingToHostROM Function 261

ICMPGetReply Function 261

ICMPEndUsage Function 262

ICMPSendPingToHostROM Macro 262

Internal Members 263

ICMPProcess Function 263

ICMPFlags Variable 264

ICMP_PACKET Structure 264

ICMPState Variable 264

ICMP_TIMEOUT Macro 265

ICMPTimer Variable 265

StaticVars Variable 265

wICMPSequenceNumber Variable 266

MPFS2 266

Public Members 267

MPFS_HANDLE Type 268

MPFS_INVALID Macro 268

MPFS_INVALID_HANDLE Macro 268

MPFS_SEEK_MODE Enumeration 268

MPFSClose Function 269

MPFSFormat Function 269

MPFSGet Function 270

MPFSGetArray Function 270

MPFSGetBytesRem Function 271

MPFSGetEndAddr Function 271

MPFSGetFilename Function 272

MPFSGetFlags Function 272

MPFSGetID Function 273

MPFSGetLong Function 273

MPFSGetMicrotime Function 274

MPFSGetPosition Function 274

MPFSGetSize Function 274

MPFSGetStartAddr Function 275

Microchip TCP/IP Stack Help

x

MPFSGetTimestamp Function 275

MPFSOpen Function 276

MPFSOpenID Function 276

MPFSOpenROM Function 277

MPFSPutArray Function 277

MPFSSeek Function 278

MPFSPutEnd Function 278

Stack Members 279

MPFSInit Function 279

Internal Members 279

isMPFSLocked Variable 280

lastRead Variable 281

MAX_FILE_NAME_LEN Macro 281

MPFS_PTR Type 281

MPFS_STUB Structure 281

MPFS_WRITE_PAGE_SIZE Macro 282

MPFS2_FLAG_HASINDEX Macro 282

MPFS2_FLAG_ISZIPPED Macro 282

MPFSStubs Variable 282

MPFSTell Macro 283

ReadProgramMemory Function 283

_LoadFATRecord Function 283

_Validate Function 284

MPFS_FAT_RECORD Structure 284

fatCache Variable 284

fatCacheID Variable 285

numFiles Variable 285

MPFS_INVALID_FAT Macro 285

NBNS 285

Stack Members 286

NBNSGetName Function 286

NBNSPutName Function 287

NBNSTask Function 287

NBNS_HEADER Structure 288

NBNS_PORT Macro 288

Performance Tests 288

Stack Members 288

TCPPerformanceTask Function 289

UDPPerformanceTask Function 289

Internal Members 290

TCPRXPerformanceTask Function 290

Microchip TCP/IP Stack Help

xi

TCPTXPerformanceTask Function 291

PERFORMANCE_PORT Macro 291

RX_PERFORMANCE_PORT Macro 291

TX_PERFORMANCE_PORT Macro 292

SMTP Client 292

Examples 292

Short Message 292

Long Message 293

Public Members 295

SMTP_CONNECT_ERROR Macro 296

SMTP_POINTERS Structure 296

SMTP_RESOLVE_ERROR Macro 298

SMTP_SUCCESS Macro 298

SMTPBeginUsage Function 298

SMTPClient Variable 299

SMTPEndUsage Function 299

SMTPFlush Function 299

SMTPIsBusy Function 300

SMTPIsPutReady Function 300

SMTPPut Function 301

SMTPPutArray Function 301

SMTPPutDone Function 302

SMTPPutROMArray Function 302

SMTPPutROMString Function 303

SMTPPutString Function 303

SMTPSendMail Function 304

Stack Members 304

SMTPTask Function 305

Internal Members 305

CRPeriod Variable 306

FindEmailAddress Function 306

FindROMEmailAddress Function 307

MySocket Variable 307

PutHeadersState Variable 307

ResponseCode Variable 308

RXParserState Variable 308

SMTP_PORT Macro 309

SMTP_SERVER_REPLY_TIMEOUT Macro 309

SMTPFlags Variable 309

SMTPServer Variable 309

SMTPState Variable 310

TransportState Variable 311

Microchip TCP/IP Stack Help

xii

Reboot 312

Stack Members 312

RebootTask Function 312

REBOOT_PORT Macro 313

REBOOT_SAME_SUBNET_ONLY Macro 313

SNMP 313

Public Members 315

GENERIC_TRAP_NOTIFICATION_TYPE Enumeration 317

VENDOR_SPECIFIC_TRAP_NOTIFICATION_TYPE Enumeration 317

SNMP_ACTION Enumeration 317

COMMUNITY_TYPE Enumeration 318

SNMP_VAL Union 318

TRAP_INFO Structure 319

gSendTrapFlag Variable 319

gSetTrapSendFlag Variable 319

gGenericTrapNotification Variable 320

gSpecificTrapNotification Variable 320

gOIDCorrespondingSnmpMibID Variable 320

SNMPSendTrap Function 320

SNMPValidateCommunity Function 321

SNMPNotify Function 321

SNMPSetVar Function 322

SNMPGetVar Function 323

SNMPIsNotifyReady Function 323

SNMPNotifyPrepare Function 324

SNMPGetNextIndex Function 325

SNMP_ID Type 325

SNMP_INDEX Type 325

SNMP_COMMUNITY_MAX_LEN Macro 326

OID_MAX_LEN Macro 326

SNMP_START_OF_VAR Macro 326

SNMP_END_OF_VAR Macro 326

SNMP_INDEX_INVALID Macro 327

TRAP_TABLE_SIZE Macro 327

TRAP_COMMUNITY_MAX_LEN Macro 327

NOTIFY_COMMUNITY_LEN Macro 327

Internal Members 328

_SNMPDuplexInit Function 331

_SNMPGet Function 331

_SNMPGetTxOffset Macro 331

_SNMPPut Function 331

Microchip TCP/IP Stack Help

xiii

_SNMPSetTxOffset Macro 332

AGENT_NOTIFY_PORT Macro 332

appendZeroToOID Variable 332

ASN_INT Macro 332

ASN_NULL Macro 333

ASN_OID Macro 333

DATA_TYPE Enumeration 333

DATA_TYPE_INFO Structure 334

DATA_TYPE_TABLE_SIZE Macro 334

dataTypeTable Variable 334

FindOIDsInRequest Function 335

GET_BULK_REQUEST Macro 335

GET_NEXT_REQUEST Macro 335

GET_REQUEST Macro 335

GET_RESPONSE Macro 335

hMPFS Variable 336

INDEX_INFO Union 336

IS_AGENT_PDU Macro 336

IS_ASN_INT Macro 337

IS_ASN_NULL Macro 337

IS_GET_NEXT_REQUEST Macro 337

IS_GET_REQUEST Macro 337

IS_GET_RESPONSE Macro 337

IS_OCTET_STRING Macro 338

IS_OID Macro 338

GetDataTypeInfo Function 338

IS_SET_REQUEST Macro 338

IS_STRUCTURE Macro 339

IS_TRAP Macro 339

IsASNNull Function 339

MIB_INFO Union 339

OCTET_STRING Macro 340

OID_INFO Structure 340

PDU_INFO Structure 341

reqVarErrStatus Structure 341

SET_REQUEST Macro 342

SetErrorStatus Function 342

SNMP_AGENT_PORT Macro 342

SNMP_BIB_FILE_NAME Macro 343

SNMP_COUNTER32 Macro 343

SNMP_ERR_STATUS Enumeration 343

SNMP_GAUGE32 Macro 344

Microchip TCP/IP Stack Help

xiv

SNMP_IP_ADDR Macro 344

SNMP_NMS_PORT Macro 345

SNMP_NOTIFY_INFO Structure 345

SNMP_NSAP_ADDR Macro 345

IsValidLength Function 346

SNMP_OPAQUE Macro 346

SNMP_STATUS Union 346

SNMP_TIME_TICKS Macro 346

SNMP_V1 Macro 347

SNMP_V2C Macro 347

SNMPAgentSocket Variable 347

SNMPNotifyInfo Variable 347

snmpReqVarErrStatus Variable 348

SNMPRxOffset Variable 348

SNMPStatus Variable 348

SNMPTxOffset Variable 348

STRUCTURE Macro 348

TRAP Macro 349

trapInfo Variable 349

GetDataTypeInfo Function 349

GetNextLeaf Function 349

GetOIDStringByAddr Function 350

GetOIDStringByID Function 350

IsValidCommunity Function 350

IsValidInt Function 350

IsValidLength Function 351

IsValidOID Function 351

IsValidPDU Function 351

IsValidStructure Function 351

OIDLookup Function 352

ProcessGetSetHeader Function 352

ProcessHeader Function 353

ProcessSetVar Function 353

ProcessVariables Function 353

ReadMIBRecord Function 354

SNMPCheckIfPvtMibObjRequested Function 354

Stack Members 355

SNMPInit Function 355

SNMPTask Function 355

Functions 356

getSnmpV2GenTrapOid Function 357

ProcessGetBulkVar Function 357

Microchip TCP/IP Stack Help

xv

ProcessGetNextVar Function 358

ProcessGetVar Function 358

ProcessSnmpv3MsgData Function 358

SNMPGetExactIndex Function 358

SNMPIdRecrdValidation Function 359

SNMPIsValidSetLen Function 360

Snmpv3AESDecryptRxedScopedPdu Function 360

Snmpv3BufferPut Function 360

Snmpv3FormulateEngineID Function 361

Snmpv3GetAuthEngineTime Function 361

Snmpv3GetBufferData Function 361

Snmpv3InitializeUserDataBase Function 361

Snmpv3MsgProcessingModelProcessPDU Function 362

Snmpv3Notify Function 362

Snmpv3ScopedPduProcessing Function 362

Snmpv3TrapScopedpdu Function 362

Snmpv3UserSecurityModelProcessPDU Function 363

Snmpv3UsmAesEncryptDecryptInitVector Function 363

Snmpv3UsmOutMsgAuthenticationParam Function 363

Snmpv3ValidateEngineId Function 363

Snmpv3ValidateSecNameAndSecLvl Function 364

Snmpv3ValidateSecurityName Function 364

Types 364

INOUT_SNMP_PDU Enumeration 364

SNMPNONMIBRECDINFO Structure 365

SNMPV3MSGDATA Structure 365

Variables 365

getZeroInstance Variable 366

gSNMPv3ScopedPduDataPos Variable 366

gSNMPv3ScopedPduRequestBuf Variable 366

gSNMPv3ScopedPduResponseBuf Variable 366

msgSecrtyParamLenOffset Variable 367

Macros 367

IS_SNMPV3_AUTH_STRUCTURE Macro 367

REPORT_RESPONSE Macro 367

SNMP_MAX_MSG_SIZE Macro 368

SNMP_V3 Macro 368

SNTP Client 368

Public Members 368

SNTPGetUTCSeconds Function 369

Stack Members 369

SNTPClient Function 369

Microchip TCP/IP Stack Help

xvi

Internal Members 370

NTP_PACKET Structure 370

dwLastUpdateTick Variable 371

dwSNTPSeconds Variable 372

NTP_EPOCH Macro 372

NTP_FAST_QUERY_INTERVAL Macro 372

NTP_QUERY_INTERVAL Macro 372

NTP_REPLY_TIMEOUT Macro 373

NTP_SERVER Macro 373

NTP_SERVER_PORT Macro 373

SSL 373

Generating Server Certificates 374

Public Members 377

SSL_INVALID_ID Macro 378

TCPAddSSLListener Function 378

TCPSSLIsHandshaking Function 378

TCPStartSSLClient Function 379

TCPIsSSL Function 380

SSLStartSession Function 380

SSL_SUPPLEMENTARY_DATA_TYPES Enumeration 381

SSL_PKEY_INFO Structure 381

Stack Members 381

SSL_STATE Enumeration 382

SSLInit Function 382

SSLPeriodic Function 383

TCPRequestSSLMessage Function 383

TCPSSLGetPendingTxSize Function 384

TCPSSLHandleIncoming Function 384

TCPSSLHandshakeComplete Function 385

TCPSSLInPlaceMACEncrypt Function 385

TCPSSLPutRecordHeader Function 386

TCPStartSSLServer Function 386

SSL_MIN_SESSION_LIFETIME Macro 387

SSL_RSA_LIFETIME_EXTENSION Macro 387

Internal Members 387

CalculateFinishedHash Function 393

GenerateHashRounds Function 393

GenerateSessionKeys Function 394

HSEnd Function 394

HSGet Function 395

HSGetArray Function 395

HSGetWord Function 396

Microchip TCP/IP Stack Help

xvii

HSPut Function 396

HSPutArray Function 397

HSPutROMArray Function 398

HSPutWord Function 398

HSStart Function 398

isBufferUsed Variable 399

isHashUsed Variable 399

isStubUsed Variable 399

masks Variable 400

ptrHS Variable 400

RESERVED_SSL_MEMORY Macro 400

LoadOffChip Function 400

SaveOffChip Function 401

SM_SSL_RX_SERVER_HELLO Enumeration 401

SSL_ALERT Macro 402

SSL_ALERT_LEVEL Enumeration 402

SSL_APPLICATION Macro 402

SSL_BASE_BUFFER_ADDR Macro 403

SSL_BASE_HASH_ADDR Macro 403

SSL_BASE_KEYS_ADDR Macro 403

SSL_BASE_SESSION_ADDR Macro 403

SSL_BASE_STUB_ADDR Macro 403

SSL_BUFFER Union 404

SSL_BUFFER_SIZE Macro 404

SSL_BUFFER_SPACE Macro 404

SSL_CERT Variable 405

SSL_CERT_LEN Variable 405

SSL_CHANGE_CIPHER_SPEC Macro 405

SSL_HANDSHAKE Macro 405

SSL_HASH_SIZE Macro 405

SSL_HASH_SPACE Macro 406

SSL_KEYS Structure 406

SSL_KEYS_SIZE Macro 407

SSL_KEYS_SPACE Macro 407

SSL_MESSAGES Enumeration 407

SSL_RSA_EXPORT_WITH_ARCFOUR_40_MD5 Macro 408

SSL_RSA_WITH_ARCFOUR_128_MD5 Macro 408

SSL_SESSION Structure 408

SSL_SESSION_SIZE Macro 409

SSL_SESSION_SPACE Macro 409

SSL_SESSION_STUB Structure 409

SSL_SESSION_TYPE Enumeration 410

Microchip TCP/IP Stack Help

xviii

SSL_STUB Structure 410

SSL_STUB_SIZE Macro 411

SSL_STUB_SPACE Macro 411

SSL_VERSION Macro 412

SSL_VERSION_HI Macro 412

SSL_VERSION_LO Macro 412

SSLBufferAlloc Function 412

SSLBufferFree Function 413

sslBufferID Variable 413

SSLBufferSync Function 414

SSLFinishPartialRecord Macro 414

SSLFlushPartialRecord Macro 414

sslHash Variable 415

SSLHashAlloc Function 415

SSLHashFree Function 415

sslHashID Variable 416

SSLHashSync Function 416

sslKeys Variable 417

sslKeysID Variable 417

SSLKeysSync Function 417

SSLMACAdd Function 418

SSLMACBegin Function 418

SSLMACCalc Function 418

SSLRSAOperation Function 418

sslRSAStubID Variable 419

SSLRxAlert Function 419

SSLRxAntiqueClientHello Function 420

SSLRxCCS Function 420

SSLRxClientHello Function 421

SSLRxClientKeyExchange Function 421

SSLRxFinished Function 422

SSLRxHandshake Function 422

SSLRxRecord Function 423

SSLRxServerCertificate Function 423

SSLRxServerHello Function 424

sslSession Variable 424

sslSessionID Variable 425

SSLSessionMatchID Function 425

SSLSessionMatchIP Function 425

SSLSessionNew Function 426

sslSessionStubs Variable 426

SSLSessionSync Function 427

Microchip TCP/IP Stack Help

xix

SSLSessionUpdated Macro 427

sslSessionUpdated Variable 427

SSLStartPartialRecord Function 428

sslStub Variable 428

SSLStubAlloc Function 429

SSLStubFree Function 429

sslStubID Variable 430

SSLStubSync Function 430

SSLTerminate Function 430

SSLTxCCSFin Function 431

SSLTxClientHello Function 431

SSLTxClientKeyExchange Function 432

SSLTxMessage Function 432

SSLTxRecord Function 433

SSLTxServerCertificate Function 433

SSLTxServerHello Function 434

SSLTxServerHelloDone Function 435

TCP 435

Public Members 436

INVALID_SOCKET Macro 438

UNKNOWN_SOCKET Macro 438

TCP_ADJUST_GIVE_REST_TO_RX Macro 439

TCP_ADJUST_GIVE_REST_TO_TX Macro 439

TCP_ADJUST_PRESERVE_RX Macro 439

TCP_ADJUST_PRESERVE_TX Macro 439

TCP_OPEN_IP_ADDRESS Macro 439

TCP_OPEN_NODE_INFO Macro 440

TCP_OPEN_RAM_HOST Macro 440

TCP_OPEN_ROM_HOST Macro 440

TCP_OPEN_SERVER Macro 440

TCPAdjustFIFOSize Function 441

TCPConnect Macro 442

TCPClose Function 442

TCPDiscard Function 442

TCPDisconnect Function 443

TCPFind Macro 443

TCPFindArray Macro 444

TCPFindArrayEx Function 444

TCPFindEx Function 445

TCPFindROMArray Macro 446

TCPFindROMArrayEx Function 446

TCPFlush Function 447

Microchip TCP/IP Stack Help

xx

TCPGet Function 447

TCPGetArray Function 448

TCPGetRemoteInfo Function 448

TCPGetRxFIFOFree Function 449

TCPGetRxFIFOFull Macro 449

TCPGetTxFIFOFree Macro 449

TCPGetTxFIFOFull Function 450

TCPIsConnected Function 450

TCPIsGetReady Function 451

TCPIsPutReady Function 451

TCPListen Macro 451

TCPOpen Function 452

TCPPeek Function 453

TCPPeekArray Function 454

TCPPut Function 454

TCPPutArray Function 455

TCPPutROMArray Function 455

TCPPutROMString Function 456

TCPPutString Function 457

TCPRAMCopy Function 457

TCPRAMCopyROM Function 458

TCPWasReset Function 458

Stack Members 459

SOCKET_INFO Structure 460

TCB Structure 460

TCB_STUB Structure 461

TCP_SOCKET Type 463

TCP_STATE Enumeration 463

TCPInit Function 464

TCPProcess Function 464

TCPTick Function 465

TCPSSLDecryptMAC Function 465

TCPStartSSLClientEx Function 466

Internal Members 467

ACK Macro 469

CloseSocket Function 469

FIN Macro 469

FindMatchingSocket Function 469

HandleTCPSeg Function 470

hCurrentTCP Variable 470

LOCAL_PORT_END_NUMBER Macro 471

LOCAL_PORT_START_NUMBER Macro 471

Microchip TCP/IP Stack Help

xxi

MyTCB Variable 471

MyTCBStub Variable 471

PSH Macro 472

RST Macro 472

SendTCP Function 472

SENDTCP_KEEP_ALIVE Macro 473

SENDTCP_RESET_TIMERS Macro 473

SwapTCPHeader Function 473

SYN Macro 473

SyncTCB Function 474

SyncTCBStub Macro 474

SYNQueue Variable 474

TCBStubs Variable 474

TCP_AUTO_TRANSMIT_TIMEOUT_VAL Macro 475

TCP_WINDOW_UPDATE_TIMEOUT_VAL Macro 475

TCP_CLOSE_WAIT_TIMEOUT Macro 475

TCP_DELAYED_ACK_TIMEOUT Macro 475

TCP_FIN_WAIT_2_TIMEOUT Macro 476

TCP_HEADER Structure 476

TCP_KEEP_ALIVE_TIMEOUT Macro 477

TCP_MAX_RETRIES Macro 477

TCP_MAX_SEG_SIZE_RX Macro 477

TCP_MAX_SEG_SIZE_TX Macro 478

TCP_MAX_SYN_RETRIES Macro 478

TCP_MAX_UNACKED_KEEP_ALIVES Macro 478

TCP_OPTIMIZE_FOR_SIZE Macro 478

TCP_OPTIONS Structure 479

TCP_OPTIONS_END_OF_LIST Macro 479

TCP_OPTIONS_MAX_SEG_SIZE Macro 479

TCP_OPTIONS_NO_OP Macro 479

TCP_SOCKET_COUNT Macro 480

TCP_START_TIMEOUT_VAL Macro 480

TCP_SYN_QUEUE Structure 480

TCP_SYN_QUEUE_MAX_ENTRIES Macro 481

TCP_SYN_QUEUE_TIMEOUT Macro 481

URG Macro 481

Variables 481

NextPort Variable 481

TFTP 486

Public Members 487

TFTPClose Macro 489

TFTPCloseFile Function 489

Microchip TCP/IP Stack Help

xxii

TFTPGet Function 490

TFTPGetError Macro 490

TFTPIsFileClosed Function 491

TFTPIsFileOpened Function 491

TFTPIsFileOpenReady Macro 492

TFTPIsGetReady Function 492

TFTPIsOpened Function 493

TFTPIsPutReady Function 493

TFTPOpen Function 494

TFTPOpenFile Function 495

TFTPOpenROMFile Function 495

TFTPPut Function 496

TFTP_ACCESS_ERROR Enumeration 496

TFTP_FILE_MODE Enumeration 496

TFTP_RESULT Enumeration 497

TFTPGetUploadStatus Function 497

TFTPUploadFragmentedRAMFileToHost Function 498

TFTPUploadRAMFileToHost Function 499

TFTP_CHUNK_DESCRIPTOR Structure 499

TFTP_UPLOAD_COMPLETE Macro 500

TFTP_UPLOAD_CONNECT Macro 500

TFTP_UPLOAD_CONNECT_TIMEOUT Macro 500

TFTP_UPLOAD_GET_DNS Macro 500

TFTP_UPLOAD_HOST_RESOLVE_TIMEOUT Macro 501

TFTP_UPLOAD_RESOLVE_HOST Macro 501

TFTP_UPLOAD_SEND_DATA Macro 501

TFTP_UPLOAD_SEND_FILENAME Macro 501

TFTP_UPLOAD_SERVER_ERROR Macro 501

TFTP_UPLOAD_WAIT_FOR_CLOSURE Macro 502

Stack Members 502

TFTP_ARP_TIMEOUT_VAL Macro 502

TFTP_GET_TIMEOUT_VAL Macro 503

TFTP_MAX_RETRIES Macro 503

Internal Members 503

MutExVar Variable 504

TFTP_BLOCK_SIZE Macro 505

TFTP_BLOCK_SIZE_MSB Macro 505

TFTP_CLIENT_PORT Macro 505

TFTP_OPCODE Enumeration 505

TFTP_SERVER_PORT Macro 506

TFTP_STATE Enumeration 506

_tftpError Variable 506

Microchip TCP/IP Stack Help

xxiii

_tftpFlags Variable 506

_tftpRetries Variable 507

_TFTPSendAck Function 507

_TFTPSendFileName Function 507

_TFTPSendROMFileName Function 508

_tftpSocket Variable 508

_tftpStartTick Variable 508

_tftpState Variable 508

smUpload Variable 508

uploadChunkDescriptor Variable 509

uploadChunkDescriptorForRetransmit Variable 509

vUploadFilename Variable 509

vUploadRemoteHost Variable 509

wUploadChunkOffset Variable 510

wUploadChunkOffsetForRetransmit Variable 510

Tick 510

Public Members 511

TICK Type 511

TICK_HOUR Macro 512

TICK_MINUTE Macro 512

TICK_SECOND Macro 512

TickConvertToMilliseconds Function 512

TickGet Function 513

TickGetDiv256 Function 513

TickGetDiv64K Function 514

Stack Functions 514

TickInit Function 514

TickUpdate Function 515

Internal Members 515

dwInternalTicks Variable 515

GetTickCopy Function 516

TICKS_PER_SECOND Macro 516

vTickReading Variable 516

UDP 517

Public Members 518

INVALID_UDP_PORT Macro 519

INVALID_UDP_SOCKET Macro 519

UDP_SOCKET Type 519

UDPOpenEx Function 520

UDPOpen Macro 521

UDPClose Function 522

Microchip TCP/IP Stack Help

xxiv

UDPDiscard Function 522

UDPFlush Function 523

UDPGet Function 523

UDPGetArray Function 524

UDPIsGetReady Function 524

UDPIsPutReady Function 525

UDPPut Function 525

UDPPutArray Function 526

UDPPutROMArray Function 526

UDPPutROMString Function 527

UDPPutString Function 527

UDPSetRxBuffer Function 528

UDPSetTxBuffer Function 528

UDPIsOpened Function 529

UDP_OPEN_IP_ADDRESS Macro 529

UDP_OPEN_NODE_INFO Macro 529

UDP_OPEN_RAM_HOST Macro 530

UDP_OPEN_ROM_HOST Macro 530

UDP_OPEN_SERVER Macro 530

Stack Members 530

UDPInit Function 531

UDPProcess Function 531

UDPTask Function 532

Internal Members 532

activeUDPSocket Variable 533

FindMatchingSocket Function 533

LastPutSocket Variable 534

LOCAL_UDP_PORT_END_NUMBER Macro 534

LOCAL_UDP_PORT_START_NUMBER Macro 534

SocketWithRxData Variable 534

UDP_HEADER Structure 535

UDP_PORT Type 535

UDP_SOCKET_INFO Structure 535

UDPRxCount Variable 536

UDPSocketInfo Variable 536

UDPTxCount Variable 536

wGetOffset Variable 536

wPutOffset Variable 537

Types 537

UDP_STATE Enumeration 537

Wi-Fi API 538

Microchip TCP/IP Stack Help

xxv

Wi-Fi Connection Profile 541

Connection Profile Public Members 541

WF_CPCreate Function 542

WF_CPDelete Function 543

WF_CPGetAdHocBehavior Function 543

WF_CPGetBssid Function 544

WF_CPGetDefaultWepKeyIndex Function 544

WF_CPGetElements Function 545

WF_CPGetIds Function 545

WF_CPGetNetworkType Function 546

WF_CPGetSecurity Function 547

WF_CPGetSsid Function 548

WF_CPSetAdHocBehavior Function 548

WF_CPSetBssid Function 549

WF_CPSetDefaultWepKeyIndex Function 549

WF_CPSetElements Function 550

WF_CPSetNetworkType Function 550

WF_CPSetSecurity Function 551

WF_CPSetSsid Function 552

WFCPElementsStruct Structure 552

Connection Profile Internal Members 553

LowLevel_CPGetElement Function 554

LowLevel_CPSetElement Function 554

Wi-Fi Connection Algorithm 555

Connection Algorithm Public Members 555

WF_CAGetBeaconTimeout Function 556

WF_CAGetBeaconTimeoutAction Function 557

WF_CAGetChannelList Function 558

WF_CAGetConnectionProfileList Function 558

WF_CAGetDeauthAction Function 559

WF_CAGetElements Function 559

WF_CAGetEventNotificationAction Function 560

WF_CAGetListenInterval Function 560

WF_CAGetListRetryCount Function 561

WF_CAGetMaxChannelTime Function 561

WF_CAGetMinChannelTime Function 562

WF_CAGetProbeDelay Function 562

WF_CAGetRssi Function 563

WF_CAGetScanCount Function 563

WF_CAGetScanType Function 564

WF_CASetBeaconTimeout Function 564

Microchip TCP/IP Stack Help

xxvi

WF_CASetBeaconTimeoutAction Function 565

WF_CASetChannelList Function 566

WF_CASetConnectionProfileList Function 566

WF_CASetDeauthAction Function 567

WF_CASetElements Function 567

WF_CASetEventNotificationAction Function 568

WF_CASetListenInterval Function 568

WF_CASetListRetryCount Function 569

WF_CASetMaxChannelTime Function 570

WF_CASetMinChannelTime Function 570

WF_CASetProbeDelay Function 571

WF_CASetRssi Function 571

WF_CASetScanCount Function 572

WF_CASetScanType Function 572

WFCAElementsStruct Structure 573

Connection Algorithm Internal Members 574

LowLevel_CAGetElement Function 575

LowLevel_CASetElement Function 575

SetEventNotificationMask Function 576

Wi-Fi Connection Manager 577

Connection Manager Public Members 577

WF_CMConnect Function 577

WF_CMDisconnect Function 578

WF_CMGetConnectionState Function 578

WF_CMInfoGetFSMStats Function 579

Wi-Fi Scan 579

Scan Public Members 579

WF_Scan Function 580

WF_ScanGetResult Function 581

Wi-Fi Tx Power Control 581

Tx Power Control Public Members 581

WF_TxPowerGetMinMax Function 582

WF_TxPowerSetMinMax Function 582

WF_TxPowerGetFactoryMax Function 583

Wi-Fi Power Save 583

Power Save Public Members 584

WF_GetPowerSaveState Function 584

WF_HibernateEnable Function 585

WF_PsPollDisable Function 586

WF_PsPollEnable Function 586

Power Save Internal Members 587

Microchip TCP/IP Stack Help

xxvii

SendPowerModeMsg Function 587

SetPowerSaveState Function 587

Wi-Fi Miscellaneous 588

Wi-Fi Miscellaneous Public Members 588

WF_GetDeviceInfo Function 589

WF_GetMacAddress Function 589

WF_GetMacStats Function 590

WF_GetMultiCastFilter Function 590

WF_GetRegionalDomain Function 591

WF_GetRtsThreshold Function 592

WF_SetMacAddress Function 592

WF_SetMultiCastFilter Function 593

WF_SetRegionalDomain Function 593

WF_SetRtsThreshold Function 594

tWFDeviceInfoStruct Structure 594

WFMacStatsStruct Structure 595

WF_ProcessEvent 596

Access Point Compatibility 598

WiFi Tips and Tricks 600

Hot Topics 601

Index a

Microchip TCP/IP Stack Help

xxviii

1 Introduction

Welcome to the Microchip TCP/IP Stack!

The Microchip TCP/IP Stack provides a foundation for embedded network applications by handling most of the interaction
required between the physical network port and your application. It includes modules for several commonly used application
layers, including HTTP for serving web pages, SMTP for sending e-mails, SNMP for providing status and control, Telnet,
TFTP, Serial-to-Ethernet and much more. In addition, the stack includes light-weight and high-performance implementations
of the TCP and UDP transport layers, as well as other supporting modules such as IP, ICMP, DHCP, ARP, and DNS.

This help file serves two purposes. The first is to be a guide for first-time users of the TCP/IP Stack. The Getting Started
section begins a series of pages to help you become familiar with the stack and configure it for use on a Microchip
development board.

The second purpose is to serve as a programmer's reference guide to the features and APIs available in the TCP/IP Stack.

Updates

The latest version of the Microchip TCP/IP Stack is always available at http://www.microchip.com/tcpip. New features are
constantly being added, so check there periodically for updates and bug fixes.

Wi-Fi® is a registered trademark of the Wi-Fi Alliance.

1.1 Getting Help
The TCP/IP Stack is supported through Microchip's standard support channels. If you encounter difficulties, you may submit
ticket requests at http://support.microchip.com.

The Microchip forums are also an excellent source of information, with a very lively community dedicated specifically to
Ethernet and TCP/IP discussions at http://forum.microchip.com.

Microchip also offers embedded network classes through Regional Training Centers. For more information, visit
http://www.microchip.com/rtc.

1.2 Directory Structure
The TCP/IP Stack comes with many files, tools, documents, and project examples. Before getting started, take a moment to
familiarize yourself with the directory structure so that you may find what you need quickly. Installing the stack will produce
the following structure:

1.2 Directory Structure Microchip TCP/IP Stack Help

1

http://www.microchip.com/tcpip
http://support.microchip.com
http://forum.microchip.com/tt.aspx?forumid=173
http://www.microchip.com/rtc

Several demonstration projects are installed into the TCPIP directory in the default Microchip Solutions v20xx-xx-xx
directory. In your projects, you may wish to write your application code in a project folder located in the same place as the
demo project folders. For more information about specific demos, see the list of demo projects (see page 82) in this help
file. These project folders may contain additional subdirectories:

• A Configs subdirectory will contain alternative copies of the TCPIPConfig.h and HardwareProfile.h configuration files,
pre-configured to work with different demo boards. The default copies of these files in the demo folder will include one of
these alternative files based on a macro defined in the demo project.

• An SSLKeys subdirectory will contain sample security keys and certificates.

• A WebPages2 subdirectory will contain sample web pages for use with the MPFS2 file system.

• An MPLAB.X project folder contains the MPLAB X project files for the demo.

• A Precompiled Hex subdirectory contains precompiled hex images of the demo project.

Other stack-specific folders include are:

• The Microchip folder contains stack files and components.

• The Include sub-folder under the Microchip folder contains header files for Microchip stack and library solutions. The
TCPIP Stack folder in the Include folder contains headers for the TCP/IP Stack.

• The TCPIP Stack folder in the Microchip folder contains C source files, documentation, and stack utilities.

• The Demo Board Files subdirectory contains information about the different demo boards (see page 63) that can
run the TCP/IP stack.

• The Utilities subdirectory contains PC-based utilities that can help when using the stack. See the Software (see
page 58) section for more information. The source code for the Microchip TCP/IP Discoverer (see page 61), the
MPFS2 (see page 58) tool, and the MPFS library is located in the Source subdirectory in the Utilities directory.

In most cases, it will not be necessary to modify source or header files in the Microchip directory.

1.2 Directory Structure Microchip TCP/IP Stack Help

2

2 SW License Agreement

MICROCHIP IS WILLING TO LICENSE THE ACCOMPANYING SOFTWARE AND DOCUMENTATION TO YOU ONLY
ON THE CONDITION THAT YOU ACCEPT ALL OF THE FOLLOWING TERMS. TO ACCEPT THE TERMS OF THIS
LICENSE, CLICK "I ACCEPT" AND PROCEED WITH THE DOWNLOAD OR INSTALL. IF YOU DO NOT ACCEPT
THESE LICENSE TERMS, CLICK "I DO NOT ACCEPT," AND DO NOT DOWNLOAD OR INSTALL THIS SOFTWARE.
BY DOWNLOADING AND INSTALLING THE SOFTWARE, LICENSEE AGREES TO BE BOUND BY THE TERMS OF
THIS AGREEMENT.

NON-EXCLUSIVE SOFTWARE LICENSE AGREEMENT FOR ACCOMPANYING MICROCHIP SOFTWARE AND
DOCUMENTATION

This Nonexclusive Software License Agreement ("Agreement") is a contract between you, your heirs, successors and
assigns ("Licensee") and Microchip Technology Incorporated, a Delaware corporation, with a principal place of business at
2355 W. Chandler Blvd., Chandler, AZ 85224-6199, and its subsidiary, Microchip Technology (Barbados) II Incorporated
(collectively, "Microchip") for the accompanying Microchip software including, but not limited to, Graphics Library Software,
IrDA Stack Software, MCHPFSUSB Stack Software, Memory Disk Drive File System Software, mTouch(TM) Capacitive
Library Software, Smart Card Library Software, TCP/IP Stack Software, MiWi(TM) DE Software, and/or any PC programs
and any updates thereto (collectively, the "Software"), and accompanying documentation, including images and any other
graphic resources provided by Microchip ("Documentation").

The Software and Documentation are licensed under this Agreement and not sold. U.S. copyright laws, international
copyright treaties, and other intellectual property laws and treaties protect the Software and Documentation. Microchip
reserves all rights not expressly granted to Licensee in this Agreement.

1. Definitions. As used in this Agreement, the following capitalized terms will have the meanings defined below:

1. "Microchip Products" means Microchip microcontrollers and Microchip digital signal controllers.

2. "Licensee Products" means Licensee products that use or incorporate Microchip Products.

3. "Object Code" means the Software computer programming code that is in binary form (including related
documentation, if any), and error corrections, improvements, modifications, and updates.

4. "Source Code" means the Software computer programming code that may be printed out or displayed in human
readable form (including related programmer comments and documentation, if any), and error corrections,
improvements, modifications, and updates.

5. "Third Party" means Licensee’s agents, representatives, consultants, clients, customers, or contract manufacturers.

6. "Third Party Products" means Third Party products that use or incorporate Microchip Products.

2. Software License Grant. Microchip grants strictly to Licensee a non-exclusive, non-transferable, worldwide license to:

1. use the Software in connection with Licensee Products and/or Third Party Products;

2. if Source Code is provided, modify the Software, provided that no Open Source Components (defined in Section 5
below) are incorporated into such Software in such a way that would affect Microchip’s right to distribute the Software
with the limitations set forth herein and provided that Licensee clearly notifies Third Parties regarding such
modifications;

3. distribute the Software to Third Parties for use in Third Party Products, so long as such Third Party agrees to be bound
by this Agreement (in writing or by "click to accept (see page 164)") and this Agreement accompanies such
distribution;

4. sublicense to a Third Party to use the Software, so long as such Third Party agrees to be bound by this Agreement (in
writing or by "click to accept (see page 164)");

5. with respect to the TCP/IP Stack Software, Licensee may port the ENC28J60.c, ENC28J60.h, ENCX24J600.c, and
ENCX24J600.h driver source files to a non-Microchip Product used in conjunction with a Microchip ethernet controller;

6. with respect to the MiWi (TM) DE Software, Licensee may only exercise its rights when the Software is embedded on
a Microchip Product and used with a Microchip radio frequency transceiver or UBEC UZ2400 radio frequency
transceiver which are integrated into Licensee Products or Third Party Products.

2 Microchip TCP/IP Stack Help

3

For purposes of clarity, Licensee may NOT embed the Software on a non-Microchip Product, except as described in this
Section.

3. Documentation License Grant. Microchip grants strictly to Licensee a non-exclusive, non-transferable, worldwide
license to use the Documentation in support of Licensee's authorized use of the Software

4. Third Party Requirements. Licensee acknowledges that it is Licensee’s responsibility to comply with any third party
license terms or requirements applicable to the use of such third party software, specifications, systems, or tools.
Microchip is not responsible and will not be held responsible in any manner for Licensee’s failure to comply with such
applicable terms or requirements.

5. Open Source Components. Notwithstanding the license grant in Section 1 above, Licensee further acknowledges that
certain components of the Software may be covered by so-called "open source" software licenses ("Open Source
Components"). Open Source Components means any software licenses approved as open source licenses by the Open
Source Initiative or any substantially similar licenses, including without limitation any license that, as a condition of
distribution of the software licensed under such license, requires that the distributor make the software available in source
code format. To the extent required by the licenses covering Open Source Components, the terms of such license will
apply in lieu of the terms of this Agreement, and Microchip hereby represents and warrants that the licenses granted to
such Open Source Components will be no less broad than the license granted in Section 1. To the extent the terms of the
licenses applicable to Open Source Components prohibit any of the restrictions in this Agreement with respect to such
Open Source Components, such restrictions will not apply to such Open Source Component.

6. Licensee Obligations.

1. Licensee will ensure Third Party compliance with the terms of this Agreement, and will be liable for any breach of this
Agreement committed by such Third Party.

2. Licensee will not: (i) engage in unauthorized use, modification, disclosure or distribution of Software or Documentation,
or its derivatives; (ii) use all or any portion of the Software, Documentation, or its derivatives except in conjunction with
Microchip Products or Third Party Products; or (iii) reverse engineer (by disassembly, decompilation or otherwise)
Software or any portion thereof.

3. Licensee may not remove or alter any Microchip copyright or other proprietary rights notice posted in any portion of the
Software or Documentation.

4. Licensee will defend, indemnify and hold Microchip and its subsidiaries harmless from and against any and all claims,
costs, damages, expenses (including reasonable attorney's fees), liabilities, and losses, including without limitation
product liability claims, directly or indirectly arising from or related to: (i) the use, modification, disclosure or distribution
of the Software, Documentation, or any intellectual property rights related thereto; (ii) the use, sale and distribution of
Licensee Products or Third Party Products; and (iii) breach of this Agreement. THIS SECTION 3(d) STATES THE
SOLE AND EXCLUSIVE LIABILITY OF THE PARTIES FOR INTELLECTUAL PROPERTY INFRINGEMENT.

7. Confidentiality. Licensee agrees that the Software (including but not limited to the Source Code, Object Code and library
files) and its derivatives, Documentation and underlying inventions, algorithms, know-how and ideas relating to the
Software and the Documentation are proprietary information belonging to Microchip and its licensors ("Proprietary
Information"). Except as expressly and unambiguously allowed herein, Licensee will hold in confidence and not use or
disclose any Proprietary Information and will similarly bind its employees and Third Party(ies) in writing. Proprietary
Information will not include information that: (i) is in or enters the public domain without breach of this Agreement and
through no fault of the receiving party; (ii) the receiving party was legally in possession of prior to receiving it; (iii) the
receiving party can demonstrate was developed by the receiving party independently and without use of or reference to
the disclosing party's Proprietary Information; or (iv) the receiving party receives from a third party without restriction on
disclosure. If Licensee is required to disclose Proprietary Information by law, court order, or government agency, License
will give Microchip prompt notice of such requirement in order to allow Microchip to object or limit such disclosure.
Licensee agrees that the provisions of this Agreement regarding unauthorized use and nondisclosure of the Software,
Documentation and related Proprietary Rights are necessary to protect the legitimate business interests of Microchip and
its licensors and that monetary damage alone cannot adequately compensate Microchip or its licensors if such provisions
are violated. Licensee, therefore, agrees that if Microchip alleges that Licensee or Third Party has breached or violated
such provision then Microchip will have the right to petition for injunctive relief, without the requirement for the posting of a
bond, in addition to all other remedies at law or in equity.

8. Ownership of Proprietary Rights. Microchip and its licensors retain all right, title and interest in and to the Software and
Documentation ("Proprietary Rights") including, but not limited to all patent, copyright, trade secret and other intellectual
property rights in the Software, Documentation, and underlying technology and all copies and derivative works thereof (by
whomever produced). Further, copies and derivative works will be considered works made for hire with ownership vesting
in Microchip on creation. To the extent such modifications and derivatives do not qualify as a "work for hire," Licensee
hereby irrevocably transfers, assigns and conveys the exclusive copyright thereof to Microchip, free and clear of any and
all liens, claims or other encumbrances, to the fullest extent permitted by law. Licensee and Third Party use of such
modifications and derivatives is limited to the license rights described in Sections this Agreement.

9. Termination of Agreement. Without prejudice to any other rights, this Agreement terminates immediately, without notice

2 Microchip TCP/IP Stack Help

4

by Microchip, upon a failure by Licensee or Third Party to comply with any provision of this Agreement. Upon termination,
Licensee and Third Party will immediately stop using the Software, Documentation, and derivatives thereof, and
immediately destroy all such copies.

10. Warranty Disclaimers. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. MICROCHIP
AND ITS LICENSORS ASSUME NO RESPONSIBILITY FOR THE ACCURACY, RELIABILITY OR APPLICATION OF
THE SOFTWARE OR DOCUMENTATION. MICROCHIP AND ITS LICENSORS DO NOT WARRANT THAT THE
SOFTWARE WILL MEET REQUIREMENTS OF LICENSEE OR THIRD PARTY, BE UNINTERRUPTED OR
ERROR-FREE. MICROCHIP AND ITS LICENSORS HAVE NO OBLIGATION TO CORRECT ANY DEFECTS IN THE
SOFTWARE. LICENSEE AND THIRD PARTY ASSUME THE ENTIRE RISK ARISING OUT OF USE OR
PERFORMANCE OF THE SOFTWARE AND DOCUMENTATION PROVIDED UNDER THIS AGREEMENT.

11. Limited Liability. IN NO EVENT WILL MICROCHIP OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER
CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR OTHER LEGAL OR
EQUITABLE THEORY FOR ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES INCLUDING BUT NOT LIMITED
TO INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST
DATA, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY
THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS. The
aggregate and cumulative liability of Microchip and its licensors for damages hereunder will in no event exceed $1000 or
the amount Licensee paid Microchip for the Software and Documentation, whichever is greater. Licensee acknowledges
that the foregoing limitations are reasonable and an essential part of this Agreement. LICENSEE ACKNOWLEDGES AND
AGREES THAT IT IS SOLELY RESPONSIBLE FOR THE LICENSEE PRODUCTS AND THIRD PARTY PRODUCTS,
INCLUDING DETERMINING WHETHER SUCH PRODUCTS INFRINGE A PATENT, COPYRIGHT OR OTHER
PROPRIETARY RIGHT OF ANY THIRD PARTY. LICENSEE AGREES THAT MICROCHIP HAS NO OBLIGATION TO
INDEMNIFY OR DEFEND LICENSEE IN THE EVENT THAT A THIRD PARTY MAKES A CLAIM REGARDING
LICENSEE PRODUCTS OR THIRD PARTY PRODUCTS.

12. General. THIS AGREEMENT WILL BE GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF
ARIZONA AND THE UNITED STATES WITHOUT REGARD TO CONFLICTS OF LAWS PROVISIONS. Licensee agrees
that any disputes arising out of or related to this Agreement, Software or Documentation will be brought in the courts of
the State of Arizona. The parties agree to waive their rights to a jury trial in actions relating to this Agreement. If either the
Microchip or Licensee employs attorneys to enforce any rights arising out of or relating to this Agreement, the prevailing
party will be entitled to recover its reasonable attorneys' fees, costs and other expenses. This Agreement will constitute
the entire agreement between the parties with respect to the subject matter hereof. It will not be modified except by a
written agreement signed by an authorized representative of the Microchip. Microchip’s authorized representatives will
have the right to reasonably inspect Licensee's premises and to audit Licensee's records and inventory of Licensee
Products in order to ensure Licensee's adherence to the terms of this Agreement. If any provision of this Agreement will
be held by a court of competent jurisdiction to be illegal, invalid or unenforceable, that provision will be limited or
eliminated to the minimum extent necessary so that this Agreement will otherwise remain in full force and effect and
enforceable. No waiver of any breach of any provision of this Agreement will constitute a waiver of any prior, concurrent
or subsequent breach of the same or any other provisions hereof, and no waiver will be effective unless made in writing
and signed by an authorized representative of the waiving party. Licensee agrees to comply with all export laws and
restrictions and regulations of the Department of Commerce or other United States or foreign agency or authority. The
indemnities, obligations of confidentiality, and limitations on liability described herein, and any right of action for breach of
this Agreement prior to termination, will survive any termination of this Agreement. Neither this Agreement nor any rights,
licenses or obligations hereunder, may be assigned by Licensee without the prior written approval of Microchip except
pursuant to a merger, sale of all assets of Licensee or other corporate reorganization, provided that assignee agrees in
writing to be bound by the Agreement. Any prohibited assignment will be null and void. Use, duplication or disclosure by
the United States Government is subject to restrictions set forth in subparagraphs (a) through (d) of the Commercial
Computer-Restricted Rights clause of FAR 52.227-19 when applicable, or in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013, and in similar clauses in the NASA FAR
Supplement. Contractor/manufacturer is Microchip Technology Inc., 2355 W. Chandler Blvd., Chandler, AZ 85224-6199.

If Licensee has any questions about this Agreement, please write to Microchip Technology Inc., 2355 W. Chandler Blvd.,
Chandler, AZ 85224-6199 USA. ATTN: Marketing.

Copyright (c) 2011 Microchip Technology Inc. All rights reserved.

License Rev. No. 03-060111

2 Microchip TCP/IP Stack Help

5

3 Release Notes

Microchip TCP/IP Stack Version Log:

Remarks

Please file bug-reports/bug-fixes at http://support.microchip.com/ or post to the Microchip TCP/IP -> Ethernet Forum at
http://forum.microchip.com/ Look for stack updates at http://www.microchip.com/mal/

v5.36.2 July 2011

Changes:

1. Removed the Google PowerMeter and Google PowerMeter EZConfig demos. Google, Inc. has deprecated Google
PowerMeter and has expressed the intent to remove access to it on September 16, 2011. To obtain Microchip
Technology's Google PowerMeter reference implementation, you can download the June 2011 Microchip Application
Libraries archived release from www.microchip.com/mal.

2. Modified the Energy Monitoring demo to remove Google PowerMeter functionality. The demo will still display measured
power data on its internal web page.

3. Updated the TCP/IP Stack Performance table to use the testing methodology from previous releases. More information is
available in the TCP/IP Stack Help file.

4. gSnmpNonMibRecInfo (see page 113)[] has been moved from snmp.c file to CustomSNMPApp.c file and
SNMP_MAX_NON_REC_ID_OID (see page 114) macro has been moved from snmp.h file to CustomSNMPApp.c file.
gSnmpNonMibRecInfo (see page 113)[] is used to list the static variables parent OID strings which are not part of mib.h
file. This structure is used to restrict the access to the SNMPv3 objects from SNMPv2c and SNMPv1 version requests.
Macro STACK_USE_SMIV2 (see page 114) is used to support gSnmpNonMibRecInfo (see page 113)[] with
MODULE-IDENTITY number. For V5.31 STACK_USE_SMIV2 (see page 114) need to commented.

5. Removed the SPI2CON register freeze-on-halt bit macro from the SPIFlash, RAM, and EEPROM driver files to provide
compatibility with C32 v2.00.

Fixes:

1. Removed the MPFSImg2 files from the MPLAB X C18/C30 projects so that the projects will compile. Disabled
MPFSImg2.c for PIC32 Explorer 16 projects.

2. Added a heap and minimum stack size for the PIC32 Ethernet Starter Kit MPLAB X project.

3. The TCP/IP Stack Help File's performance table has been updated using the same test procedure used in previous
releases.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

3. LCDBlocking.c timing for the LCD_E_IO enable signal is too fast to meet published data sheet limits for various LCD
controllers when compiling for a PIC32 running at > 43MHz. Despite this potential timing violation, the LCD does normally
work correctly on the precompiled PIC32 demos for the Explorer 16 at 80MHz.

3 Microchip TCP/IP Stack Help

6

4. For PIC32 implementations, depending on the configuration, it is possible that the MACGetFreeRxSize() returns a value
greater than 64 KB. For backward compatibility reasons the stack uses a 16 bit value to check the returned value and it
won't work corretly.

5. Limiting the number of UDP sockets to 8 in the stack demos may prevent SNMP trap functionality. If this occurs, you can
increase the MAX_UDP_SOCKETS definition in TCPIPConfig.h to 10 (if your system will support the increased data
memory usage) to fix this issue.

6. The SNMP mib file's date and version parameter does not match the date/version of the current stack release.

v5.36 2 June 2011

Changes:

1. Because of changes to the SHOUTcast server configuration, the Internet Radio demo is no longer functional. This demo
has been retained in the stack distribution to provide a TCP/IP code example.

2. The UDP module will now perform address resolution and DNS querying automatically. As a result, the UDP module APIs
have changed. The UDPOpenEx (see page 520) function provides this additional functionality. Please consult the
TCP/IP Stack Help File's "Stack API > UDP" topic for more information.

3. The UDPOpen (see page 521) macro has been added to conform to the legacy UDPOpen (see page 521) interface.

4. The Announce (see page 150), BerkeleyAPI, DHCP client/server, DNS client/server, NBNS, Reboot (see page 312),
SNMP, SNTP, TFTPc, UDPPerformanceTest, and ZeroConf modules have been updated to use the new UDP API. The
iPerf demo has also been updated.

5. The MPFS Classic and HTTP(1) modules have been removed from the stack. Function- ality to support these modules
has also been removed from the TCP/IP Stack software tools. MPFS2 and HTTP2 are still supported.

6. The UARTConfig demo module has been updated to upload MPFS2 images to the demo board in place of MPFS Classic
images.

7. To facilitate linking on PIC18 platforms, the number of UDP sockets in demo projects has been reduced from 10 to 8.

8. The SNMP Stack application and mib2bib.jar PC utility now both support 1024 dynamic IDs.

9. SNMP_DEMO_TRAP is a new dynamic variable added to the snmp.mib file to support SMIv2 with TRAPv2. This will
correct a previously existing issue viewing traps with the iReasoning MIB browser. As per those changes, the mchp.mib
file has been modified to support the SMIv2 standard. This mib includes MODULE-IDENTITY which will provide
MICROCHIP and MIB information. snmp.mib also includes MODULE-IDENTIY(1), a new number (1) to the existing OID
after ENTERPRISE-ID(17095).

10. Added a preprocessor check that will include the ultoa function if a version of the C32 compiler earlier than 1.12 is used.

11. Modified the WiFi module to use separate retry counters for AdHoc and Infrastructure modes.

12. Modified Berkeley API module to accept (see page 164) IPPROTO_IP (see page 169) as a valid protocol for the
socket function. The code will determine the protocol type from the socket type (datagram or stream).

13. Created MPLAB X projects corresponding to most MPLAB 8 projects and configurations. These projects are located in
the MPLAB.X subfolder in the associated demo project directory. The MPLAB X import wizard can be used to create
MPLAB X projects from MPLAB 8 projects that don't have an analogue in the new demo project folders.

14. Added project support for the dsPIC33E and PIC24E architectures.

15. All TCP/IP Stack demo projects have been moved to the "TCPIP" subdirectory in the stack installation directory.

16. Created Java versions of several TCP/IP tools to provide cross-platform support. The TCP/IP Configuration Wizard has
not been ported to Java; thus, it is only available for Windows users.

17. To prevent issues with path length, MPLAB 8 project names have been changed. A list of the abbreviations used in the
project names is available in the MAL help folder (Microchip Solutions/Microchip/Help/Abbreviations.htm). The names of
the HardwareProfile and TCPIPConfig configuration files have been abbreviated as well.

18. Changed the configuration inclusion macros used by the TCP/IP Stack demo projects to match the terms used in the
project/configuration names.

19. The "Alternative Configurations" subfolders in most demo projects has been renamed to "Configs."

3 Microchip TCP/IP Stack Help

7

20. Added a Google PowerMeter demo for use with the PIC18F87J72 Energy Monitoring PICtail.

21. The Web Preview tool is no longer included with the stack.

Fixes:

1. Fixed a DHCP Server (DHCPs.c) lease leak problem that would occur when STACK_USE_ZEROCONF_LINK_LOCAL
was defined. This problem would have resulted in the DHCP server stop giving out any leases until being rebooted.

2. Updated the PIC32MX6XX/7XX external PHY SMSC 8720LAN reference design.

3. Fixed bug with window expecting MACGetFreeRxSize() to return values < 32KB.

4. Fixed a type casting bug with the CalcIPChecksum (see page 211) function that would cause an incorrect TX
checksum if the checksum value overflowed again after adding the carry bits to the checksum value.

5. Fixed a bug in the AutoIP module that may have prevented the module from correctly defending its own address.

6. Added a check to the Announce (see page 150) module to ensure the MAC layer is linked before attemping to transmit
an Announce (see page 150) message.

7. Fixed a bug in the ETH97J60 MACPut function.

8. Added an additional preprocessor check in a debug menu setting in WF_Spi.c to prevent a build error.

9. Added a fix to the Google PowerMeter demo code to restore SNTP timestamp sourcing if SNTP is enabled. Previously, it
would be overwritten by a possibly invalid HTTP timestamp.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

3. LCDBlocking.c timing for the LCD_E_IO enable signal is too fast to meet published data sheet limits for various LCD
controllers when compiling for a PIC32 running at > 43MHz. Despite this potential timing violation, the LCD does normally
work correctly on the precompiled PIC32 demos for the Explorer 16 at 80MHz.

4. For PIC32 implementations, depending on the configuration, it is possible that the MACGetFreeRxSize() returns a value
greater than 64 KB. For backward compatibility reasons the stack uses a 16 bit value to check the returned value and it
won't work corretly.

5. Limiting the number of UDP sockets to 8 in the stack demos may prevent SNMP trap functionality. If this occurs, you can
increase the MAX_UDP_SOCKETS definition in TCPIPConfig.h to 10 (if your system will support the increased data
memory usage) to fix this issue.

6. The SNMP mib file's date and version parameter does not match the date/version of the current stack release.

v5.31 19 October 2010

Changes:

1. Reorganized demo projects. The TCPIP ENCX24J600 Demo App, TCPIP PIC32 ETH Demo App, and TCPIP WiFi Demo
App projects in stack versions 5.25 and prior have all been merged into the TCPIP Demo App folder. All four of these
projects were almost identical to each other, with the primary difference being the network interface controller the projects
were preconfigured to support. In this 5.31 TCP/IP Stack release, each hardware combination now has its own MPLAB
IDE project in the TCPIP Demo App folder.

2. Reorganized HardwareProfile.h and TCPIPConfig.h structure for the TCPIP Demo App, TCPIP Google PowerMeter
Demo App, and TCPIP WebVend App projects. Now, instead of having one massive HardwareProfile.h file that supports
a multitude of hardware platforms simultaneously, simple individual hardware profiles have been created for specific
hardware combinations and placed in the "Alternative Configurations" sub-folder. The correct hardware profile or TCPIP
config file is selected by #including "HardwareProfile.h" or "TCPIPConfig.h" as in previous stack versions. However, the

3 Microchip TCP/IP Stack Help

8

active hardware profile or config file from the Alternative Configurations folder is selected by a preprocessor macro
defined in the MPLAB project settings (passed on the command line to the compiler).

3. Added HTTP_SAVE_CONTEXT_IN_PIC_RAM option to TCPIPConfig.h (HTTP2 server module). This option, when
enabled, will increase HTTP2 server performance when servicing multiple simultaneous connections at the expense of
using more PIC RAM.

4. Added automatic TPIN+/- polarity swapping logic to ETH97J60.c driver for PIC18F97J60 family devices. Some 3rd party
Ethernet switches, routers, and end devices have their TX+/- pins wired backwards such that the remote TX+ signal
connects to the PIC TPIN- pin and the remote TX- signal connects to the PIC TPIN+ pin. Because 10BaseT Ethernet
signaling is polarized and the PIC18F97J60 family does not implement an auto-polarity feature, this normally prevents all
RX communications with these non-IEEE 802.3 compliant link partners. To work around this incompatibility, it is possible
to implement circuitry to swap the RX+ and RX- signals before reaching the TPIN+ and TPIN- pins. The PICDEM.net 2
Rev 6 reference design includes this necessary circuitry (U6, U7, R54, and RX_SWAP GPIO output pin from PIC). This
stack version automatically controls the RX_SWAP signal based on the ETH_RX_POLARITY_SWAP_TRIS and
ETH_RX_POLARITY_SWAP_IO definitions in HardwareProfile.h. If these macros are undefined, then the automatic
polarity swapping feature is disabled in the ETH97J60.c driver.

5. Added portable LFSRRand (see page 223)() and LFSRSeedRand (see page 224)() public functions to Helpers.c and
removed all references to C rand() and srand() functions. The C rand() function returns a 15 bit integer on 8 and 16 bit
PICs, but a 31 bit integer on PIC32s. The LFSRRand (see page 223)() function returns a 16-bit integer, regardless of
which PIC you are using.

6. Added support for various SST/Microchip brand SST25xxxxx SPI Flash chips to SPIFlash.c driver. Previously only
devices supporting the Auto Address (see page 142) Increment (AAI) Word Program opcode (0xAD) would work. Now,
devices such as the SST2525VF010A should work, which require the AAI Byte program opcode (0xAF) instead.

7. Removed support for Spansion brand SPI Flash chips in the SPIFlash.c driver. If your application is already using one of
these devices, continue to use the SPIFlash.c/.h files from TCP/IP Stack 5.25. These older files are API compatible with
the current version, so can be dropped in by simply overwriting the SPIFlash.c and SPIFlash.h files.

8. Removed a -4 offset from the advirtised TCP Maximum Segment Size option (MSS) and TCP_MAX_SEG_SIZE_RX (
see page 477) configuration value in TCP.c. The default TCP MSS advertised is now 536 instead of 532.

9. For Wi-Fi projects in the TCPIP Demo App folder, changed MY_DEFAULT_LIST_RETRY_COUNT to
WF_RETRY_FOREVER instead of 3. This changes default connection behavior to keep trying to connect (see page
166) instead of just trying 3 times which makes more sense for demonstration.

10. Changed WF_Connect() beacon timeout to 40.

11. IFConfig command in TCPIP WiFi Console Demo App modified to return application-perspective MAC address from the
AppConfig structure, and not the Wi-Fi serialized MAC address (they may not match if user desired custom MAC).

12. Updated the TCP/IP Configuration Wizard. The user can now configure wireless settings and stack settings seperately.
Because of the changes to the TCPIPConfig.h file, the user must now select the specific copy of TCPIPConfig.h (or any of
its variants) instead of selecting a project directory. Added the ability to select WF_RETRY_FOREVER in the Wi-Fi
configuration settings. Added a selection parameter for BSD socket count. Added validation to check for the proper
number of Berkeley sockets and TCP performance test sockets in the socket configuration screen (Advanced Settings) if
either of these features are enabled. Added the ability to create sockets of the same type with different TX/RX buffer sizes
in the socket configuration screen.

13. Updated the TCPIP WebVend Demo App to support Wi-Fi in several configurations.

14. Modified the Google PowerMeter demo to automatically determine the date/time from the HTTP module if the date/time
cannot be obtained from the SNTP module.

15. Added a new Google Map project example to the Combo Demos folder. This example runs on a PIC24FJ256DA210
Development Board + Fast 100Mbps Ethernet PICtail Plus (or Ethernet PICtail Plus) + Truly 3.2" 240x320 display,
TFT_G240320LTSW_118W_E (or Powertip 4.3" 480x272 display, PH480272T_005_I11Q). It also can run on the PIC32
Multimedia Expansion Board + PIC32 Ethernet Starter Kit. This demo connects to the Internet, sends an HTTP query for
a specific map tile to the Google Static Maps API, and then displays the compressed tile to the graphics display. For more
information, see the "Getting Started - Running the Graphics Google Map Demo.htm" file in the Combo DemosGoogle
Map folder.

16. Added preliminary SNMPv3 module. This module, enabled with the STACK_USE_SNMPV3_SERVER option in
TCPIPConfig.h, implements the Simple Network Management Protocol, version 3. Among other things, SNMPv3 adds
secure authentication and cryptographic privacy as compared to SNMPv2C. This implementation currently only supports
AES encryption (no DES support). It also has only been tested with the PIC32 Ethernet Starter Kit (TCPIP Demo App -
C32 - PIC32_ENET_SK_DM320004_INTERNAL_ETHERNET.mcp MPLAB IDE project). SNMPv3 on PIC18, PIC24, and
dsPIC platforms are not supported at this time. Because AES encryption has specialized United States export
requirements, this TCP/IP Stack release does not include the required AES library to enable SNMPv3. To obtain the
needed AES library, you must purchase SW300052 v2.6 or later. Older v2.5 and previous versions include AES related

3 Microchip TCP/IP Stack Help

9

files on them, but do not include the new AES files required by SNMPv3. For more information on using SNMP, refer to
the TCP/IP Stack Help (Demo Information -> Available Demos -> TCPIP Demo App -> Demo Modules -> Network
Management (SNMP) Server).

17. Altered the SaveAppConfig() function in MainDemo.c to store a more robust signature to EEPROM/SPI Flash when
saving the AppConfig structure. In v5.25 and prior stack versions, when EEPROM or SPI Flash memory was available,
the stack would automatically write a one byte marker character to address 0x000000 in the EEPROM/Flash indicating if
a valid AppConfig structure was stored in the non-volatile memory. This resulted in the EEPROM/Flash contents being
organized like the following: Address (see page 142) Data Contents ===================
== 0x000000: Marker Byte 0x000001: AppConfig structure
MPFS_RESERVE_BLOCK: Start of MPFS/MPFS2 image containing web pages In this stack version, EEPOM/Flash
contents will now contain: Address (see page 142) Data Contents ===================
== 0x000000: Length of AppConfig structure (16-bit integer)
0x000002: IP checksum of the AppConfig default values, as defined in TCPIPConfig.h and WF_Config.h (16-bit integer).
0x000004: IP checksum of the subsequent EEPROM/Flash bytes of the AppConfig values. 0x000006: AppConfig
structure MPFS_RESERVE_BLOCK: Start of MPFS/MPFS2 image containing web pages

The additional checkums allow automatic detection to occur if you change one of the values in TCPIPConfig.h or
WF_Config.h that affects AppConfig. If you change one of the values in code, then upon boot up, the application will
automatically detect this change and start using the values that you selected in code. If, at run time, you decide to change
the AppConfig values and commit the changes to EEPROM/Flash, then the stack will subsequently use the run-time saved
values on future reboots. The checksum at offset 0x000004 ensures that if any corrupted AppConfig contents are found in
EEPROM/Flash (ex: power is lost between writing the signature structure and actual AppConfig structure, or code
unintentionally overwrites something in the AppConfig memory area), then the original defaults defined in TCPIPConfig.h
and WF_Config.h will be used instead of the corrupted values. This EEPROM/SPI Flash change affects all projects except
TCPIP Internet Radio App, TCPIP Internet Bootloader App, and all PIC32 Starter Kit projects since these projects do not
have or use external EEPROM or SPI Flash memory.

Fixes:

1. Fixed a UDP bug in which a transmitted packet would have been addressed to the wrong destination node if the UDP
socket received a broadcast packet from a different remote node from the last received packet, but using the same
source port number as the last received packet. The FindMatchingSocket (see page 469)() function in UDP.c will now
always change the local socket parameters to send to the most recent remote node's unicast IP address, regardless of if
the last received packet was addressed to a multicast or broadcast destination. Thanks go to Billy Walton for reporting
this erroneous behavior. If you wish to change the destination IP/MAC addresses or port number for a UDP packet that
you are ready to send, write the new parameters to the UDPSocketInfo (see page 536)[SocketHandle] global structure
before calling UDPFlush (see page 523)(). This structure contains remoteNode and remotePort parameters for the
remote IP address/MAC address and remote UDP port, respectively. You can also read these values to obtain the remote
addressing parameters for the last received packet on the given UDP socket. Note that "SocketHandle" refers to the UDP
socket handle returned by the UDPOpen (see page 521)() API, not the literal string "SocketHandle".

2. Fixed ADC state save/restore bug in GenerateRandomDWORD (see page 215)() function in Helpers.c. PIC24, dsPIC,
and PIC32 platforms require the ADC ON/ADON bit to be cleared before modifying certain other ADC register contents.

3. Fixed an ENC28J60 MAC/MII register write timing violation when using a PIC24H or dsPIC at over 33MIPS. There was
inadequate Chip Select hold time provided, violating the 210ns minimum specified in the ENC28J60 data sheet. This
violation may have resulted in certain devices losing the ability to receive packets (due to the MARXEN bit, MACON1<0>,
getting cleared unintentionally).

4. Fixed an ENCX24J600.c driver bug in which operating at 100Mbps with the ENC424J600/624J600 Ethernet controller, it
would be possible for the MACGetHeader() function to issue a Reset() operation under rare circumstances. The PIC
would reset whenever the PHY detected an illegal symbol during 4B5B decoding but guessed the correct 4B symbol such
that no data corruption or CRC error occurred. This condition results in a valid packet being received but with the
Received Ok Receive Status Vector bit being clear (RSV<23> == 0). This issue would become more probable when using
very long Ethernet cables (ex: 100 meters) and receiving a lot of data.

5. Fixed a TCP bug in which calling TCPDisconnect (see page 443)() to close a connection when the remote node's RX
window was 0 bytes would have caused the stack to enter an infinite loop sending duplicate ACK packets.

6. Fixed Wi-Fi bug that caused assert condition if too many management messages were being received during data traffic.

7. Fixed Wi-Fi bug that caused WF_EVENT_CONNECTION_RESTABLISHED event case to send the wrong notification to
the app.

8. Fixed Wi-Fi bug that caused assert failure with Scratch move failure.

9. Fixed Wi-Fi bug in WF_CAGetChannelList (see page 558)() and WF_CAGetSecurity that caused failure.

3 Microchip TCP/IP Stack Help

10

10. Fixed Wi-Fi EasyConfig bug that required development boards to be manually reset even after new network was
selected.

11. Fixed MRF24WB0 bug that caused assert if invalid WPA/WPA2 key was entered.

12. Fixed Wi-Fi power management bit behavior in PS-Poll frame that was causing some AP’s to never send data or
disconnect when in power save mode.

13. Fixed a TCP bug in which attempting to open a client TCP socket to a remote server, specified by IP address (not DNS
address), that was offline, but who's MAC address was already cached by the ARP client, would result in endless
back-offs. For example, when attempting to contact the remote node (that was not responding), the TCP module would
have transmitted a SYN at time T=0 seconds, T=1s, T=3s, T=7s, T=15s, T=31s, T=63s, T=127s, T=255s, etc. The
exponential back-off between retransmissions would grow indefinitely until the retransmission interval would have grown
so large that effectively no-retransmissions would be occurring. Assuming the application wasn't written with its own
timeout to prevent endless waiting, this would prevent the socket from automatically establishing the connection to the
remote server once the server came back online. With this TCP fix, the exponential back off now saturates after
TCP_MAX_RETRIES (see page 477) (5) back offs and continues to retransmit using the same interval. By default, this
means SYN transmissions will occur at T=0 seconds, T=1s, T=3s, T=7s, T=15s, T=31s, T=63s, T=95s, T=127s, etc. After
5 back-offs the retransmission interval stops growing and stays constant at 32 seconds.

14. Fixed an RSA computation bug that would cause the RSA module to never complete if you attempted to compute y = x^e
% n where e = 3 (or similar number < 256 with only 0, 1, or 2 bits set). Thanks go to Kevin Maidment for pointing this error
out and suggesting a solution. Note, that this fix to RSA.c is not distributed with the ordinary TCP/IP Stack due to United
States export restrictions. To get this fix, you must repurchase SW300052. This fix is included in SW300052 v2.6 or later.
If you don't have CD media to identify the SW300052 version that you have, you can test the RSA.c file that you have.
RSA.c in SW300052 v2.6 has a CRC32 checksum of 0x91F66711. RSA.c in v2.5 and prior had a checksum of
0xB1E8B0CC.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

3. LCDBlocking.c timing for the LCD_E_IO enable signal is too fast to meet published data sheet limits for various LCD
controllers when compiling for a PIC32 running at > 43MHz. Despite this potential timing violation, the LCD does normally
work correctly on the precompiled PIC32 demos for the Explorer 16 at 80MHz.

v5.25 07 May 2010

Changes:

1. Added support for the Microchip MRF24WB0 802.11 WiFi controller (module part number MRF24WB0MA). This product
is intended as a backwards compatible, drop in replacement to the ZG2100. The MRF24WB0MA should work with
previous TCP/IP Stack versions as if it were a ZG2100M, but when the MRF24WB0MA is used with this (5.25) and future
TCP/IP Stack versions, feature improvements inside the MRF24WB0 allow the TCP/IP Stack code/RAM size to be
smaller and run faster.

2. Dropped support for the ZeroG ZG2100 802.11 WiFi controller. Applications that must stay with this device should
continue to use TCP/IP Stack version 5.20b or earlier. All new projects or preexisting projects undergoing updates should
be developed with the MRF24WB0 instead.

3. The WiFi connection management state machines now run on the MRF24WB0 instead of the PIC host, freeing up code
and data space. Connection profiles can be created and the connection algorithm fine-tuned by the PIC application. In the
WiFi demos see the WF_Connect function in MainDemo.c for an example of how to configure and then establish a WiFi
connection. The programming model has changed to an API model which is documented in 'TCPIP Stack Help.chm'.

4. Changed "VERSION" macro definition in TCPIP.h to "TCPIP_STACK_VERSION". "VERSION" is overly generic and will

3 Microchip TCP/IP Stack Help

11

likely conflict with other identical tokens one may use in their application code or source libraries.

5. Added support for the PIC24FJ256GA110, PIC24FJ256GB110 and PIC24FJ256GB210 PIMs for the Explorer 16. Note
that when using the PIC24FJ256GA110 general purpose PIM, the Ethernet PICtail Plus, Fast 100Mbps Ethernet PICtail
Plus, MRF24WB0MA Wi-Fi PICtail Plus, or other SPI PICtail daughter board should be installed in the middle SPI2 slot of
the Explorer 16, not the ordinary topmost SPI1 slot used by other PIMs, including the PIC24FJ256GB110 and
PIC24FJ256GB210 ones. The software is set up to use SPI2 for the PIC24FJ256GA110 PIM to avoid incompatibilities
with silicon revision A3, which does not allow the SCK1 pin to be configured as a PPS output.

6. Added support for the PIC24FJ256DA210 Development Board.

7. Added TFTPUploadRAMFileToHost (see page 499)(), TFTPUploadFragmentedRAMFileToHost (see page 498)() and
TFTPGetUploadStatus (see page 497)() APIs to the TFTPc.c file. These APIs provide a very simple means of
uploading a whole file to a remote TFTP server without requiring a great deal of application state machine logic. These
APIs require the DNS client module to be enabled (STACK_USE_DNS must be defined, in addition to
STACK_USE_TFTP_CLIENT).

8. Added a dummy DNS Server module. This server always sends the local IP address in response to all queries received.
When using the PIC DHCP server, its purpose is to allow a user to type anything into a web browser (ex: http://asdf/) and
still receive the web page provided by the PIC, much as a hotel or airport WiFi router will serve to you before you've paid
or agreed to the network's terms of service. This DNS server module is implemented in DNSs.c, requires one UDP
socket, and is enabled via the STACK_USE_DNS_SERVER option in TCPIPConfig.h.

9. Changed SPIFlash.h file defaults to target an SST SPI Flash with 4096 byte sectors instead of a Spansion Flash with
65536 byte sectors. These new defaults are, among other reasons, in support of the PIC24FJ256DA210 Development
Board, which has an SST SST25VF016B on it.

10. Made TCP Keep-Alive packets consistently get sent TCP_KEEP_ALIVE_TIMEOUT (see page 477) (default 10
seconds) after the last socket TX or RX activity. In earlier stack versions, if the local node transmitted some data and then
let the socket go idle, the first Keep-Alive packet sent would use the TCP_START_TIMEOUT_VAL (see page 480)
(default 1 second) timer value before getting sent. While benign in terms of application behavior, these faster than normal
keep-alive transmissions were distracting when viewed in Wireshark or other packet capture tools.

11. Disabled STACK_USE_DYNAMICDNS_CLIENT option in TCPIPConfig.h by default for the TCPIP Demo App and
TCPIP ENCX24J600 Demo App projects. This option was enabled by default in earlier stack releases. This was done to
save code size and allow out-of-box compilation on devices with 128KB of Flash when not using compiler optimizations.
The TCPIP PIC32 ETH Demo App project continutes to have this option enabled by default.

12. Added SNMP v2 TRAP PDU format. Macro SNMP_STACK_USE_V2_TRAP is used to enable the SNMP v2 trap format.
New API function SNMPV2TrapDemo() is included to support more than one variable binding to the SNMPv2 TRAP. This
API can be used for a single SNMPv2 TRAP variable varbind and is part of CustomSNMPApp.c. A multiple variable
binding demo can be enabled MainDemo.c. One should not enable both SNMPTrapDemo and SNMPV2TrapDemo
simultaneously. Global flag "gSetTrapSendFlag (see page 319)" is used to indicate the start and end of SNMPv2 trap
varbinds. If gSetTrapSendFlag (see page 319) is FALSE, then very next variable varbind for the SNMPv2 TRAP, is the
last or only one variable varbind. If gSetTrapSendFlag (see page 319) is TRUE, then there is another variable varbind
available to be part of the SNMPv2 TRAP PDU.

13. Added support for PIC32MX6XX/7XX external PHY's: SMSC 8700LAN and National DP83640.

14. Added schematics and BOM for the PIC32 Ethernet Starter Kit.

15. Added the Google PowerMeter demo project. Consult the "Reference Implementation for Google PowerMeter.chm" help
file for more information.

16. Modified the SSL and TCP modules to create the TCPStartSSLClientEx (see page 466) function. This function will
enable the SSL module to store supplementary data (currently only SSL Certificate Public Keys) in a structure.

17. Moved the HTTP_PORT (see page 249), HTTPS_PORT (see page 256), HTTP_MAX_DATA_LEN (see page
249), and HTTP_MIN_CALLBACK_FREE (see page 249) macros from HTTP2.c to TCPIPConfig.h.

Fixes:

1. The SPIFlashEraseSector() function in the SPIFlash.c file incorrectly erased the sector specified by the current write
pointer (set by calling SPIFlashBeginWrite()) instead of the specified dwAddr parameter address. This error had no
impact on any TCP/IP Stack code as these parameters always matched. However, application code using the API would
have been affected. Thanks go to Marc Boon for reporting this issue on the Microchip Ethernet forum.

2. Fixed ENC424J600/624J600 driver for PSP modes 2, 4, 6, and 10. The PIC's PMP PMMODE<9:8> bits were not set
correctly.

3. Removed from lingering references to TickGetDiff() in FTP.c, TFTPc.c and UARTConfig.c.

4. Fixed DNS client module from returning the DNS server IP address if the DNS query failed due to a server error (i.e. DNS

3 Microchip TCP/IP Stack Help

12

did respond, but did not return any records, such as when attempting to resolve a name that isn't in the DNS).
DNSIsResolved (see page 182)() will now return 0.0.0.0 on any non-recoverable DNS error or timeout.

5. Fixed HTTP2 MPFS upload page being accessible from URLs that weren't an exact match. For example, in 5.20 and
earlier, accessing http://mchpboard/mpfsuploadASDF would still have opened the mpfsupload page. Thanks go to Andrea
Rivolta on the Microchip Ethernet Forum for identifying this error.

6. Improved UDP TX checksum code for the special case when the computed checksum was 0x0000. According to the UDP
RFC, for this corner case, the checksum should be converted to 0xFFFF before transmission to differentiate from the
checksum disabled case, improving error detection by a minuscule amount.

7. Fixed GetCLKOUT() function in ENCX24J600.c driver file. Previously, 0x00 would always be returned, regardless of the
value in the COCON bits of ECON2. The function documentation for SetCLKOUT() and GetCLKOUT() was also corrected
(had obsolete information ported over from ENC28J60 driver file).

8. Fixed DHCP client rebinding bug in which the DHCP client would request the wrong IP address if an unrelated DHCP
OFFER or ACK message were received after we transmitted a DHCP REQUEST but before we received our DHCP ACK.
Under rare conditions, this would have resulted in the TCP/IP stack reverting to the static or AutoIP assigned address for
a few seconds between DHCP lease renewals.

9. Fixed TFTP Internet Bootloader bug in which uncommon .hex files containing a certain data pattern could not be
uploaded correctly to the PIC18F97J60 family device. For these problem .hex files, a block of 32 program words (64
bytes) would remain unprogrammed (left as 0xFFFF) due to a parsing error in the bootloader's DecodeHex() function. The
TFTP upload operation would succeed without reporting a programming error. The problem can be detected by using an
ICD3 or similar ICSP programmer and reading the program Flash out of a device that is programmed with the bootloader
and application .hex files. Compare the resulting memory dump to a device programmed only with the application .hex
file. If you have devices deployed in the field with the previous bootloader and happen to generate a problem application
.hex file, you can potentially work around the bootloader bug by opening the application .hex file with Notepad and
appending dummy address records to the beginning to move the data around in the file. For example, at the very top of
the .hex file, add lines containing ":020000040000FA" until the bootload process works correctly. You may alternatively try
adding spaces at the end of any line, although this may make the .hex file incompatible with some programming utilities.
Thanks go to Jonathan Seidmann for identifying and reporting this bug.

10. Fixed SNMPv2 TRAP format issue where SNMP browser was displaying all the SNMPv2 traps as SNMP version 1.
SNMP v2 TRAP pdu format is rectified. Macro SNMP_STACK_USE_V2_TRAP is used to form and send a SNMPv2
TRAP PDU. SNMPTrapDemo API is used for both SNMPv1 and SNMPv2 single variable varbind trap.

11. Fixed an HTTP2.c server module initialization bug when using the PIC32MX7XX/6XX series internal Ethernet module.
During initialization the HTTPLoadConn (see page 254)() function would overwrite over 100 bytes of PIC RAM past the
end of the reserved memory allocated for the HTTP2 module. This problem would manifest itself by locking up the TCPIP
PIC32 ETH Demo App-C32 demo shortly after power up if you compiled TCP/IP Stack version 5.20 with the MPLAB C
Compiler for PIC32 MCUs (C32) version 1.11.

12. Fixed SSL client from incorrectly parsing for the server's public key in rare cases where the RSA Public Key Algorithm
identifier was received, but the key hadn't been received by TCP yet. Thanks go to Kevin Maimdnet for identifing this error
in SSL.c and reporting it via http://support.microchip.com/.

13. Fixed Tick.c TickGet (see page 513)(), TickGetDiv256 (see page 513)() and TickGetDiv64K (see page 514)() APIs
sometimes returning the wrong value on PIC32 platforms. On the PIC32MX3XX/4XX family devices a wrong return result
would sometimes occur if using -O3 compiler optimizations (maximum speed) with the Microchip MPLAB C Compiler for
PIC32 MCUs (C32). On the PIC32MX5XX/6XX/7XX family devices, such as the PIC32MX795F512L device used on the
PIC32 Ethernet Starter Kit, wrong values could be returned, regardless of the compiler optimization level.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

3. HI-TECH PICC-18 compilers are not supported in this release. The supplied HI-TECH PICC-18 MPLAB projects usually
will not compile and/or link.

4. LCDBlocking.c timing for the LCD_E_IO enable signal is too fast to meet published data sheet limits for various LCD
controllers when compiling for a PIC32 running at > 43MHz. Despite this potential timing violation, the LCD does normally
work correctly on the precompiled PIC32 demos for the Explorer 16 at 80MHz.

3 Microchip TCP/IP Stack Help

13

v5.20 18 November 2009

Changes:

1. Added PIC32MX7XX/6XX Family integrated Ethernet controller support. The "TCPIP PIC32 ETH Demo App" folder was
added to compile for the PIC32 Ethernet Starter Kit. Ethernet driver files "ETHPIC32ExtPhy.c" and "ETHPIC32IntMac.c"
were added, in addition to the "ETHPIC32ExtPhyDP83848.c" file, which is a specific driver file for the National DP83848
10/100 PHY.

2. Added RFC 3927 Auto IP module. This module will automatically assign a local IP address to the node in the
169.254.xxx.xxx private address range (subnet mask 255.255.0.0) if a DHCP server is not present on the network or the
DHCP client is disable. The exact IP address chosen will be pseudo-random, but as required by the protocol, it will
perform gratuatous ARPs to avoid clobbering anyone else's IP address. Also, unless there is an address collision with a
preexisting node on the network, the IP address generated by the Auto IP module will not change between power cycle
events (random number generator is seeded by local MAC address). To enable this module, STACK_USE_AUTO_IP
must be defined in TCPIPConfig.h. When compiled in, the module defaults to enabled, but will automatically yield to the
DHCP client module, which has higher priority.

3. Added "TCPIP MDD Demo App" beta application projects. Projects in this folder store the HTTP2 web pages in external
FAT16/FAT32 formatted SD card or USB Mass Storage media instead of an MPFS2 formatted EEPROM or SPI Flash.
For more information on these projects, see the "Running the TCPIP MDD Demo App (Beta Release).pdf" file in the
MicrochipHelp folder.

4. Expanded XEEReadArray() API's third length parameter from a BYTE to a WORD.

5. Converted all variable declarations and type casts of TICK data type to DWORD. The TICK typedef is now deprecated
and will be removed in a future stack release. This data type conflicts with the TICK structure used in certain other
Microchip software libraries.

6. Added TCP_WINDOW_UPDATE_TIMEOUT_VAL (see page 475) option to the TCP.c file (default 200ms). This timeout
controls the time after calling TCPGet (see page 447)() or TCPGetArray (see page 448)() before the stack will
transmit a RX window update to the remote node. Historically, the TCP_AUTO_TRANSMIT_TIMEOUT_VAL (see page
475) value was used for this purpose (default 40ms). This change decreases the net window update transmission
overhead. If this adversely affects your application RX performance (unlikely, but possible for certain communications
patterns), set TCP_WINDOW_UPDATE_TIMEOUT_VAL (see page 475) equal to or shorter than
TCP_AUTO_TRANSMIT_TIMEOUT_VAL (see page 475) to get the same or better behavior relative to previous stack
versions.

7. Split TCP_MAX_SEG_SIZE configuration constant in TCP.c into separate TCP_MAX_SEG_SIZE_TX (see page 478)
and TCP_MAX_SEG_SIZE_RX (see page 477) configuration constants. Previously, TCP_MAX_SEG_SIZE was used
to limit both the maximum size of transmit and receive packets. In cases where large TX FIFOs are allocated, and the
remote node advirtises a large Maximum Segment Size TCP option, this change improves TCP transmit performance by
roughly 10%.

8. Renamed "Internet Radio App", "Internet Bootloader App" and "WiFi Iperf App" folders to "TCPIP Internet Radio App",
"TCPIP Internet Bootloader App" and "TCPIP WiFi Iperf App" respectively. These new names ensure consistent folder
placement when viewing the Microchip Solutions folder with other Microchip Application Libraries installed.

Fixes:

1. Fixed SSL functionality (ex: HTTPS server) from failing when using the ENC424J600 and ENC624J600 Ethernet
controllers. In stack versions 5.00 and 5.10, the BFSReg() and BFCReg() functions were being incorrectly used to set and
clear CRYPTEN (EIR<15>). ENC424J600/624J600 silicon errata #6 on production silicon revision A2 prevents BFSReg()
and BFCReg() from being able to modify CRYPTEN. This resulted in the SSL RSA encrypt/decrypt operations from ever
finishing. The ENC424J600/624J600 errata #6 workaround is now implemented in the ToggleCRYPTEN() function in
ENCX24J600.c.

2. Fixed an RSA padding error in the ENCX24J600.c's version of RSASetData() and RSASetE() functions. This fixes the
Bad Record MAC problem when using SSL client APIs with the ENC424J600 and ENC624J600, as mentioned in the 5.10
stack release notes' Known Problems section. Although unknown at the time of release this problem also occurred in
stack version 5.00.

3. Fixed DNS client from mishandling DNS responses that did not use name compression. Thanks go to Will Stone on the
Microchip Ethernet forum for identifying this bug.

3 Microchip TCP/IP Stack Help

14

4. Fixed an ExtractURLFields (see page 212)() API bug which would incorrectly parse the URLs containing other URLs.
Ex: "http://www.google.com/search?q=http://www.microchip.com/"

5. Fixed TickGet (see page 513)(), TickGetDiv256 (see page 513)(), and TickGetDiv64K (see page 514)() APIs from
potentially returning an incorrect time value (0x10000 ticks less than it should have) on rare occasions when using a
PIC32 and with compiler optimizations turned on. The Tick.c module was also revised so that the IEC0 register does not
get written to via a load-modify-store operation on PIC32s so that it is now possible for other application ISR functions to
write to IEC0 without risking state corruption.

6. Fixed PIC32 Starter Kit Debugger losing access to the PIC32 target when the project was run. JTAG was being disabled
at run time, but the PIC32 Starter Kit Debugger requires JTAG to communicate with the debug executive. JTAG is now
conditionally disabled on PIC32s when the __MPLAB_DEBUGGER_PIC32MXSK macro is undefined.

7. Fixed a Berkeley sockets API bug in which calling closesocket (see page 166)() on a SOCK_STREAM (see page
173) type socket (TCP) did not actually close the socket if the remote node did not first send a FIN to the local node. This
would leak a TCP socket each time the affected API calling sequence occurred and result in no FIN getting transmitted to
the remote node.

8. Fixed an HTTP2 filename parsing bug that would occur when a web browser submitted a request for a file with hex
encoded characters in it. For example, with stack version 5.10 and Firefox 3.5.3, typing "http://mchpboard/%70rotect" into
the URL field would have resulted in an HTTP 404 not found error when "http://mchpboard/protect/index.htm" should have
been returned instead. Thanks go to Steve Tuttle for reporting this issue and suggesting a solution.

9. Fixed a Berkeley sockets API bug in which calling recvfrom (see page 171)() on a datagram type socket (UDP) would
return an incorrect remote IP address and port number when the from pointer was non-NULL.

10. Fixed HTTP2 server bug in which the HTTPReadPostName (see page 242)() function was failing to convert the field
name from URL encoding to plain-text. If the browser posted, for example, a field named "Stock Remaining", it would
have been incorrectly returned from HTTPReadPostName (see page 242)() as "Stock+Remaining".

11. In Stack 5.10, any new values you saved into AppConfig via the Network Configuration demo web page would have
been mishandled for WiFi projects. HTTPPostConfig (see page 89)() in CustomHTTPApp.c of the TCPIP WiFi Demo
App and TCPIP Iperf Demo App projects were corrected so that they now write a magic 0x61 marker into EEPROM/SPI
Flash address 0x0000 to inidicate that the AppConfig structure is valid in EEPROM/SPI Flash. This prevents the
InitAppConfig() function in MainDemo.c from restoring the default settings when changing the values through the Network
Configuration page.

12. For WiFi projects, a Gratuitous ARP Work-around was implemented to work around cases where access points send
broadcast messages at data rates that the ZG2100 cannot listen (see page 170) to. The define
USE_GRATUITOUS_ARP (in TCPIPConfig.h) turns this feature on or off.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

3. HI-TECH PICC-18 compilers are not supported in this release. The supplied HI-TECH PICC-18 MPLAB projects usually
will not compile and/or link.

4. ENC624J600 PSP modes 2, 4, 6, and 10 do not work at this time. Some Parallel Bit Bang modes may not work either.
Some minor firmware changes are needed.

5. TCPIP ENCX24J600 Demo App-C18.mcp project does not compile by default using MPLAB C Compiler for PIC18 MCUs
(C18) version 3.34. There is not quite enough program memory available on the PIC18F97J60 for the large number of
selected stack features to allow linking. To get this project to compile, turn on compiler optimizations or disable one of the
modules in TCPIPConfig.h (ex: comment out STACK_USE_DYNAMICDNS_CLIENT).

v5.10 29 July 2009

3 Microchip TCP/IP Stack Help

15

Changes:

1. Added SSL capability to the Telnet (see page 482) server. If STACK_USE_SSL_SERVER is defined, the Telnet (see
page 482) server will now listen (see page 170) on port 992 for SSL secured connections. If you do not have a telnets
client, you can use an SSL proxy, such as stunnel (http://www.stunnel.org/) to add SSL/TLS support to any telnet client.

2. Moved a number of string pointer tables in the HTTP.c, HTTP2.c, FTP.c, and DynDNS.c files to allocate in ROM instead
of RAM. This reduces around 120 bytes of RAM usage in the HTTP2 server when compiled for the PIC18 or PIC24/dsPIC
platforms. The gains are even greater on PIC32 platforms.

3. Added redefinition of SPIRAM*(), SPIFlash*(), and XEEPROM*() functions so that when compiled and used without
proper HardwareProfile.h definitions, a more descript linker error will be generated instead of a mysterious symbol not
found error.

4. Added several new APIs:

• ExtractURLFields (see page 212)() in Helpers.c. This function provides an easy means of parsing an URL string and
extracting the protocol, hostname, port, file path, etc. Currently, this function is commented out to save code space as
no stack modules require it. However, it should work correctly if you simply uncomment it (remove the #if 0...#endif
around it).

• strnchr (see page 220)() in Helpers.c. Finds the first occurrence of a character within a string but limited to a
maximum length before giving up.

• TCPPeek (see page 453)() and TCPPeekArray (see page 454)() in TCP.c. Reads from a TCP socket's RX FIFO
buffer without removing the data from the stream.

• TCPClose (see page 442)() in TCP.c. Disconnects a socket from the remote node (if connected) and closes the
socket handle, including for server type sockets. This function is identical to the TCPDisconnect (see page 443)()
API except for the handling of server sockets. TCPDisconnect (see page 443)() returns server sockets to the listning
state and maintains the socket handle. TCPClose (see page 442)() closes the socket and frees all associated
resources, invalidating the socket handle.

5. Updated the DHCP client module:

• Modified so that it wouldn't attempt to transmit DHCP Discover packets when the MAC layer reports no link
(MACIsLinked() == FALSE). This avoids main() while(1) loop performance degredation when you unplug the Ethernet
cable or lose association to your access point.

• Added capability of performing DHCP discovers and requests without setting the BOOTP broadcast flag. Now, the
DHCP client module will start up and attempt to obtain an IP address with the broadcast flag set, but if it fails the next
DHCP retry will attempt to obtain the IP address with the broadcast flag cleared. The flag will toggle back and fourth
between unicast mode and broadcast mode if no DHCP server responds. This feature improves compatibility with
certain DHCP servers and WiFi access points.

• Added several new APIs including DHCPInit(), DHCPIsEnabled(), DHCPStateChanged(), DHCPIsBound(), and
DHCPIsServerDetected().

• Removed the DHCPFlags DHCP_CLIENT_FLAGS global variable. Use the above named APIs now to get equivalent
functionality.

• Removed the DHCPBindCount global variable. To detect if the DHCP state has changed, poll the new
DHCPStateChanged() function.

• Removed the DHCPReset() API. To perform this operation, now call the DHCPInit() API. Use 0x00 for the vInterface
parameter.

6. Removed deprecated TickGetDiff() macro. To get a tick difference, just subtract the two values in-line. This macro was
removed because it promoted confusing code. Ex: a-b is different from b-a. However, it was not contextually obvious
which of the two was returned when TickGetDiff(a, b) was called.

7. Added PIC32MX460F512L USB and dsPIC33FJ256GP710 PIM support to the Explorer 16 hardware profile for the TCPIP
WiFi Demo App and WiFi IPerf App projects.

8. Added all files needed for SSL (assuming the crypto libraries are present) to the TCPIP WiFi Demo App-C30 and TCPIP
WiFi Demo App-C32 projects.

9. Converted TCPIP Demo App, TCPIP WebVend App, Internet Radio App, and Internet Bootloader App MPLAB Build
Directory Policy to compile in the project folder instead of the source folder. This reduces the depedancies on the MPLAB
project include path and allows new projects to be created by copying one of the pre-existing folders (ex: copy "TCPIP
Demo App" to "My App") without having problems including the wrong HardwareProfile.h and TCPIPConfig.h files.

3 Microchip TCP/IP Stack Help

16

10. Changed EEPROM/SPI Flash AppConfig record valid flag from 0x60 to 0x61 in the TCPIP WiFi Demo App and WiFi
Iperf App projects. This will force the various EEPROM settings to get erased when switching between Ethernet and WiFi
projects. This is done since the AppConfig structure changes when using WiFi (SSID string is added).

11. The Wifi Iperf App and TCPIP WiFi Demo App projects have been optimized for better performance.

Fixes:

1. Fixed a TCPDisconnect (see page 443)() API bug in which the last few bytes of data (up to the TCP socket's TX FIFO
size less 532 bytes) was not transmitted and no FIN was sent out if the TX FIFO was full of data when TCPDisconnect (
see page 443)() was called. This problem could have only occurred for TCP sockets with a large TX FIFO (>=532 bytes).
This problem could have been observed in stack version 5.00's "TCPIP Demo App-C32 EXPLORER_16 32MX360F512L
ENC624J600 PSP 9.hex" precompiled application, among others, if you connected to the TCPPerformanceTest.c module
and then attempted to simultaneously access the web server. The web server was returning data very slowly and failing
to send the last parts of each file requested by the browser.

2. Eliminted a potential buffer overflow vulnerability from the HTTPHeaderParseContentLength (see page 252)() function
in HTTP2.c. If an oversized or malformed Content-Length header is sent from the web client, the function will now
gracefully fail by returning an HTTP 400 Bad Request error page. Thanks go to Mark Philipp for identifying this error and
suggesting a solution.

3. Fixed a TCPOpen (see page 452)() problem in which the stack would continuously flood the network with nearly
back-to-back ARP query packets if a client socket was created that specified a non-reachable remote IP address (ex:
local gateway was offline, or for destinations on the same subnet, the actual remote node was offline). This problem
would occur only after a few minutes (<10) had passed since the PIC was last reset. Thanks go to Sergey of DPS
TELECOM for reporting this problem.

4. Fixed linking problem with BigInt_helpers.S (PIC24/dsPIC only) when targeting a PIC with more than 8KB of RAM. The
interface registers (_iA, _xA, _iB, _xB, _iR, and _wC) are now forced into near RAM.

5. Cleaned up some uninitialized variable warnings in SNMP.c.

6. Fixed a sequence variable traversal bug in SNMP.c.

7. Cleaned up a large number of unsigned integer to signed integer comparison warnings produced by the MPLAB C
Compiler for PIC18 MCUs (C18) version 3.32. With earlier versions of this compiler, these warnings would only be
generated as messages, so they did not get displayed by default.

8. Some ENCX24J600 parallel bit bang modes work now. PSP Mode 5 indirect has been tested.

9. SSL client and server capabilities now work when using the ZeroG ZG2100M WiFi interface. In the 5.00 stack release,
attempting to enable the STACK_USE_SSL_CLIENT or STACK_USE_SSL_SERVER TCPIPConfig.h options with this
network controller would have resulted in an error trap. If an LCD was present, the LCD would display “encRdPtrRAWId =
encWrPtrRAWId” when the error occurred.

10. The WiFi Iperf App demo locked up when an invalid command was entered at the serial port console. This is now fixed.

11. The WiFi Iperf App demo locked up when running with a PIC32 if iwconfig was typed at the serial port console. This is
now fixed.

12. The Wifi Iperf App demo, when running on the PIC24 and PIC32, and compiled with the –Os option (min code size
optimization), did not work. This is now fixed.

13. Change a lot of BerkeleyAPI.c internals. This may fix a number of BSD API problems.

14. Fix a problem with SNMP variables being inaccessible with certain unique PEN numbers.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

3. HI-TECH PICC-18 compilers are not supported in this release. The supplied HI-TECH PICC-18 MPLAB projects usually
will not compile and/or link.

4. ENC624J600 PSP modes 2, 4, 6, and 10 do not work at this time. Some Parallel Bit Bang modes may not work either.
Some minor firmware changes are needed.

5. SSL client code doesn't work with ENC424J600/624J600 devices. The remote server terminates the connection reporting

3 Microchip TCP/IP Stack Help

17

a bad record MAC (Message Authentication (see page 85) Code). The SSL client does work with other controllers.

v5.00 27 April 2009

Changes:

1. Added ZeroG ZG2100 802.11 WiFi controller support. The new TCPIP WiFi Demo App and WiFi Iperf App projects have
been added, which default to using this controller.

2. Added Microchip ENC424J600/624J600 10/100 Ethernet controller support. Support for this controller is provided by the
new ENCX24J600.c/.h files which perform the same role as the ENC28J60.c/.h or ETH97J60.c/.h files. Precompiled .hex
files for the ENC624J600 controller require the use of the new Fast 100Mbps Ethernet PICtail Plus daughter card
(AC164132). This product is not available at the time of the 5.00 TCP/IP stack release. However, it is anticipated to be
available for purchase on www.microchipdirect.com in CQ3 2009.

3. Significantly updated the Internet Radio App project. Previously, radio stations were hard coded into program memory at
compile time. Now, a dynamic Shoutcast directory client has been implemented which allows retrieval of radio stations at
run time, offering endless stations you can tune into. The web pages for the radio have also been updated to allow control
and status reporting of the board from a web browser.

4. Update SNMP Server (Agent) module to support SNMPv2C. The default Demo App web pages now include an SNMP
reconfiguration capability to set the read and write community strings.

5. Added ICMPSendPingToHost (see page 260)() and ICMPSendPingToHostROM (see page 262)() APIs to ICMP
(ping) client module. These two APIs are available only when STACK_USE_ICMP_CLIENT and STACK_USE_DNS is
defined in TCPIPConfig.h. These functions allow pinging of DNS hostnames directly without the need for the application
to convert the hostname to an IP address first by manually calling the DNS client APIs. With this addition, the PingDemo.c
file was updated to ping the hostname "ww1.microchip.com" instead of a static IP address. Previously, the PingDemo (
see page 98) would stop working a couple of months after the stack was released, due to the IP address of the
www.microchip.com server dynamically changing. If the DNS module is not enabled, the ping demo will instead ping the
local gateway IP address instead of ww1.microchip.com.

6. Updated TCPPerformanceTest.c code. The previous version would generate incorrect speed calculations at high data
rates (ex: >1Mbyte/sec).

7. Added multiple connection support to Telnet (see page 482) server example module. To allow multiple connections,
define MAX_SIMULTANEOUS_CONNECTIONS in Telnet.c greater than 1 and create an equal number of
TCP_PURPOSE_TELNET type TCP sockets in the TCPSocketInitializer[] definition in TCPIPConfig.h.

8. Added more randomness to the local port selection when opening a client-mode TCP socket. This reduces the risk of
reusing a previously used port number if the user power cycles the device.

9. Updated XEE* SPI EEPROM API functions. Writes are no longer required to start on an EEPROM page boundary, and
writes can now be arbitrarily long without having to call XEEEndWrite() at each page boundary. Additionally, the
XEEWriteArray() API has been added, which performs a similar operation to the SPIFlashWriteArray() API (but with no
special erase cases to worry about).

10. Decoupled AppConfig storage in external SPI EEPROM or SPI Flash option from MPFS_USE_EEPROM and
MPFS_USE_SPI_FLASH options. MainDemo.c will now save the AppConfig structure in external non-volatile memory,
even if MPFS is unused (no HTTP or SNMP server modules enabled) or MPFS is using internal Flash program memory
to store web pages/bib information. This change also allows the XEE*() and SPIFlash*() non-volatile read/write functions
to be available at all times (even if MPFS is unused), as long as the appropriate hardware pinout definitions are present in
HardwareProfile.h. SPI Flash and SPI EEPROM are no longer mutually exclusive with each other. However, if both are
enabled simultaneously, AppConfig will be stored in the EEPROM, not the SPI Flash.

11. Added required SSL files to TCPIP Demo App MPLAB projects. SSL capabilities can now be turned on directly via the
STACK_USE_SSL_SERVER and STACK_USE_SSL_CLIENT options in TCPIPConfig.h for these projects, assuming
appropriate crypto libraries are installed (SW300052 available from https://www.microchipdirect.com/). With this change,
the historical "SSL Demo App" folder has been removed.

13. Updated HardwareProfile.h files. This includes the addition of PIC18 Explorer board support, removal of the PICDEM Z
profile, changes to the HI-TECH PICC-18 profiles for newer compilers, among other changes.

14. Added a TCP and UDP performance test measurements table to TCPIP Stack Help (TCPIP Stack Help.chm). Access

3 Microchip TCP/IP Stack Help

18

this from the "Microchip TCP/IP Stack" book, "Stack Performance" page.

15. Updated MPFSlib project (Microchip.MPFS.dll file) so that C18 and C32 output from the MPFS2.exe utility is now
identical for MPFS2 images. The generated .c file is now compatible with both C18 and C32 compilers simultaneously.
Previously, the images generated for C18 would compile successfully for C32 projects, but would potentially operate
incorrectly when compiler optimizations were turned on. Images generated for C32 would compile successfully and work
on C18 projects, but the C18 compiler would take a very long time to process the file each time you rebuilt your MPLAB
project. Now, the image generated for C18 matches the image generated for C32 and it will compile fast and work
correctly on both platforms, even with compiler optimizations turned on.

16. Added schematics and BOMs for the Ethernet PICtail, Ethernet PICtail Plus, Fast 100Mbps Ethernet PICtail Plus,
Internet Radio, PICDEM.net 2, and ZeroG ZG2100M PICtail development boards to the "MicrochipTCPIP StackDemo
Board Files" folder.

Fixes:

1. Fixed a denial of service vulnerability in the NBNSGetName (see page 286)() function of the NBNS.c file. Previously, if
a deliberately malformed packet was received, the PIC RAM could have become corrupted. Thanks go to David Talmage
for finding this vulnerability.

2. Fixed Timer1 interrupt flag clearing code on PIC32 products. Previously, the Tick.c module was clearing the interrupt flag
in an unsafe manner which could have corrupted other interrupt flags in the IFS0 register. Thanks go to Leon van
Snippenberg working on the AVIX-RT RTOS for pointing this error out on the Microchip forums.

3. Fixed SNMP up-time variable. Previously the CustomSNMPApp.c module would respond with the number of Tick API
ticks that elapsed, not the number of 10ms time slices that elapsed. The SNMP standard uses 10ms as its time base.

4. Fixed BigInt_helper.asm's _masBI() and _masBIROM() functions when the Br parameter's length modulo 4 was equal to
1 or 2. This bug previously caused the BigIntMod() function to sometimes go into an endless calculation loop on PIC18
products when using the SSL libraries and certain combinations of modulus data and length were used. Thanks go to
Vasil Stoianov on the Microchip Ethernet forum for running into this defect and reporting it.

5. Fixed SSLSessionNew (see page 426)() so that it wouldn't "lose" SSL sessions after waiting a few hours. This would
previously make it impossible to make new SSL connections after a while, but then after a few more hours, the sessions
would become free again. Thanks go to Jim Stephens for identifying this issue and finding the solution.

6. Fixed an SSL 2.0 antique client hello record length calculation bug occurring when a received record was > 255 bytes.

7. Added retransmission capability to SendNotification (see page 111)() function in CustomSNMPApp.c. Previously, if an
SNMP trap were sent, but the initial ARP query or response was lost on the network, the SendNotification (see page
111)() code would have deadlocked, and suppressed all future transmission of SNMP traps.

8. Fixed DNS client timeout if the DNS server is unable to be ARPed. Previously, the DNS client would retry ARPing the
DNS server indefinitely if it was offline. Now, the DNS client will correctly abort if too many attempts to ARP the DNS
server fail. Thanks go to Phil "andersop" on the Microchip Ethernet forum for identifying this error.

9. Suppressed transmission of a TCP RST packet to an unknown IP or MAC address if the TCPDisconnect (see page
443)() function was called on a client mode socket that was not finished with ARP or DNS resolution yet. Thanks go to
Phil "andersop" on the Microchip Ethernet forum for pointing this behavior out.

10. Fixed TCP socket from disconnecting if the remote receive window was zero and TCPFlush (see page 447)() was still
called. Thanks go to Bob Topper for identifying this issue and suggesting a solution.

11. Fixed Tick.c module returning incorrect values when TickGet (see page 513)() or other API was used with compiler
optimizations turned on. Wrong values were observed when using MPLAB C Compiler for PIC24 MCUs and dsPIC DSCs
version 3.12.

12. Fixed a number of SPI communications problems that could occur when compiler optimizations were turned on. The
ENC28J60 was observed to not work correctly on the dsPIC33FJ256GP710 processor when compiled with MPLAB C
Compiler for PIC24 MCUs and dsPIC DSCs version 3.12.

13. Fixed possible MPFS2 error when using an ASM30 .s image where MPFS_Start would be read using the wrong
PSVPAG setting. You must rebuild your MPFS2 image file (ex: MPFSImg2.s) with this stack version's MPFS2.exe utility
to get this correction applied.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes

3 Microchip TCP/IP Stack Help

19

will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

3. HI-TECH PICC-18 compilers are not supported in this release. The supplied HI-TECH PICC-18 MPLAB projects usually
will not compile and/or link.

4. ENC624J600 PSP modes 2, 4, 6, and 10 do not work at this time. Parallel Bit Bang mode does not work either. Some
minor firmware changes are needed.

v4.55 10 November 2008

SSL Note: RSA.c and ARCFOUR.c have not changed between the 4.50 and 4.55 releases. Although the precompiled SSL
Demo App .hex files will differ, you can continue to use the previous TCP/IP Stack v4.50 Encryption Add-on with this 4.55
stack version.

Changes:

1. Added DNS client support for a secondary DNS server address. Previously, the AppConfig.SecondaryDNSServer setting
was unused. Now, the DNS client module will automatically swap the AppConfig.PrimaryDNSServer and
AppConfig.SecondaryDNSServer values after any DNS query timeout (or ARP timeout for the DNS server) and attempt
the query with the alternative server. If AppConfig.SecondaryDNSServer is disabled by setting it to the IP address 0.0.0.0,
the DNS client will only use the AppConfig.PrimaryDNSServer value and never swap the values. With this change, the
DHCP client was also updated. If the DHCP server does not specify a secondary DNS server, then the DHCP client will
now set the AppConfig.SecondaryDNSServer value to 0.0.0.0. Previously, it would change the
AppConfig.SecondaryDNSServer setting only if the remote DHCP server offered a secondary DNS server.

Fixes:

1. Updated Internet Bootloader App project to correctly detect if the configuration bits are being changed or not. Previously,
the bootloader always thought the configuration bits were being changed and thus had to always erase the last Flash
page (largest memory address) twice for each firmware update. This did not cause any functional problems or
specification violations, but it would decrease the effective Flash endurance of the last page.

2. Fixed a TCP socket memory corruption bug that would occur if TCPGetRemoteInfo (see page 448)() API was called
twice with different socket handles without an intermediate call to any other TCP API that takes a TCP_SOCKET (see
page 463) input. Thanks go to Bob Topper for identifying this problem and suggesting a solution.

3. Fixed the UDPIsGetReady (see page 524)() function so that it returns the number of bytes remaining in the packet
based on the current read location. This is the same behavior as stack versions 4.18 and earlier. In stack versions 4.50
and 4.51, the UDPIsGetReady (see page 524)() function would always return the total number of bytes in the current
packet, regardless of how many bytes the read pointer had been advanced through the UDPGet (see page 523)() and
UDPGetArray (see page 524)() functions. Thanks go to Bob Topper for identifying this problem and suggesting a
solution.

4. Fixed demo admin web page in TCPIP Demo App project so that the last byte of the MAC address can be changed,
independent of the format it was entered by the user.

5. Fixed a buffer overflow bug that would occur when using the SSL server during hashing of the server certificate for the
initial handshake. This error previously caused several bytes of random variables elsewhere in the project to get
overwritten for each SSL connection.

6. BSD sockets API was updated to fix some issues.

7. LCDBlocking.c was updated to relax start up timing. This timing fix is specifically needed to support Explorer 16 boards
with a Truly TSB1G7000 display (Novatek NT7603H controller).

8. Removed four uses of Arial Black font in MPFS2.exe utility. On some rare PC configurations, the use of this font caused
the executable to not run.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

3 Microchip TCP/IP Stack Help

20

2. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

3. HI-TECH PICC-18 projects may not compile when targeting the external ENC28J60 chip on the PICDEM.net 2
development board (instead of the internal Ethernet controller). This problem only applies when a PIC18F97J60 family
part is the target. I.e. it compiles correctly for the HPC_EXPLORER + Ethernet PICtail.

4. MAC.h RXSIZE precompiler test for proper range doesn't work. This is not a functional problem, just a compile-time
configuration test. Ensure that you don't over allocate TCP_ETH_RAM_SIZE or MAX_HTTP_CONNECTIONS.

5. HI-TECH PICC-18 STD 9.51PL1 cannot compile DynDNS.c. It raises an "inconsistent type" error while trying to perform a
ROM pointer to integer cast. The older 9.50PL3 compiler release is required to compile this file.

6. HI-TECH PICC-18 STD 9.50PL3 does not initialize several static variables correctly on reset. This behavior breaks many
stack modules in the TCPIP Demo App and TCPIP WebVend App projects. Additionally, string printing functions do not
work correctly, so the supplied "TCPIP Demo App-HITECHPICC18 PICDEMNET2 18F97J60.hex" and "TCPIP WebVend
App-HITECHPICC18 PICDEMNET2 18F97J60.hex" files may not correctly print the board's DHCP assigned IP address
on the board's LCD (if present) and UART. To avoid these severe problems, use the Microchip MPLAB C Compiler for
PIC18 MCUs. A free student edition can be downloaded from http://www.microchip.com/c18.

v4.51 24 July 2008

IMPORTANT NOTE: You must use MPLAB 8.10 or higher to successfully open the MPLAB projects.

SSL Note: RSA.c and ARCFOUR.c have not changed between the 4.50 and 4.51 releases. Although the precompiled SSL
Demo App .hex files will differ, you can continue to use the previous TCP/IP Stack v4.50 Encryption Add-on with this 4.51
stack version.

Changes: None. This release includes bug fixes only. It is very important that applications using the ENC28J60 get fix item
7, below.

Fixes:

1. TCPOpen (see page 452)() was previously failing if you used it to start a connection with a remote hostname, but the
DNS module failed to resolve the remote address on the first try. This, for example, would occur if you powered up your
board and tried to connect (see page 166) to a remote server before the Ethernet cable was attached. Once the
Ethernet cable was attached, the socket would attempt to resolve and connect (see page 166) to a garbage address.
The Internet Radio application would sometimes not begin playing the default station upon power up because of this
problem.

2. Set SEQ.ACK = 0 for outbound TCP SYN packets. This fixes a connection compatibility problem with certain paranoid
TCP/IP stacks that would validate this field even though the ACK flag was clear. This problem would previously cause the
Microchip TCP/IP stack to be unable to connect (see page 166) client-mode TCP sockets to certain rare
servers/services. Thanks go to Jean LE TUTOUR for finding one of these problem servers.

3. MPFSOpen (see page 276)() and MPFSOpenROM (see page 277)() for MPFS2 could leak a file handle if a name
hash matched but no complete file name did. This has been corrected to prevent potential DOS attacks on the HTTP2
web server. Thanks to David Tan on the Microchip Ethernet formus for identifying this issue.

4. Fixed a bug in MPFS2.1 that caused compile errors when MPFS Classic images were generated for ASM30 containing
files whose length was either zero or a multiple of 12.

5. Fixed an issue in HTTPPostConfig (see page 89)() that caused it to ignore the flag that was set when invalid IP address
input was detected. This issue only affects the example configuration page and only exists in v4.50 (prior versions
functioned correctly). Also corrected an issue where user input could potentially overflow into part of the shadow
AppConfig in the same function. Thanks to prinz3nroll3 on the Microchip Ethernet forums for identifying both of these
issues.

6. Implemented Explorer 16 development board 5V LCD errata workaround to LCDBlocking.c. This corrects the A/D
converter from returning erratic readings on certain Explorer 16 boards. LCD I/O pins are now continuously driven by the
microcontroller instead of going high impedance when idle.

3 Microchip TCP/IP Stack Help

21

7. Fixed a critical ENC28J60 revision B7 errata workaround problem in the ENC28J60.c, MACFlush() function. Previously,
the code was checking for an EREVID register value of 0x07 for silicon revision B7. This was incorrect. Silicon revision B7
actually has an EREVID value of 0x06. Note that this problem was caused by an incorrect EREVID value published in
DS80349A, the B7 silicon errata documentation. Make sure to use DS80349B or later.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

3. HI-TECH PICC-18 projects may not compile when targeting the external ENC28J60 chip on the PICDEM.net 2
development board (instead of the internal Ethernet controller). This problem only applies when a PIC18F97J60 family
part is the target. I.e. it compiles correctly for the HPC_EXPLORER + Ethernet PICtail.

4. MAC.h RXSIZE precompiler test for proper range doesn't work. This is not a functional problem, just a compile-time
configuration test. Ensure that you don't over allocate TCP_ETH_RAM_SIZE or MAX_HTTP_CONNECTIONS.

5. HI-TECH PICC-18 STD 9.51PL1 cannot compile DynDNS.c. It raises an "inconsistent type" error while trying to perform a
ROM pointer to integer cast. The older 9.50PL3 compiler release is required to compile this file.

6. HI-TECH PICC-18 STD 9.50PL3 does not initialize several static variables correctly on reset. This behavior breaks many
stack modules in the TCPIP Demo App and TCPIP WebVend App projects. Additionally, string printing functions do not
work correctly, so the supplied "TCPIP Demo App-HITECHPICC18 PICDEMNET2 18F97J60.hex" and "TCPIP WebVend
App-HITECHPICC18 PICDEMNET2 18F97J60.hex" files may not correctly print the board's DHCP assigned IP address
on the board's LCD (if present) and UART. To avoid these severe problems, use the Microchip MPLAB C Compiler for
PIC18 MCUs. A free student edition can be downloaded from http://www.microchip.com/c18.

v4.50 02 June 2008

IMPORTANT NOTE: You must use MPLAB 8.10 or higher to successfully open the MPLAB projects. Also, ensure that the
latest C compiler is used. This release was tested against MPLAB C Compiler for PIC18 MCUs version 3.20, MPLAB C
Compiler for PIC24 MCUs and dsPIC DSCs version 3.10, MPLAB C Compiler for PIC32 MCUs version 1.01, and HI-TECH
PICC-18 version 9.50PL3 (STD). Earlier compilers may not be able to compile this TCP/IP stack release.

Changes:

1. Added SSL 3.0 client capabilities, including SMTP over SSL. The SSL modules supports up to 1024-bit RSA handshakes
and 128-bit ARCFOUR bulk encryption. This can be demonstrated using the SMTP client. SSL server support is
functional, but a key generation utility is not yet provided and support over HTTPS is not yet reliable with all browsers.
IMPORTANT: Encryption software is covered by US Export Control law, so it is not directly downloadable from the
Microchip website. To use the encryption modules, you must order SW300052 from microchipDIRECT [
https://www.microchipdirect.com/] and install the required libraries.

2. Added Berkeley Sockets (see page 147) Distribution (BSD) API translation layer. You can now call the well know
Berkeley APIs instead of or in addition to the Microchip specific APIs. To use this new functionality, define
STACK_USE_BERKELEY_API and configure BSD_SOCKET_COUNT in TCPIPConfig.h. Three new source code demos
are provided to demonstrate this API: BerkeleyTCPClientDemo.c, BerkeleyTCPServerDemo.c, and
BerkeleyUDPClientDemo.c. The TCP client demo is identical to the GenericTCPClient.c demo, but implemented using
Berkeley Sockets (see page 147). The UDP client demo is similarly identical to the SNTP.c client. The TCP server
demo listens on TCP port 9764 and will echo any traffic received back to the sender. It allows up to 3 simultaneous
connections when there are an adequate number of sockets defined in the TCPSocketInitializer[] array in TCPIPConfig.h.

3. Added support for Dynamic DNS services. See the Dynamic DNS Client module in the TCP/IP Stack Help for details.
Presently, dyndns.org, dyndns.com, no-ip.com, and dns-o-matic.com are supported.

4. Added the Microchip TCP/IP Configuration Wizard to the Utilities folder, facilitating easier configuration of the TCP/IP

3 Microchip TCP/IP Stack Help

22

Stack through a graphical application.

5. Restructured TCPIPConfig.h to remove rule-enforcement logic, placing the removed sections in TCPIP.h. Many other
project structure changes were also made to clean up the general distribution appearance.

6. Increased DHCP Server default lease duration to 60 seconds instead of 15 seconds. Some computers were losing their
IP lease before performing a renew operation with only a 15 second lease.

7. Removed CLOCK_FREQ, INSTR_FREQ, and PERIPHERAL_FREQ macro definitions. GetSystemClock(),
GetInstructionClock(), and GetPeripheralClock() now return these respective values. This change was made for
compatibility with other Microchip software libraries.

8. Added TCP Fast Retransmission capability. Whenever three duplicate ACK packets arrive, the stack will now immediately
perform a retransmit operation. This greatly improves recovery latency whenever the network loses a packet for
applications that stream TX data using TCP.

9. Improved TCP Keep Alive mechanism to automatically close TCP sockets which do not receive any keep-alive responses
for TCP_MAX_UNACKED_KEEP_ALIVES (see page 478) (default 6) times. This means that, by default, any
connection that catastrophically breaks without notifying us (ex: user unplugs cable, Internet connection goes down, etc.)
will time out and automatically close after 60 seconds (TCP_MAX_UNACKED_KEEP_ALIVES (see page 478) *
TCP_KEEP_ALIVE_TIMEOUT (see page 477)). Server oriented sockets will return to the listening state. Client oriented
sockets will close, but the TCP_SOCKET (see page 463) handle will continue to remain valid until the application calls
TCPDisconnect (see page 443)(). Applications can check if the socket became disconnected and reset by calling
TCPWasReset (see page 458)() or TCPIsConnected (see page 450)(). Note that this keep alive implementation will
only close sockets that are broken (remote node is not responding to TCP requests). It will not close or otherwise interfere
with idle connections in which the application is not transmitting or receiving data and wishes to keep the connection open.

10.Added a TCP RX SYN queue of depth TCP_SYN_QUEUE_MAX_ENTRIES (see page 481) (default 3). This queue
automatically saves incoming SYN packets destined for a local server port which is already connected to a different client.
When the client disconnects, the SYN data is pulled out of the queue and the socket immediately attempts to connect (see
page 166) to the next client. This improves connect (see page 166) time performance since the remote client no longer
has to retransmit the SYN request if it was unserviceable the first time around. This is most apparent with the HTTP/HTTP2
servers which previously performed poorly with certain modern web browsers which attempt to open many simultaneous
connections to the web server, such as Mozilla Firefox 3 beta 5 and Apple Safari 3.1. Entries in the queue automatically time
out after TCP_SYN_QUEUE_TIMEOUT (see page 481) (default 3 seconds) so as to prevent the queue from filling up
permanently if several connection requests arrive for a service that is in use and will not be available for an extended period.
11.Modified the structure of the MPFS2 FAT (now known as MPFS2.1) to include name hashes first. This speeds up
opening files by 25%, and makes opening index files nearly instant. 12.Updated the MPFS2 Utility. MPFS2.1 now supports
the new FAT structure and provides a cleaner interface. It also writes images to disk as they are created, which eliminates
the IndexOutOfBounds exceptions some users had reported. Finally, uploads are now truly multi-threaded. 13.Source code
to the MPFS2.exe PC utility is now released. Find it in the Microchip SolutionsMicrochipTCPIP StackUtilitiesSourceMPFS21
folder. This project is designed to compile with Microsoft Visual C# 2008 Express Edition. 14.Added support for
SST25VFxxxB serial flash parts in 2, 4, 8, 16, and 32Mbit densities. These parts can be used to replace EEPROMs for
storing MPFS images (both versions) and custom data. 15.Added HTTPReadPostName (see page 242),
HTTPReadPostValue (see page 243), and HTTPReadPostPair (see page 243) functions to facilitate easier processing
of data arriving via POST. 16.Split HTTPAuthenticate API into separate functions: HTTPNeedsAuth (see page 240) and
HTTPCheckAuth (see page 236). This function was already split internally, and didn't make sense as a single API.
17.Updated DHCP client to close its UDP socket when idle (bound state) to save a small amount of resources. 18.Removed
LED_IO macro from all hardware profiles because it is not suitable for use on certain hardware platforms that have
non-contiguous LEDs or reversed bit ordering. Use the new LED_GET() and LED_PUT(val) macros to read and write to all
of the LEDs at once. 19.Added Ethernet Hash Table Calculator.exe to the Utilities folder and start menu. This tool will
calculate the correct bit that you must set in the EHT0-EHT7 registers on the ENC28J60 and PIC18F97J60 family devices
for using the Hash Table RX filter. This is useful only for fixed MAC addresses known at design time. For addresses that are
known at run time, use the SetRXHashTableEntry() function in the ENC28J60.c or ETH97J60.c files to set the correct
EHT0-EHT7 bit.

Fixes:

1. Fixed a buffer overflow data corruption issue in the FTP module that arises when too many parameters were passed on
the command line.

2. Moved TCPWasReset (see page 458) checking in HTTP2 to execute for every socket on every loop. Previously, it
would only execute when a socket reconnected, which caused the RX buffer to not resize until after data was received.
Some platforms (notably FF2 on Ubuntu) would stall if the initial advertised RX window was too small, and this change

3 Microchip TCP/IP Stack Help

23

corrects that issue.

3. Updated SendSystemReset() and MACInit() initialization routine in ENC28J60.c. Previously, if the ENC28J60 was placed
into sleep mode by calling MACPowerDown(), the SendSystemReset() command would not work anymore. This would
leave the ENC28J60 in power down if the host PIC was ever reset. SendSystemReset() should work for all conditions
with this update. Thanks go to Rob Haverkort on the Microchip Ethernet forum for identifying this problem.

4. Fixed an alignment bug in HTTP2 that caused redirects to fail when the MPFS2 image was stored in Flash program
memory. Thanks to Todd Boaz on the Microchip Ethernet forum for identifying this bug, and Chen Qu for posting a
solution.

5. Fixed SNTP client from losing accuracy if you called SNTPGetUTCSeconds (see page 369)() 10s of thousands of times
since the last server synchronization. Thanks go to "pic123" on the Microchip Ethernet forum for noticing this error.

6. Fixed a TickGet (see page 513)*() API problem where the returned tick value could be off by 64K ticks occasionally on
PIC24, dsPIC30/33, and PIC32 processors. This bug was previously fixed in stack versions 4.13 and 4.16, but it was
unintentionally recreated in 4.18 due to PIC32 changes.

7. Fixed UART2TCPBridge module from failing to connect (see page 166) to a remote server when
USE_REMOTE_TCP_SERVER was defined.

8. Fixed an issue that prevented SNMP SETs on 16 and 32 bit parts when using MPFS2. Thanks go to Milena K on the
Microchip Ethernet forum for identifying this problem.

9. Fixed a rare buffer corruption issue that could occur with UDP if TCP was also enabled.

10.Fixed a Tick rollover error in HTTP2. Thanks go to Paul Bixel on the Microchip Ethernet forum for identifying this problem.
11.Fixed an MPFS2 bug in which an excessive value to MPFS_SEEK_REWIND may have failed to return an error. Thanks
go to Paul Bixel on the Microchip Ethernet forum for identifying this problem as well. 12.SMTP Client now sends EHLO when
using authentication. Previously, the HELO command was used, even with authentication enabled. Using HELO with
authentication creates incompatibilities with certain SMTP servers. 13.Improved Internet Bootloader robustness by
retransmitting ACKs in response to data retransmissions by the remote sending node. Previously, if an ACK packet was lost
before reaching the sending node, the TFTP upload would fail and need to be restarted. Thanks go to "coolvibe" Dave
Collier on the Microchip Ethernet forum for identifying this behavior. 14.Fixed TFTP Internet Bootloader from not being
accessible from Linux TFTP clients which were setting the IP header "Don't Fragment" flag bit. 15.Changed TCP so that
unsent data that is automatically flushed by the TCP_AUTO_TRANSMIT_TIMEOUT_VAL (see page 475) timer includes
the PSH flag. This improves GUI responsiveness for certain applications which rely on this automatic flush feature, such as
the UART2TCPBridge module. 16.Fixed TCP socket loss issue which could occur if the TCP TX FIFO size was greater than
536 bytes (TCP_MAX_SEG_SIZE). Before the fix, the socket would have gotten tied up indefinitely performing
retransmissions every 1.0 seconds without detecting that the remote node was disconnected. 17.Fixed TCP socket hang
issue that would occur if the PIC sent out a FIN and the remote node never responded with a corresponding FIN. The socket
would have gotten stuck indefinitely in the TCP_FIN_WAIT_2 state. Thanks go to Mr. Kyle Strickland with AW North Carolina
for identifying this bug. 18.Fixed UDPSetRxBuffer (see page 528)() function from not working if it was called before having
called UDPGet (see page 523)() or UDPGetArray (see page 524)() at least once. 19.Fixed an offset error of +2
milliseconds being returned from TickConvertToMilliseconds (see page 512)(). Thanks go to Andrés ("saturn") on the
Microchip Ethernet forum for finding this error. Note that due to integer truncation during division, this function can be off by
0.2% or so, depending on the value returned by GetPeripheralClock(). 20.Updated DelayMs() macro for MPLAB C Compiler
for PIC18s to work correctly when a large parameter was given. You should now be able to delay between 0 and 65535
milliseconds across all supported compilers without ending up with an unexpectedly short delay.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

3. HI-TECH PICC-18 projects may not compile when targeting the external ENC28J60 chip on the PICDEM.net 2
development board (instead of the internal Ethernet controller). This problem only applies when a PIC18F97J60 family
part is the target. I.e. it compiles correctly for the HPC_EXPLORER + Ethernet PICtail.

4. MAC.h RXSIZE precompiler test for proper range doesn't work. This is not a functional problem, just a compile-time

3 Microchip TCP/IP Stack Help

24

configuration test. Ensure that you don't over allocate TCP_ETH_RAM_SIZE or MAX_HTTP_CONNECTIONS.

5. HI-TECH PICC-18 STD 9.51PL1 cannot compile DynDNS.c. It raises an "inconsistent type" error while trying to perform a
ROM pointer to integer cast. The older 9.50PL3 compiler release is required to compile this file.

6. HI-TECH PICC-18 STD 9.50PL3 does not initialize several static variables correctly on reset. This behavior breaks many
stack modules in the TCPIP Demo App and TCPIP WebVend App projects. Additionally, string printing functions do not
work correctly, so the supplied "TCPIP Demo App-HITECHPICC18 PICDEMNET2 18F97J60.hex" and "TCPIP WebVend
App-HITECHPICC18 PICDEMNET2 18F97J60.hex" files may not correctly print the board's DHCP assigned IP address
on the board's LCD (if present) and UART. To avoid these severe problems, use the Microchip MPLAB C Compiler for
PIC18 MCUs. A free student edition can be downloaded from http://www.microchip.com/c18.

v4.18 28 November 2007

Changes:

1. Added C32 and PIC32MX support. Some things were cleaned up in the process.

2. Removed linker scripts from C30 MPLAB projects. MPLAB IDE 8.00 can automatically select the correct linker script for
16-bit and 32-bit products.

3. Updated TCPPerformanceTest.c module. Now it automatically calculates the TX throughput and displays it for you. Also,
there is now an RX throughput testing mode, which listens on a separate TCP socket (port 9763) when a TCP socket of
type TCP_PURPOSE_TCP_PERFORMANCE_RX is allocated in TCPIPConfig.h. The RX socket is by default not
enabled to save memory, so you must create a TCP_PURPOSE_TCP_PERFORMANCE_RX socket in TCPIPConfig.h
and ensure that enough memory is allocated to accommodate it to test the RX performance test. When connected to port
9763, send a large amount of data and the PIC microcontroller will send back a count of how many bytes were received
per second.

4. UDPPerformanceTest.c module now transmits 1024 packets on start up and then stops to prevent continually broadcast
flooding your network. To transmit more packets after 1024 is reached, hold down BUTTON3 (left-most button on most
boards).

5. Significantly improved the speed of the MD5 and SHA-1 functions. Gains for the 8-bit compilers were 50-75%, while 16-bit
parts saw more modest improvements (~10%).

6. Reimplemented TCP_CLOSE_WAIT TCP state ("CLOSE WAIT" in RFC793). Now, TCP sockets that receive a FIN from
the remote node will hold off transmitting a FIN back to the remote node until the TCP_CLOSE_WAIT_TIMEOUT (see
page 475) (defined at the top of TCP.c) elapses or immediately when the application calls the TCPDisconnect (see
page 443)() function. This makes it possible for the application to transmit a response back to the remote node before the
socket becomes closed on our end. Similarly, it simplifies application usage of the last RX bytes received as these bytes
are now assured to still be in the RX FIFO for at least TCP_CLOSE_WAIT_TIMEOUT (see page 475) seconds.
TCP_CLOSE_WAIT_TIMEOUT (see page 475) defaults to 200ms in this stack version.

7. Pushed the SNTP requery on failure timeout up some. It was ~14 seconds and is now ~20 seconds.

8. Added TFTPOpenROMFile (see page 495)() API to complement TFTPOpenFile (see page 495)() when using PIC18
products.

9. Added a fourth parameter to newAJAXCommand() in mchp.js, allowing data to be POSTed along with the AJAX request.

10.Deprecated the TCP Loopback functions, which includes TCPOpenLoopback, TCPCloseLoopback, TCPIsLoopback,
TCPInject, and TCPSteal. These functions were added in 4.10 for future SSL support, but have since become unnecessary.
They are of limited usefulness, and so are being removed to save code space. The functions are still available in this
version, but will be removed in the next release. 11.Added SMTPClient.ServerPort (see page 95) field to the SMTP API.
This allows the remote server port number to be specified dynamically at run time instead of being hard coded to the
SMTP_PORT (see page 309) value defined at the top of SMTP.c. SMTP_PORT (see page 309) is now only a default.
12.Added web interface to the SMTP module in the TCPIP Demo App applications. You can now configure the SMTP
module and send emails directly from within your web browser. The HTTPPostEmail (see page 90)() function in
CustomHTTPApp.c also demonstrates how to send MIME encoded attachments in emails. The default demo will send
button states, LED states, and the current potentiometer reading as a CSV file attached to the email. 13.Changed

3 Microchip TCP/IP Stack Help

25

SMTPDemo (see page 93)() in MainDemo.c to trigger on BUTTON2 and BUTTON3 simultaneously held down instead of
BUTTON0 only.

Fixes:

1. Fixed an ENC28J60.c MACGetArray() bug which would overwrite one byte of memory at address 0xFFFFFFFF if you
provided NULL for the destination address pointer.

2. Fixed an MPFS2.c MPFSGet (see page 270)() bug which would overwrite memory address 0x00000000 if a NULL
pointer was provided as the destination.

3. Fixed a bug in the HTTP2 server accessing incorrect sockets if an inadequate number of sockets were available on POR.

4. Fixed Internet Bootloader project from failing with a timeout if an ARP packet arrived during the Erase/Write operation.

5. Fixed DHCP client RFC non-compliance where it would send the ciaddr field in the initial SELECTING state. Also, in the
RENEWING state, the Requested IP Address (see page 142) option was being sent, which is illegal. These changes
may fix compatibility problems with certain DHCP servers.

6. Fixed TFTP Client's TFTPCloseFile (see page 489)() function from sending data using a wrong UDP socket if
StackTsk() was called after TFTPIsFileOpened (see page 491)() was last called.

7. Added two zero bytes to the ICMP echo request payload to improve compatibility with some buggy NAT routers.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

3. HI-TECH PICC-18 projects may not compile when targeting the external ENC28J60 chip on the PICDEM.net 2
development board (instead of the internal Ethernet controller). This problem only applies when a PIC18F97J60 family
part is the target. I.e. it compiles correctly for the HPC_EXPLORER + Ethernet PICtail.

4. MAC.h RXSIZE precompiler test for proper range doesn't work. This is not a functional problem, just a compile-time
configuration test. Ensure that you don't over allocate TCP_ETH_RAM_SIZE or MAX_HTTP_CONNECTIONS.

v4.16 06 November 2007

Changes:

1. Added Internet Radio application. This is a TCP client application which downloads streaming MP3 audio from a
Shoutcast server and then plays it back to stereo earphones via a VLSI VS1011 audio decoder.

2. Added SPIRAM.c module. This module is intended for interfacing to an AMI Semiconductor N256S0830HDA SPI RAM
chip. The TCP module can now interface directly to this SPIRAM module to store TCP socket FIFO buffers and other TCB
data in the external RAM.

3. Added TCP_OPTIMIZE_FOR_SIZE (see page 478) compile time configuration macro to TCP.c file. When optimizing
for small code size, the TCP module ROM footprint shrinks up to 6KB, but performance may slow down on some
processors (namely PIC18s, where the penalty is approximately 15%).

4. Added USE_EEPROM_25LC1024 compile time configuration macro to TCPIPConfig.h. Enable this definition if you are
storing your MPFS[2] on a 1Mbit 25LC1024 or similar EEPROM device that uses 24-bit addressing and a 256 byte write
page size.

5. Changed LCDBlocking.c module initialization code. It should now be possible to use 4-bit mode on certain "unusual" LCD
controllers, like the Samsung S6A0032. Most PICDEM.net 2 and Explorer 16 boards use an LCD with this controller.

6. SNTP client now attempts to requery the SNTP server about every 14 seconds if the last query attempt fails. This allows
the internal time value to become valid quickly should the board be powered up before an Ethernet cable is attached or if

3 Microchip TCP/IP Stack Help

26

the DHCP client doesn't obtain an IP address quickly enough. Previously, it would take up to 10 minutes after plugging
the Ethernet cable in to get a correct time value from the SNTP server.

7. Added UDP_USE_TX_CHECKSUM compile time configuration macro to TCPIPConfig.h. When enabled, all UDP packets
will have a correct UDP checksum computed and inserted into the UDP header of outbound packets. If you do not define
this macro, the UDP checksum will be disabled (left as 0x0000), which is how previous stack versions operated. Note that
enabling checksum generation cuts your maximum UDP TX throughput by nearly half due to the required computations.

8. Substantially changed TCP socket RX and TX FIFO allocation. Now, sockets can be stored either in Ethernet RAM, PIC
RAM, or external (SPI) RAM. Previously, sockets could only be allocated in Ethernet RAM, which was not scalable.

9. Added TCPOpen (see page 452)() API function. This replaces TCPListen (see page 451)() and TCPConnect (see
page 442)(). TCPOpen (see page 452)() supports a large number of options that will make the creation of client mode
sockets much easier. You can specify the remote node as a hostname that needs DNS and ARP resolution, an IP
address that only needs ARP resolution, or legacy NODE_INFO pointer for direct compatibility with the previous
TCPListen (see page 451)() and TCPConnect (see page 442)() APIs. TCPOpen (see page 452)() also supports a
socket type parameter which will allow you to use the new TCP socket RAM allocation system.

10.Added TCP Keep Alive mechanism defined by RFC 1122 section 4.2.3.6 to the TCP module. This helps automatically
detect lost connections. If the remote node sends back an RST, this immediately closes the lost connection on our end.
Currently, no action is taken if the keep alive gets no response. Note that this feature deviates from the standard by
defaulting to only 10 seconds instead of over 2 hours. Also deviating from the standard, this feature is enabled by default. To
disable it, undefine TCP_KEEP_ALIVE_TIMEOUT (see page 477) at the top of TCP.c. 11.Moved TCPPerformanceTest.c
module from default port 12345 to 9762. 12.Moved UDPPerformanceTest.c module from default port 12345 to 9, the
"discard" protocol port.

Fixes:

1. The DHCP client now specifically requests the previous IP address when a DHCP renewal occurs.

2. The SNTP client now correctly maintains time when repetitively calling SNTPGetUTCSeconds (see page 369)()
between an NTP requery event. Thanks go to Rob Haverkort on the Microchip Ethernet forum for noticing the time value
incrementing far faster than it should have.

3. TCP module will not transmit a bunch of unnecessary duplicate ACK packets when data is ready to be transmitted but the
remote RX window is zero. This previously didn't cause anything to break, but would waste CPU time and bandwidth
sometimes.

4. TCP sockets will no longer automatically close if the remote RX window stays zero for several seconds.

5. Fixed TFTP Internet Bootloader project from corrupting the configuration fuses. Previously, this would result in the
Watchdog timer being enabled and causing an unintentional reboot every few minutes with the demo TCP/IP stack.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. TFTPc module has not been tested with this version.

3. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

4. HI-TECH PICC-18 projects may not compile when targeting the external ENC28J60 chip on the PICDEM.net 2
development board (instead of the internal Ethernet controller). This problem only applies when a PIC18F97J60 family
part is the target. I.e. it compiles correctly for the HPC_EXPLORER + Ethernet PICtail.

5. MAC.h RXSIZE precompiler test for proper range doesn't work. This is not a functional problem, just a compile-time
configuration test. Ensure that you don't over allocate MAX_TCP_SOCKETS, TCP_TX_FIFO_SIZE,
TCP_RX_FIFO_SIZE, or MAX_HTTP_CONNECTIONS.

v4.13 02 October 2007

3 Microchip TCP/IP Stack Help

27

Changes:

1. Added command line support to the MPFS2.exe tool. You can now generate MPFS output files using batch scripts or
other console applications.

2. Added dynamic variable parameter capabilities to the MPFS2 utility. To use, add the parameters you wish to pass to the
end of the dynamic variable. All parameters are passed as WORD values. (ex: ~myArray(2,5)~)

3. Added TCPWasReset (see page 458)() API to allow the application layer to be notified if an underlying socket reset has
occurred (ex: remote node disconnects, cable is disconnected and times out, user calls TCPDisconnect (see page
443)(), etc.). The reset state is latching, which allows the application layer to detect if a remote node disconnects and a
new connection occurs on the same socket before the application can detect the original disconnection through the
TCPIsConnected (see page 450)() API.

4. Added a counter to the UDPPerformanceTest module and made it supress transmission if an Ethernet link is not present.

5. Added TCPIP WebVend App example application to the main stack distribution. This corresponds to three new Microchip
Webinars being published on the HTTP2 server usage topic.

Fixes:

1. Fixed MPFS2.exe PC utility from crashing if you attempt to generate an MPFS classic .bin/.c/.s output file.

2. Fixed RCONbits definition for HPC_EXPLORER hardware profile when using the HI TECH PICC-18 compiler.

3. Fixed a MPFSGetFilename (see page 272)() bug when using C30 and MPFS2 images stored in program memory.
Thanks to Billy Walton on the Microchip Ethernet forum for identifying this issue.

4. Fixed a TCP RX FIFO corruption problem which would occur if the remote node sent more data than could fit in our RX
FIFO in a single packet. The GeneticTCPClient.c module was subject to experiencing this problem when connected to
www.google.com's servers.

5. Fixed a DHCP client UDP socket leak if you called DHCPDisable() after the DHCP client had already obtained a UDP
socket. Thanks go to Matthew Kendall on the Microchip Ethernet forum for identifying this problem.

6. Fixed a SNMP Server module bug testing a string length (with respect to SNMP_COMMUNITY_MAX_LEN (see page
326)) being off by one, resulting in possible memory corruption. Thanks go to Matthew Kendall on the Microchip Ethernet
forum for identifying this problem.

7. Cleaned up some C30 compiler warnings related to macro definitions with inadequate parenthesis in them.

8. Fixed HTTP2 module sometimes returning a 501 error instead of a correct web page when being bombarded with new
connection requests.

9. Fixed a TickGet (see page 513)*() API problem where the returned tick value could be off by 64K ticks occasionally on
PIC24 and dsPIC processors.

10.Fixed SMTP client module failing to send email when attempting to send an email with a `CC' or `BCC' field that was in
ROM while the `To' field was in RAM or visa versa. 11.Fixed TCP module sending an incorrect sequence number in RST
packets sent when in the TCP_SYN_SENT state and an invalid segment arrives. In prior stack versions, some TCP client
applications might take a very long time to recover in the event of a power failure, reset, and subsequent reconnect to a
remote server that still thinks the old connection is still active. With this fix, reconnections should be possible almost
immediately after a power failure because the correct RST packet will cause the old connection to get closed right away.
12.Fixed a TCP socket leak problem that would occur over if the local PIC called TCPDisconnect (see page 443)() and the
remote node didn't send us a correct FIN response. Sockets (see page 147) could previously get lost in the
TCP_FIN_WAIT_2 state and wouldn't recover unless the application called TCPDisconnect (see page 443)() a second
time with the same socket handle.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. TFTPc module has not been tested with this version.

3. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a

3 Microchip TCP/IP Stack Help

28

work around, simply reset one of the boards to reenable it's DHCP server.

4. HI-TECH PICC-18 projects may not compile when targeting the external ENC28J60 chip on the PICDEM.net 2
development board (instead of the internal Ethernet controller). This problem only applies when a PIC18F97J60 family
part is the target. I.e. it compiles correctly for the HPC_EXPLORER + Ethernet PICtail.

5. HI-TECH PICC-18 projects will not correctly set the processor configuration fuses through code using the __CONFIG()
macro. Ensure that the configuration fuses are manually set correctly via the MPLAB IDE Configuration Bits dialog. This
problem has been observed with compiler version 9.50PL3.

6. MAC.h RXSIZE precompiler test for proper range doesn't work. This is not a functional problem, just a compile-time
configuration test. Ensure that you don't over allocate MAX_TCP_SOCKETS, TCP_TX_FIFO_SIZE,
TCP_RX_FIFO_SIZE, or MAX_HTTP_CONNECTIONS.

7. GenericTCPClient (see page 94) example of downloading a web page from www.google.com is extremely slow. The
default TCP socket has too little RX space to accept (see page 164) a full packet sent from Google's servers, so the
remote server must retransmit a lot of data, slowing the transfer down a lot. Making TCP_RX_FIFO_SIZE 536 bytes or
bigger and correspondingly shrinking MAX_TCP_SOCKETS will correct this problem.

v4.11 27 August 2007

IMPORTANT NOTE: You must use MPLAB 7.62 or higher to successfully open the MPLAB projects.

Changes:

1. Added a Microchip TCP/IP Stack Users' Guide to document the stack features/modules/and APIs and address the stale
AN833 documentation. Note that this is a work in progress. Many modules have yet to be documented in the Users'
Guide.

2. Added HTTP2 module. This HTTP module includes a whole new API and supreme new features, such as POST support,
cookies support, browser authentication support, and more.

3. Added MPFS2 module. This module is required for the new HTTP2 module and performs better while having fewer
limitations. Long filenames and folders are now supported.

4. Added a new GUI based MPFS2.exe PC utility. The older MPFSv2.exe GUI application and MPFS.exe command line tool
has been retired. The new utility has advanced features, such as MPFS2 file format support, GZIP compress, etc.

5. Added a TFTP bootloader. This is a stand alone project and currently only supports the PIC18F97J60 family of PIC
processors with internal Ethernet.

6. Added UART2TCPBridge.c file and STACK_USE_UART2TCP_BRIDGE option to TCPIPConfig.h. This new module acts
as a TCP and UART bridge, with a high priority UART interrupt and dedicated UART TX and RX FIFOs for minimum
UART latency and maximum performance. By default, the bridge acts as a TCP server and listens on port 9761. The
UART baud rate defaults to 19200. The bridge can be reconfigured to act as a TCP client.

7. Added Simple Network Time Protocol (SNTP) client. This module automatically obtains the current time (date) from the
Internet. Enable this module by defining STACK_USE_SNTP_CLIENT in TCPIPConfig.h. Obtain the current time (in
seconds since 00:00:00 1970) by calling the SNTPGetUTCSeconds (see page 369)() API.

8. Added support functions Base64Encode (see page 209)() and Base64Decode (see page 209)() in Helpers.c. Base
64 is required for the new HTTP2 module, but of general use to many applications.

9. Added SMTP Authentication (see page 85) support to the SMTP Client. To use this, set the SMTPClient.Username and
SMTPClient.Password string pointers to a non-NULL value before calling SMTPSendMail (see page 304)().
Applications implementing email transmission capabilities should expose these options to the end-user for configuration.
To use SMTP servers that do not support the AUTH LOGIN authentication command, simply leave the
SMTPClient.Username and SMTPClient.Password pointers as their default NULL value.

10.Converted DHCPDisable() from a macro to a real function and added the complementary DHCPEnable() function. These
two functions can be used at run time to dynamically switch between using a static IP address and configuration and DHCP
assigned IP address and configuration. 11.Updated StringToIPAddress (see page 219)() to work more robustly, including
the ability to decode host name strings and determine if they contain a valid IP address or not. Also, the complementary
ROMStringToIPAddress (see page 219)() function was added. 12.Updated the DNS module. Now, if you give it an IP

3 Microchip TCP/IP Stack Help

29

address string to resolve, it will convert the string to an IP address and immediately return without querying the DNS.
13.Shrunk the advertised TCP Maximum Segment Size from 576 bytes to 528 bytes. This might improve compatibility if your
TCP data has to propagate over nodes with small MTUs and you have a correspondingly large TCP RX FIFO defined.
14.Performed some maintenance on the FTP.c file. No significant functionality has been changed, but some potential
problems were corrected. 15.Altered Tick.c file and API. Now, the Tick module can operate maximum precision, returning
the value of the actual Timer as it is counting, without disturbing the timer count by writing to it or disabling it. Three new
APIs were added, TickGetDiv256 (see page 513)(), TickGetDiv64K (see page 514)(), and TickConvertToMilliseconds (
see page 512)(). Internally the tick counter is now 48-bits wide and as accurate as your Timer clock source, allowing you to
use it as a Real Time Clock. 16.Added PIC24FJ64GA004_PIM hardware profile. This hardware profile is intended for use
with the PIC24FJ64GA004 PIM on the Explorer 16 development board. In this mode, BUTTON2 and BUTTON3 and several
of the LEDs do not work correctly due to lack of I/O pins on this device. Also, you cannot have the POT and TEMP jumpers
on the PIM bridged because these signals are multiplexed with the SDO1/SDI1 pins needed for the Ethernet PICtail Plus.
17.Removed most ROM APIs when using a 16-bit compiler (C30). PIC24s and dsPICs usually don't need separate ROM
functions since the Program Space Visibility feature maps ROM into RAM space. All ROM APIs are still supported, but they
are now macros to base RAM APIs. This change saves a couple of kilobytes of code space on PIC24 and dsPICs.
18.Improved MyTCB structure caching. This should reduce TCP packet processing overhead with the ENC28J60 where
TCBs are stored in the Ethernet RAM. 19.MAX_RETRY_COUNTS TCP configuration option has been renamed to
TCP_MAX_RETRIES (see page 477). 20.FTP server is no longer enabled by default. HTTP2 now supports POST, so you
can upload new webpages through the /mpfsupload page now. FTP required two precious TCP sockets. 21.Began adding
hooks for an SSL/TLS transport for secure HTTPS and other future stack modules. Note that these cryptographic modules
are not available at this time. Configuration options such as MAX_SSL_CONNECTIONS do nothing and should not be
modified. 22.Username has changed for all of the modules. Now all modules have a default username of "admin" and
password of "microchip". Previously, the FTP and Telnet (see page 482) modules used "ftp" and "telnet" respectively for
the usernames.

Fixes:

1. Fixed a SendFile() bug in HTTP.c where parsing dynamic cgi files could send garbage back to the web browser
sometimes. Thanks go to Matt Watkins on the Microchip Ethernet forum for identifying this issue.

2. Fixed an off by one error in the calculation of RESERVED_TCP_MEMORY. Previously, the last TCP socket's RX FIFO
would incorrectly overlap with the Ethernet RX buffer, causing incoming packets to occasionally be corrupted or the
incoming data on the last socket to get corrupted.

3. Fixed the QWORD_VAL's dword struct element types. dword.LD and dword.HD were incorrectly defined as WORDs
instead of DWORDs. Thanks go to Iñaki Esparza on the Microchip Ethernet forum for identifying this issue.

4. Fixed the incorrect processing of received IP fragments with a non-zero offset. This stack does not support IP packet
reconstruction due to the limited amount of available RAM. Thanks go to Iñaki Esparza on the Microchip Ethernet forum
for noticing this behavior.

5. Board now only responds to ping requests to our IP address, the directed subnet broadcast address, or the broadcast
address of 255.255.255.255. Previously, it would respond to any ping request to any IP address, assuming the MAC
address was correct.

6. Fixed a memory corruption/UDP packet loss problem when handling incoming UDP packets. Previously, StackTask()
would incorrectly continue processing more packets if it came upon a UDP packet. Thanks go to Iñaki Esparza on the
Microchip Ethernet forum for identifying this issue.

7. Fixed the SMTPClient.ROMPointers.Server flag having an inverted meaning. Previously, the SMTP client module would
treat the SMTPClient.Server pointer as a ROM pointer if this bit was cleared. In most cases, this would cause the SMTP
client to return an error code of 0x8000 when the SMTPClient.SMTPServer (see page 309) address pointer was set.

8. Fixed the DHCP Server module from incorrectly parsing received packets which had a
DHCP_PARAM_REQUEST_IP_ADDRESS option followed by more options. Previously due to the length miscalculation,
the parser would enter a random state, depending on the packet's contents. Thanks go to Iñaki Esparza on the Microchip
Ethernet forum for identifying this issue.

9. Fixed potential incorrect results when UDPIsGetReady (see page 524)() was called and a previous application did not
call UDPDiscard (see page 522)() on an RX packet. Now, StackTsk() calls UDPDiscard (see page 522)() as
appropriate to let it know when it's old RX data is being thrown away. This fixes a potential bug in the DHCP Server
module and makes the UDP API more robust. Thanks go to Iñaki Esparza on the Microchip Ethernet forum for identifying
the potential DHCP server issue.

10.Fixed a potential ARP bug where the Gateway's MAC address would be returned for an IP address on the local subnet.

3 Microchip TCP/IP Stack Help

30

This unusual case would occur when two application tasks were using the ARP module at the same time and the second
application was trying to resolve an IP address off of our subnet. Thanks go to Iñaki Esparza on the Microchip Ethernet
forum for pointing this issue out. 11.Fixed an PIC18F97J60 family MAC layer bug where MACGetArray() might not correctly
increment the Ethernet read pointer if a NULL pointer was given for the destination. The C compiler might have optimized
the function so that it would increment the read pointer one less than it was supposed to. 12.The TCP module now
acknowledges TCP Keep-Alive packets which will help prevent connection loss if the remote node fills up our RX FIFO and
then our window-update packet gets lost on the network/Internet. In stack version 4.02, a zero-window probe would have
been required to restore the communications. 13.Fixed a TCP RX FIFO corruption issue that would occur in (uncommon)
circumstances when too many out-of-order segments arrived such that a second "hole" would have been required to
accommodate the data. Thanks go to Iñaki Esparza and his eagle eyes on the Microchip Ethernet forum for finding this
corner case bug. 14.Inline assembly in the ETH97J60.c file has been modified to accommodate the C18 Extended mode
and C18 Auto default storage class. Previously, the Ethernet module would transmit garbage packets when using the C18
parameter stack. 15.Fixed potential buffer overflow in NBNS.c's NBNSGetName (see page 286)() function where an
unexpected string length retrieved from the packet could cause random memory corruption. 16.Fixed some potential
PIC18F97J60 family Ethernet module transmit lockup conditions that occur on some networks. Previously blocking while()
loops would wait indefinitely for the ECON1bit to become clear by hardware, which the hardware might never have done.
17.In MainDemo.c, a call to DelayMs() was being made using a value of 100ms. This was too long for the underlying
Delay1KTCYx() C18 function and would result in a shorter than expected delay when compiled with C18. This has been
fixed with a loop. Thanks go to Andy123 on the Microchip Ethernet forum for pointing this problem out. 18.Fixed a potential
C18 memory overlaying problem in the TickUpdate (see page 515)() function. Previously, the local variable used in this
function might have been overlayed on other memory, resulting in random memory corruption as the ISR occurred. 19.The
demo AJAX web pages in the TCPIP Demo AppWebPages folder now correctly display and self-refresh in Firefox 2.
Previously, it would work in Firefox 1.5 and Microsoft Internet Explorer, but not Firefox 2. Thanks go to "gohsthb" on the
Microchip Ethernet forum for identifying this correction. 20.Rewrote the GenericTCPServer.c example to not use an
application RAM FIFO for buffering. Since the TCP module implements its own FIFOing, the application has limited need for
its own FIFO too. This fixes a previous bug where the GenericTCPServer (see page 97) was not checking the number of
incoming bytes with the remaining size available of the App FIFO. This would have previously resulted in a buffer overflow,
corrupting the RX data if too much arrived all at once. 21.Fixed a potential MPFS classic inline ASM30 assembly code
problem where web pages stored in internal Flash and C30 with optimizations enabled could result in data corruption.
22.Fixed a UDPPut (see page 525)() tracking problem that would result in extra bytes being appended to the end of a
packet if the UDPSetTxBuffer (see page 528)() function was used. This previously caused the SNMP module to send
some junk data at the end of its packets. 23.Fixed a potential TCP problem where transmitted FIN packets might not get
retransmitted properly if the remote node never acknowledged the data that was transmitted just before the FIN was sent.
24.Fixed a NetBIOS Name Service bug where the response packet would sometimes get sent to an incorrect address. It
now consistently responds to the unicast MAC/IP address of the NBNS query packet. 25.Added padding to all transmitted
DHCP messages to make the minimum UDP payload at least 300 bytes. This fixes compatibility with some older BOOTP
relay devices which discard smaller packets. Thanks go to Dave Collier on the Microchip Ethernet forum for pointing this
problem out. 26.Substantially shrunk the number of retransmission attempts made in the TCP_SYN_RECEIVED state. This
improves recovery time when attacked by a SYN flood Denial of Service event. The recovery time is now 7 seconds (3 total
packets) instead of 31 seconds (6 total packets) 27.Fixed the possibility of the NetBIOS Name Service module giving out the
board's static IP address before a DHCP lease could be obtained. NBNS requests are now only serviced when originating
from nodes on the same subnet. 28.Fixed storage of MPFS classic in internal program memory when using the HI-TECH
PICC-18 compiler. 29.Substantially revised TCP.c, fixing many TCP bugs and possibly adding new ones. Thanks go to
Michael Rubinstein for finding several of these TCP problems. 30.The DNS client module will now time out and return failure
if the DNS server cannot be ARPed or does not respond to the DNS query. Each timeout is set to 1 second and 3 total ARP
and 3 total DNS query attempts are possible. Previously, it would retry indefinitely, causing the calling application to
deadlock.

Known Problems:

1. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

2. TFTPc module has not been tested with this version.

3. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to

3 Microchip TCP/IP Stack Help

31

each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to reenable it's DHCP server.

4. HI-TECH PICC-18 projects may not compile when targeting the external ENC28J60 chip on the PICDEM.net 2
development board (instead of the internal Ethernet controller). This problem only applies when a PIC18F97J60 family
part is the target. I.e. it compiles correctly for the HPC_EXPLORER + Ethernet PICtail.

5. HI-TECH PICC-18 projects will not correctly set the processor configuration fuses through code using the __CONFIG()
macro. Ensure that the configuration fuses are manually set correctly via the MPLAB IDE Configuration Bits dialog. This
problem has been observed with compiler version 9.50PL3.

Testing and Performance Notes:

1. Make sure to use MPLAB IDE 7.62 or higher with this version. Versions below 7.61 will not work. Version 7.62 has cool
new features like C auto-word complete and function parameter tooltips that can be enabled (disabled by default).

2. Testing was done using MPLAB C18 version 3.12, MPLAB C30 version 3.01, and HI-TECH PICC-18 version 9.50PL3.
Make sure to upgrade your tools to at least these versions.

v4.02 10 April 2007

IMPORTANT NOTE: You must use MPLAB 7.41 or higher to successfully open the MPLAB projects. IMPORTANT NOTE2:If
an external serial EEPROM memory is used to store AppConfig, it's contents will be invalidated the first time you run this
version, restoring the AppConfig defaults. The AppConfig structure has been optimized. IMPORTANT NOTE3:If an external
serial EEPROM memory for MPFS, you will need to recreate the MPFS image and program your EEPROM. A 32 bit
addressing format is now used.

Changes:

1. Implemented TCP RX packet order correction logic. The stack can now accept (see page 164) TCP frames that arrive
out-of-order without requiring the remote node to go through a retransmit cycle. This dramatically improves RX
performance when communicating over the Internet.

2. UDPOpen (see page 521)() now can handle a NULL pointer for remoteNode. In this case, the broadcast IP/MAC
addresses will be used for the remoteNode (destination address of outbound packets).

3. Recreated MPLAB projects for the HI-TECH PICC-18 compiler. These were temporarily absent from 4.00RC. This project
works with the PIC18F97J60 with internal Ethernet module, assuming the correct compiler version is present.

4. Moved all the headers around. Most of them are in "Microchip SolutionsMicrochipIncludeTCPIP Stack" now. This change
was made to again be more compatible with other (future) Microchip software libraries.

5. New UDPPut (see page 525)() behavior. Now, if space in the Ethernet TX buffer runs out, the packet will not
automatically be transmitted. You must call UDPFlush (see page 523)() to cause the packet to be transmitted.

6. Added UDPGetArray (see page 524)(), UDPPutArray (see page 526)(), UDPPutROMArray (see page 526)(),
UDPPutString (see page 527)() and UDPPutROMString (see page 527)() user API functions. These functions
perform substantially better than calling UDPPut (see page 525)() successively and allow greater application
programming flexibility.

7. Changed TCPPutString (see page 457)() and TCPPutROMString (see page 456)() APIs to now return an updated
string pointer instead of a count of bytes successfully placed in the TX buffer.

8. Added UDPPerformanceTest.c. By default this module causes UDP packets containing 1024 bytes of application data to
be broadcasted on UDP port

12345. Use a packet sniffer, such as Wireshark (http://www.wireshark.com/)

to capture and derive stack overhead/UDP TX performance characteristics with this module. Note that this test uses the
UDPPutROMArray (see page 526)() function. Applications which use successive calls to UDPPut (see page 525)() will
be slower. To enable this module, #define STACK_USE_UDP_PERFORMANCE_TEST in TCPIPConfig.h.

9. Added TCPPerformanceTest.c. By default this module listens on TCP port

12345. When a remote client connects, this server module will being

3 Microchip TCP/IP Stack Help

32

transmitting the maximum possible amount of application data that it can, given your TCP TX FIFO size. Use a packet
sniffer, such as Wireshark (http://www.wireshark.com/) to capture and derive stack overhead/TCP TX performance
characteristics with this module. Any TCP client can be used, including readily available utilities such as the telnet.exe utility
available on Microsoft Windows XP. To use it to connect (see page 166) to the test module, run: "telnet.exe
xxx.xxx.xxx.xxx 12345" where xxx.xxx.xxx.xxx is the board's IP address. Note that this test uses the TCPPutROMArray (
see page 455)() function. Applications which use successive calls to TCPPut (see page 454)() will be slower. To enable
this module, #define STACK_USE_TCP_PERFORMANCE_TEST in TCPIPConfig.h. 10.Added Reboot.c module. By default,
this module listens on UDP port 30304. If the application byte 0x00 arrives on this port, the PIC will reset. This is primarily
useful for remote Bootloader entry. #define STACK_USE_REBOOT_SERVER in TCPIPConfig.h to enable this module. Note
that since no encrypted challenge/response algorithm is currently implemented, this module is a Denial of Service
vulnerability, so it should not be enabled unless there is a specific need for it. 11.Made the TickUpdate (see page 515)()
ISR routine execute in the low priority ISR instead of the default high priority ISR. The Microchip TCP/IP stack does not need
any interrupts except this low priority timer. 12.Renamed STACK_USE_DHCP macro to STACK_USE_DHCP_CLIENT
13.Added STACK_USE_MPFS macro. 14.Changed UDPIsPutReady (see page 525)() to return a WORD instead of a
BOOL. The WORD is the number of bytes that can be put into the buffer. 15.Changed MACGetArray() to accept (see page
164) a NULL pointer. If NULL, the retrieved data will simply be discarded. This also changes the behavior of UDPGetArray
(see page 524)() and TCPGetArray (see page 448)() to match, throwing bytes away if a NULL pointer is given.
16.Added a very simple DHCP Server module. This module has limitations and is useful for a single client only. Its purpose
is to allow you to directly connect (see page 166) the board to a standard PC through a crossover cable (no other network
nodes attached). The server is coded to automatically disable itself if the DHCP client is also enabled and another DHCP
server is detected on the network. This allows both the DHCP server and DHCP client to coexist without any manual
reconfiguration. 17.Added DNSResolveROM (see page 181)() function for resolving host names that are stored in
program memory, ex: literal strings. 18.Added a TCP automatic transmit/window update timer. It defaults to
TCP_AUTO_TRANSMIT_TIMEOUT_VAL (see page 475) (40ms) after the first get or put operation following the last
automatic transmit/window update. This timer enhances performance, especially when streaming data over the Internet
where round trip times can be several tens to low hundreds of milliseconds. This also improves application coding flexibility
as TCPFlush (see page 447)() need not be called anymore. 19.Added TCP delayed ACKnowledgement timer. This
conserves bandwidth by transmitting fewer ACKs and prevents inadvertently influencing remote slow start/collision
avoidance and fast retransmit algorithms. 20.Completely rewrote ICMP (ping) server module. It is now much smaller (ROM
and RAM), faster, and can handle packets of 576 bytes or larger, if no IP fragmentation occurs. 21.Rewrote StackTsk() stack
manager. It is much simpler now. 22.Added TCPFind (see page 443)(), TCPFindArray (see page 444)(), and
TCPFindROMArray (see page 446)() user API functions. These functions peek inside a given TCP socket's RX FIFO
(without removing anything) and looks for a particular byte or array of bytes. This should greatly simplify the creation of
application code whenever variable length fields are used (ex: text strings terminated by rn). It supports case insensitive text
searching or binary searching, as well as an offset to start searching at. 23.Added TCPGetRxFIFOFree (see page 449)()
user API. It returns the number of bytes of free space in the TCP's RX FIFO. 24.Changed default TICK resolution to 1ms
(from 10ms) and improved accuracy. 25.Added outbound ping capabilities (i.e. board can now ping another board or a PC).
To enable these features, define STACK_USE_ICMP_CLIENT. This will enable several new APIs, including
ICMPBeginUsage (see page 259)(), ICMPSendPing (see page 260)(), ICMPGetReply (see page 261)(), and
ICMPEndUsage (see page 262)(). The functions should be called in this order. See the PingDemo (see page 98)()
function in MainDemo.c for an example of how to use them. By default, pushing BUTTON3 (left-most one) will cause a ping
to be sent to 4.78.194.159 (ww1.microchip.com). The response time will be displayed on the LCD (assuming your
development board has an LCD). 26.Cleaned up C30 3.00 signed/unsigned warnings. 27.Removed
PIC18F97J60_TEST_BOARD hardware profile support. This stack no longer supports it due to the old beta silicon (with
errata) mounted on these boards. 28.Added support for ROM pointers for all of the SMTP strings (To, From, CC, Subject,
etc.). If you use a ROM string, you must also set the corresponding SMTPClient.ROMPointers.xxx bit to let the SMTP
module know which type of pointer was provided. See the SMTPDemo (see page 93)() code in MainDemo.c for and
example calling sequence using both ROM and RAM strings for the various fields.

Fixes:

1. Fixed a critical TCP buffer corruption issue where the start of a TCB header overlapped with the last byte of the RX FIFO
from the previous socket. This bug affected version 4.00RC only.

2. ETH97J60.c, TCPIP.h, and TCPIP Stack Version.txt were correctly readded to the TCPIP Demo App-C18 project using
relative paths instead of absolute paths.

3 Microchip TCP/IP Stack Help

33

3. UDPOpen (see page 521)() now dynamically assigns a local port number if you call it and give it a 0x0000 port number.
This should fix some UDP applications from not working (ex: DNS Client module) with some computers/routers/networks
which throw away traffic originating from the invalid port 0x0000 value.

4. Fixed a ENC28J60 bank selection error that would occur if an application called GetCLKOUT() in ENC28J60. By default,
this function is not called.

5. UnencodeURL (see page 223)() function in Helpers.c is now tested and working.

6. Fixed a TCP Window Update problem when TCPGetArray (see page 448)() was used. Before the problem was fixed,
performance could have been terrible on reception.

7. Fixed a unintended TCP connection close if the socket was idle for about a minute. Now, TCP sockets will remain open
indefinitely if there is no traffic going on.

8. Serial numbers >32K are now displayed correctly on the serial port as a positive value when C18 is used and the board is
placed in configuration mode (BUTTON0 is depressed on power up).

9. HI-TECH PICC-18 compiler would previously incorrectly initialize the AppConfig structure.

10.Previously a processor reset was possible when accessing items in the AppConfig strucutre on 16 bit MCUs (PIC24,
dsPIC) due to unaligned word accesses. This was fixed by reordering the Flags byte in the APP_CONFIG structure.
11.Rewrote DHCP client state machine, fixing the previously known problem where it would not perform a new discovery if it
was trying to renew a lease with an offline DHCP server. 12.Fixed a critical deadlock problem in the ETH97J60.c MAC layer
driver for the PIC18F97J60 family Ethernet controller. Previously, it was possible (although rare) that the DMAST or TXRTS
bits would get stuck set if too much Ethernet traffic was received within a short interval. Previously, the MACFlush() function
was unnecessarily setting TXRST, which it should not do while the Ethernet interface or DMA is being used. 13.Fixed an
HTTP server state machine problem where a new connection occurring too soon on a previously used socket could cause
the HTTP server to no longer respond. 14.Fixed a potential memory corruption error in the HTTPGetVar() callback which
would exceed the bounds of the VarString array when returning the VAR_STACK_DATE variable. 15.Fixed a TCP
transmission sequence tracking problem whenever data is retransmitted and new unflushed data is also in the TX FIFO.
Thanks go to Matt Watkins on the Microchip Ethernet forum for identifying this issue.

Known Problems:

1. RTL8019AS MAC layer driver has not been updated for new TCP module. Users requiring RTL8019AS support should
continue to use stack version 3.75.

2. I2CEEPROM.c has not been tested or completed. Continue to use I2CEEPROM.c from stack version 3.75 if this file is
needed.

3. Telnet (see page 482) server module does not implement a lot of Telnet (see page 482) functions. As a result, it will
likely not display correctly or work at all with some Telnet (see page 482) clients. The server was tested with the
Microsoft telnet.exe utility which is provided with Microsoft Windows.

4. TFTPc module has not been tested with this version.

5. The default demo web pages which use AJAX do not automatically refresh themselves when viewed in Firefox 2.0.0.1.
Earlier Firefox versions (1.5ish) probably work without any problem.

6. Files may be inaccessible in your MPFS if compiled with C18 for internal flash program memory and your total MPFS
content is large (around 64KB or larger). The code attempts to access the ROM memory using a near rom pointer when a
far rom pointer is needed.

7. If using MPLAB 7.52 all .s files that are compiled with C30 will not have the corresponding object file get stored in the
correct directory. As a result, if you are compiling with C30 and with MPFS_USE_EEPROM not defined (i.e. storing web
pages in internal program memory), the project won't link (throws a undefined reference to `MPFS_Start'). As a
workaround, remove the Intermediates Directory in the MPLAB project. Alternatively upgrade MPLAB to a newer version.
MPLAB IDE 7.60+ may have this fixed.

8. If the DHCP client and DHCP server are used at the same time and you connect (see page 166) two similar boards to
each other (ex: two PICDEM.net 2 boards connected via a crossover cable), a race condition can occur where both nodes
will disable their DHCP server and neither board will get a successful DHCP lease. If this unlikely scenario occurs, as a
work around, simply reset one of the boards to renable it's DHCP server.

9. HI-TECH PICC-18 projects may not compile when MPFS_USE_EEPROM is not defined and you are trying to store web
page data in internal FLASH program memory.

10.HI-TECH PICC-18 projects may not compile when targeting the external ENC28J60 chip on the PICDEM.net 2
development board (instead of the internal Ethernet controller). This problem only applies when a PIC18F97J60 family part

3 Microchip TCP/IP Stack Help

34

is the target. I.e. it compiles correctly for the HPC_EXPLORER + Ethernet PICtail.

Testing and Performance Notes:

1. This stack version was compiled and tested with the following tool versions: -MPLAB IDE 7.52 -Microchip C30 version
3.00 -Microchip C18 version 3.10 -HI-TECH PICC-18 version 9.50PL3

2. Using the UDPPerformanceTest.c module, the stack can transmit around 220KBytes/second (1.75Mbits/second) of UDP
application data on the PIC18F97J60 with internal Ethernet @ 41.66667MHz core clock, compiled using C18 3.10 with
debug optimization settings.

3. Using the UDPPerformanceTest.c module, the stack can transmit around 392KBytes/second (3.14Mbits/second) of UDP
application data on the PIC24HJ256GP610 with external ENC28J60 @ 40 MIPS, compiled using C30 3.00 with debug
optimization settings.

4. Using the TCPPerformanceTest.c module, the stack can transmit around 58KBytes/second (464Kbits/second) of TCP
application data on the PIC18F97J60 with internal Ethernet @ 41.66667MHz core clock, compiled using C18 3.10 with
debug optimization settings, over Ethernet when using a tiny 200 byte TX TCP FIFO. Note that performance can be
improved significantly by increasing the FIFO size and performance will drop significantly if the round trip TCP
acknowledgement time is increased (ex: testing over the Internet instead of Ethernet).

5. Using the TCPPerformanceTest.c module, the stack can transmit around 69KBytes/second (558Kbits/second) of TCP
application data on the PIC24HJ256GP610 with external ENC28J60 @ 40 MIPS, compiled using C30 3.00 with debug
optimization settings, over Ethernet when using a tiny 200 byte TX TCP FIFO. Note that performance can be improved
significantly by increasing the FIFO size and performance will drop significantly if the round trip TCP acknowledgement
time is increased (ex: testing over the Internet instead of Ethernet).

6. Using the TCPPerformanceTest.c module, the stack can transmit around 178KBytes/second (1.42Mbits/second) of TCP
application data on the PIC24HJ256GP610 with external ENC28J60 @ 40 MIPS, compiled using C30 3.00 with debug
optimization settings, over Ethernet when using a larger 2000 byte TX TCP FIFO. Note that performance will drop
significantly if the round trip TCP acknowledgement time is increased (ex: testing over the Internet instead of Ethernet).

v4.00RC 28 December 2006

IMPORTANT NOTE: If an external serial EEPROM memory is used to store AppConfig, it's contents will be invalidated the
first time you run this version, restoring the AppConfig defaults. The AppConfig structure has been optimized. IMPORTANT
NOTE2: If an external serial EEPROM memory for MPFS, you will need to recreate the MPFS image and program your
EEPROM. A 32 bit addressing format is now used.

Changes:

1. Added Simple Mail Transfer Protocol (SMTP) client module and updated MainDemo.c to exercise the Email transmission
functionality when a user pushes BUTTON0.

2. Added beta Telnet (see page 482) server module. See Known Problems section.

3. Completely revamped the TCP module. A real transmit FIFO and receive FIFO are allocated for each TCP socket now.
This greatly enhances RFC compliance, communications robustness, and makes application development easier. New
APIs were added for putting and getting arrays and strings (including ROM variants). Several TCP related bugs are now
fixed as a result. Please report any bugs found in the new implementation.

4. Added TCPPutArray (see page 455)() API.

5. Added TCPPutROMArray (see page 455)() API.

6. Added TCPPutString (see page 457)() API.

7. Added TCPPutROMString (see page 456)() API.

8. Added TCPGetArray (see page 448)() API.

9. Changed TCPIsPutReady (see page 451)() API. Instead of returning a BOOL, it now returns a WORD. The WORD is a
count of the number of bytes that TCPPut (see page 454)(), TCPPutArray (see page 455)(), etc. can immediately
place in the output buffer. MAKE SURE THAT YOUR CODE DOES NOT COMPARE THE RETURN RESULT OF
TCPIsPutReady (see page 451)() DIRECTLY TO TRUE. For example, "if(TCPIsPutReady (see page 451)(MySocket
(see page 307)) == TRUE){...}" must be converted over to: "if(TCPIsPutReady (see page 451)(MySocket (see

3 Microchip TCP/IP Stack Help

35

page 307))){...}".

10.Changed TCPIsGetReady (see page 451)() API. Instead of returning a BOOL, it now returns a WORD. The WORD is a
count of the number of bytes that TCPGet (see page 447)() or TCPGetArray (see page 448)() can immediately obtain.
MAKE SURE THAT YOUR CODE DOES NOT COMPARE THE RETURN RESULT OF TCPIsGetReady (see page 451)()
DIRECTLY TO TRUE. For example, "if(TCPIsGetReady (see page 451)(MySocket (see page 307)) == TRUE){...}" must
be converted over to: "if(TCPIsGetReady (see page 451)(MySocket (see page 307))){...}". 11.Changed TCPDiscard (
see page 442)() return type from BOOL to void. 12.Removed TCP_NO_WAIT_FOR_ACK option. It was defaulted to
disabled in the last two releases of the stack and is not needed with the new TCP module. 13.Updated DNS module to
include two new required APIs: DNSBeginUsage (see page 180)() and DNSEndUsage (see page 180)(). These
functions control a one bit ownership semaphore to allow multiple applications to use the DNS module in series. If invoked
correctly, this will prevent unintended bugs resulting from two applications trying to use the DNS module at the same time.
Old applications, such as those based around the GenericTCPClient.c example must be updated to use these functions.
14.Started using a new project structure and folders. You must use MPLAB 7.41 or higher (stack is tested on MPLAB 7.50)
to use the default workspaces/projects, which include files using relative paths. This should improve compatibility with some
future code libraries released by Microchip. StackTsk.h was broken into TCPIPConfig.h, HardwareProfile.h, and StackTsk.h.
TCPIPConfig.h now includes all stack configuration options and HardwareProfile.h contains all hardware options. No macros
need be globally defined in MPLAB project now. TCPIP.h is the only header applications must include now, for any/all
modules used. 15.Combined ARP.c/ARP.h and ARPTsk.c/ARPTsk.h into a single file pair: ARP.c/ARP.h. Applications built
using a prior stack revision must remove all instances including "ARPTsk.h" and replace it with "ARP.h" instead. The ARP
module is now simpler, more linear (easier to read), and being in one source file, allows the C compiler to optimize better.
16.Added PIC18F67J60_TEST_BOARD hardware profile to HardwareProfiles.h. This hardware profile is designed for
05-60091 (Rev 1), a development board that is not in production at this time. 17.Added DSPICDEMNET1 and
DSPICDEMNET2 hardware profiles to HardwareProfiles.h for eventual support of the Microchip dsPICDEM.net 1 and
dsPICDEM.net 2 demo boards. These two boards use the RTL8019AS Ethernet controller and a 24LC515 EEPROM. These
changes are currently incomplete and these profiles cannot be used. 18.Began rewriting I2CEEPROM.c to support 16 bit
CPUs, including the dsPIC30F6014 used on the dsPICDEM.net 1 and 2 demo boards. Note that work here is incomplete
and cannot be used as a result -- see Known Problems section. 19.Partially updated RTL8019AS.c to support 16 bit CPUs,
including the dsPIC30F6014 used on the dsPICDEM.net 1 and 2 demo board. Note that work here is incomplete and cannot
be used as a result -- see Known Problems section. 20.Updated SNMP.c to use new typedefs in GenericTypedefs.h. Also
SNMP was tested in this version. SNMP.mib was updated some to better reflect current hardware. 21.Added AN870 SNMP
callbacks to MainDemo.c (a feature that was missing in 3.xx releases). This code will get compiled when
STACK_USE_SNMP_SERVER is defined in TCPIPConfig.h. 22.Removed all instances of MPFS_USE_PGRM for storing in
internal FLASH program memory. Storage in internal program memory is now the default. Define MPFS_USE_EEPROM to
override the default and store MPFS in an external EEPROM memory. 23.Decreased program memory needed for
Announce.c module by about 180 bytes. Multiple inline calls to UDPPut (see page 525)() were removed. 24.UDP
checksum checking logic has been improved. The UDP layer now avoids writing the pseudo header checksum in the RX
buffer. 25.Swapped endianess of the returned checksum from CalcIPBufferChecksum (see page 211)(). Rewrote
CalcIPBufferChecksum (see page 211)() in Helpers.c. This improves consistency. 26.Improved swapl() in Helpers.c.
27.Improved USART baud rate (SPBRG) calculation for PIC18s. Rounding is now done to chose the most optimal value and
the code will automatically select high baud rate mode (BRGH=1) if possible. Additional improvements can be made if using
a newer PIC18 with the 16 bit baud rate generator. 28.Added GenericTCPServer.c example file to complement
GenericTCPClient.c. The server is enabled by defining STACK_USE_GENERIC_TCP_SERVER_EXAMPLE in
TCPIPConfig.h. 29.Renamed STACK_USE_GENERIC_TCP_EXAMPLE definition to
STACK_USE_GENERIC_TCP_CLIENT_EXAMPLE for consistency with new server example. 30.Defaulted MPFS.exe to
generate binary MPFS images using 32 bit addressing. MPFS.h has been modified to also default to use 32 bit addressing
of external EEPROM images. You must rebuild any old MPFS images and reprogram them if upgrading from a previous
TCP/IP stack revision, which defaulted to use 16 bit addressing. 31.Updated MPFS.exe to #include "TCPIP.h" instead of
"..HeadersCompiler.h" in C files generated by the utility. 32.Added MPFSv2.exe PC utility for generating large MPFS images
in program memory (ASM30 code) for C30 users. Previously, the C30 compiler placed a limit of less than 32KB of total
MPFS size due to the PSV window size limitation on PIC24/dsPIC devices. To get around the limitation, use the new
MPFSv2.exe utility to generate an .s file which can be included in your project instead of the .c file generated by the
traditional MPFS.exe utility.

Fixes:

3 Microchip TCP/IP Stack Help

36

1. Fixed a bug in ARPProcess (see page 157)() which would incorrectly send an ARP response to an incorrect MAC & IP
address if a TX buffer wasn't immediately available.

2. Fixed a TCP bug where TCPIsGetReady (see page 451)() would return TRUE even if no data was left in the recieved
packet. Previously you had to call TCPGet (see page 447)() one last time and have it fail before TCPIsGetReady (
see page 451)() would return FALSE.

3. Modified TCP state machine. Established connections will no longer automatically close if left idle for approximately 45
seconds. Note that your application needs to ensure that no sockets unintentionally get lost (For example: a server socket
that received data only is established and the cable breaks while connected. In this case, the socket would never be
detected as being disconnected since the server never attempts to transmit anything).

4. Stopped overclocking dsPIC33 and PIC24H devices. Previously PLLFBD was incorrectly set to 39 instead of 38 to yield a
resulting Fosc of 84MHz (42MIPS) instead of 80MHz (40MIPS) with the default Explorer 16 development board. Thanks
go to Matt Watkins on the Microchip Ethernet Forum for pointing this error out.

5. Corrected a bug in IP.c where IPHeaderLen would not be properly initialized if a NON_MCHP_MAC was used (ex:
RTL8019AS) and IPSetRxBuffer() was called. This bug did not affect ENC28J60 or PIC18F97J60 family support. Thanks
go to Darren Rook for identifying this issue.

6. Updated checksum checking code in ENC28J60.c for latest silicon DMA checksum errata.

7. Declared TickCount in Tick.c/Tick.h as volatile and implemented an interrupt safe reading procedure in TickGet (see
page 513)(). Since this multibyte variable is modified in the ISR and read in the mainline code, these changes are needed
to prevent rare inconsistency bugs.

8. Fixed Announce.c so the unicast remoteNode of the requesting packet would be used rather than the remoteNode of the
last received packet, which may not be correct when transmitting. Thanks go to Brett Caulton for identifying this issue.

9. Fixed a DHCP bug which would cause DHCP renewals to continually occur after only 60 seconds once the original lease
expired. Thanks go to Brett Caulton for identifying this issue and fix.

10.Fixed a potential TCP socket leak in the FTP module. Previously FTPDataSocket would not be reliably initialized nor
closed if the connection was killed forcefully (user killed application, cable disconnected while transferring, etc.).

Known Problems:

1. RTL8019AS MAC layer driver has not been updated for new TCP module. Users requiring RTL8019AS support should
continue to use stack version 3.75.

2. I2CEEPROM.c has not been tested or completed. Continue to use I2CEEPROM.c from stack version 3.75 if this file is
needed.

3. Telnet (see page 482) server module is still in development. No user authentication features are currently implemented.
Some telnet clients may render the telnet server output incorrectly (in the wrong locations or wrong colors). Testing has
only been done with the Microsoft Windows telnet.exe utility that comes Windows XP.

4. DHCP will continually send out DHCP Request packets when the lease expires and the original DHCP server that gave
the lease is offline. The board will continue to use the expired IP address until the DHCP server comes back online, at
which point the lease will be renewed or a new discovery will occur. A new discovery should occur after timing out,
instead. It is believed that this problem has always existed in previous stack revisions.

5. DHCP will continually send out DHCP Request packets when the lease expires and the original DHCP server that gave
the lease does not include Option 54, the Server Identifier. A new discovery should occur after timing out. It is believed
that this problem has always existed in previous stack revisions.

6. TFTPc module has not been tested with this version.

7. Serial numbers >32K will be displayed on the serial port as a negative value when C18 is used and the board is placed in
configuration mode (RB0 button is depressed on power up).

v3.75 14 August 2006

Changes:

1. Added beta DNS client module (DNS.c). DHCP was also updated to obtain a DNS server address. Added

3 Microchip TCP/IP Stack Help

37

AppConfig.PrimaryDNSServer IP address. Added STACK_USE_DNS configuration macro. To use the DNS client, call
DNSResolve (see page 181)() with the server name, ex: DNSResolve (see page 181)("www.microchip.com"), and
then periodically call DNSIsResolved (see page 182)() until it returns TRUE, ex: DNSIsResolved (see page
182)(&IPAddressDestination). Only one DNS resolution can be in progress at a time. Because the DNS client is a beta
module, the API or code may change before being finalized. No formal DNS API documentation is available yet.

2. Added beta NetBIOS Name Service responder module (NBNS.c). Added AppConfig.NetBIOSName string. Added
STACK_USE_NBNS configuration macro. Added MY_DEFAULT_HOST_NAME macro in StackTsk.h. Now, whenever a
NetBIOS broadcast attempting to resolve AppConfig.NetBIOSName arrives, a response will be made. This form of name
resolution only works on a single subnet. Off the subnet, manual registration in a DNS server or other means will be
needed to allow the local Host Name to be recognized and translated to an IP address. The default NetBIOS name for the
board is "MCHPBOARD". To test the NetBIOS Name Service module, try entering http://MCHPBOARD/ into your web
browser instead of the board's IP address.

3. Added beta HTTP client module (GenericTCPClient.c). This module demonstrates how to make a TCP client application.
To test this module, uncomment the STACK_USE_GENERIC_TCP_EXAMPLE macro in StackTsk.h, recompile, and then
press the BUTTON1 button while the stack is running. RemoteURL (see page 95)[] should be downloaded from
ServerName (see page 95)[] and written to the UART. For the default values of ServerName (see page 95)[] and
RemoteURL (see page 95)[], the HTML search page for "Microchip" will be fetched from "www.google.com" and written
to the serial port. No formal documentation is available for this example yet.

4. Added Embedded Ethernet Device Discoverer PC project to aid in embedded product discovery when connected to a
network and demonstrate how to write PC applications which can communicate with embedded devices. The source code
for this device is included. It can be built using the Microsoft Visual C# 2005 Express Edition compiler. At the time of stack
release, this 3rd party PC development tool can be downloaded at no cost from
http://msdn.microsoft.com/vstudio/express/. If using only the Microchip Device Discoverer executable file without the
Visual C# compiler, the .NET Framework 2.0 must be installed on the local PC. The application setup utility should allow
dynamic downloading of this component if the target machine does not already have it installed.

5. Updated Announce.c to listen (see page 170) and respond to discovery requests sent to UDP port 30303 starting with
the character 'D'. To test this functionality, use the Embedded Ethernet Device Discoverer on a PC connected to the
same subnet.

6. Updated UART configuration menu to accommodate the new beta module configuration options (DNS server address,
device host name).

7. Increased MPFS reserve block to 64 bytes from 32. Also, because the APP_CONFIG structure was updated, all current
MPFS images and data stored in deployed EEPROMs needs to be updated.

8. Added a means to erase (invalidate) the onboard EEPROM using the BUTTON0 momentary switch (right-most switch on
demo boards with multiple switches). To erase the EEPROM, hold down BUTTON0, RESET the board (press and release
MCLR switch), and then continue to hold down BUTTON0 for an additional 4 seconds. If you press MCLR again, the
EEPROM contents will now be invalid. If you press '0' on the UART, the same configuration that was read prior to
invalidating the contents will be written back into the EEPROM. Invalidating the EEPROM allows the MY_DEFAULT_*
constants to get loaded into a previously programmed EEPROM chip. Because of change #7, this procedure should be
done for all currently programmed EEPROMs to prevent anomalous values from being read.

9. remoteNode in StackTsk.c was changed from private to global scope. Now external modules can reference the address
of the last received packet. Announce.c uses this to send a unicast response to a broadcast discovery request.

10.All stack modules that can be disabled (DHCP.c, FTP.c, etc) now will no longer emit a compiler error if you have it in the
project without defining the appropriate macro (STACK_USE_DHCP, STACK_USE_FTP, etc). It will simply generate no
machine code when compiled and the stack will not use that module. Make sure the proper macro is defined for each
module that you wish to use. 11.Added SetRXHashTableEntry() to ENC28J60.c. This function can be used to set the
appropriate bit in the Hash Table registers to join a particular multicast group. 12.Added Realtek RTL8019AS Ethernet
controller support to the stack. MAC.c was renamed to RTL8019AS.c. This Ethernet controller is not recommended for new
designs. RTL8019AS support was reintroduced to provide ongoing assistance to former Application designs implementing
this chip. For new applications, use the Microchip ENC28J60 or PIC18F97J60 family of microcontrollers. 13.Added I2C
EEPROM support for MPFS storage. In older 2.xx stack revisions, I2C EEPROM was supported by the XEEPROM.c file.
This file has been renamed to I2CEEPROM.c. It is mutually exclusive with SPIEEPROM.c, and only one may be included in
the project at a time. 14.Added new hardware definitions to Compiler.h. Pin mappings for the PICDEMNET and
PIC18F97J60_TEST_BOARD boards have been added. FS_USB was also defined; however, it is untested and not
recommended. See Compiler.h. The PIC18F97J60_TEST_BOARD is a non-production board that some Early Adopters of
the PIC18F97J60 family parts have. 15.Changed type definitions for BYTE_VAL, WORD_VAL, DWORD_VAL, and moved
the generic typedefs to GenericTypeDefs.h from StackTsk.h. This should improve compatibility with some future code
libraries released by Microchip. 16.LCDBlocking.c module was modified to support 4-bit interfaces to LCD modules. The

3 Microchip TCP/IP Stack Help

38

PICDEM.net board has the module wired using a 4-bit bus.

Fixes:

1. Fixed a serious MAC TXBuffer leak in TCP.c. Previously TCP.c would allocate a buffer for each socket in use, but under
heavy traffic conditions (ex: user holds down F5 on web browser), the buffer handle might have been discarded before
releasing the buffer. As a result all TCP connections would have lost the ability to send any application data after the
TXBuffer pool ran out.

2. In the TCP_SYN_SENT TCP state, ACKs may only be received (as opposed to SYN+ACK packets) if the remote node
thinks the connection is already open. A RST is now sent in response to an unexpected ACK, which may improve
reconnection time when this (rare) condition occurs.

3. A bug was present in the UDP module where remote MAC addresses would be cached for each socket, even when
UDPInit (see page 531)() or UDPClose (see page 522)() was called, or the microcontroller was reset. As a result,
responses to incoming packets could have been sent to the wrong MAC address. UDP Sockets (see page 147) are
now properly initialized/closed.

4. Fixed a potential timing bug in LCDBlocking.c. For lower values of CLOCK_FREQ, insufficient delay time was given to the
LCD module, potentially causing improper operation.

5. Changed PIC24F to default to the XT oscillator fuse rather than HS. The PIC24FJ128GA010 data sheet, rev. C reports
that 8MHz should be used with XT mode, not HS mode like prior data sheets.

6. Added a couple of wait states to the Realtek RTL8019AS MAC layer module for NICPut() and NICGet(). Previously, the
PICmicro could not operate above approximately 25MHz without losing communication with the RTL8019AS chip.

7. Updated PC based MPFS utility. When generating C files to be added to your MPLAB project, the include path to
"Compiler.h" is now "..IncludeCompiler.h". The output file, ex: "MPFSImg.c" should be placed in the "Source" subfolder
before compiling. For example, if you are in the main stack folder with the MPLAB projects, type: "mpfs /c WebPages
SourceMPFSImg.c"

8. IP Gleaning will now get properly disabled when, through the RS232 configuration application, DHCP and IP Gleaning are
disabled. The stack will still respond to ping requests which have the wrong destination IP address, but a correct MAC
address. However, the stack will continue to keep its statically defined IP address when DHCP/IP Gleaning are disabled
and the ping arrives.

9. SPIEEPROM.c now saves and reconfigures the EEPROM_SPICON1 register (SSPCON1) before reading or writing to the
SPI. After the read/write, it restores the saved state. This allows the SPI bus to operate at different speeds, depending on
what peripheral is being accessed if other devices share the bus and can support different speeds. In particular, this fixes
the SPI @ 10.4MHz problem on the PICDEM.net 2 board when using the ENC28J60.

Known Problems:

1. DHCP will continually send out DHCP Request packets when the lease expires and the original DHCP server that gave
the lease is offline. The board will continue to use the expired IP address until the DHCP server comes back online, at
which point the lease will be renewed or a new discovery will occur. A new discovery should occur after timing out,
instead. It is believed that this problem has always existed in previous stack revisions.

2. DHCP will continually send out DHCP Request packets when the lease expires and the original DHCP server that gave
the lease does not include Option 54, the Server Identifier. A new discovery should occur after timing out. It is believed
that this problem has always existed in previous stack revisions.

3. When an MPFS .c image file is added to a C30 project, a linking error reporting insufficient contiguous .const memory
may occur when too much data is in the MPFS image (PSV window size limitation). Using the PSV window, 1 out of every
3 program memory bytes is wasted.

4. MACSetPMFilter(), MACDisablePMFilter(), and MACCopyRxToTx() have not been tested and possibly do not work.

5. SNMP, TFTPc modules have not been tested with this version.

6. Serial numbers >32K will be displayed on the serial port as a negative value when C18 is used and the board is placed in
configuration mode (RB0 button is depressed on power up).

7. The C30 linker may misplace the __CONFIG2 section or disallow usage of MPFS images that are too big (add too much
to the .const code section). The consequences of this are that the first configuration word at 0x157FC may not get set
through code (must use the Configuration Bits dialog instead), and/or the project will not compile. This problem has been
observed with C30 ver. 2.02 on the PIC24FJ128GA010 product. To work around this problem, the p24FJ128GA010.gld
linker script has been modified. Specifically, line 68 has been commented out, which causes the linker to place all .text
sections after placing all absolute sections. SSR 25966 in the C30 2.02 release notes may be related.

8. It is observed with the Realtek RTL8019AS Ethernet controller and the demo AJAX web page which self refreshes
rapidly, that occasional HTTP GET requests sent by the computer do not get received by the HTTP server. This is

3 Microchip TCP/IP Stack Help

39

believed to be a RTL8019AS MAC layer bug. The TCP protocol handles the packet loss, but application performance
suffers while waiting for the TCP retransmission. This problem is not observed with ENC28J60.c or ETH97J60.c MAC
layers.

9. The HI-TECH compiler version 9.50PL1 crashes when compiling LCDBlocking.c with 4 bit mode (PICDEMNET) and using
a warning level of -3 or higher. To work around the problem, the HI TECH projects were set to use warning level -4.

Guiding Notes:

1. To use the stack on a classic PICDEM.net demo board with the Realtek Ethernet controller, a PIC18F452 processor, and
Microchip C18: -Use the C18EEPROM MPLAB project -Change the processor in the MPLAB IDE -Change linker script to
"18f452i.lkr" in the MPLAB project. Use the one provided in the Linker subfolder, it has been modified to make more RAM
available. -Update the hardware definitions macro. Click on Project -> Build Options... -> Project -> MPLAB C18 -> Add
PICDEMNET, remove HPC_EXPLORER) -Remove ENC28J60.c from the project -Remove SPIEEPROM.c from the
project -Add RTL8019AS.c to the project -Add I2CEEPROM.c to the project -Enable all compiler optimizations (Project ->
Build Options... -> Project -> MPLAB C18 -> Categories Optimization -> Enable all)

v3.60 12 July 2006

General Information: This stack version is being publicly released, so the following changes are with respect to the prior
public stack release (v3.02). Interim stack changes for version 3.16 and 3.50 are documented below for those using
non-public releases, but can be ignored by most people.

Troubleshooting notes:

1. If you have an Ethernet PICtail revision 2.1 and are having reliability issues when viewing the fast-refresh demo web
page, you may need to install resistors in series with the ENC28J60 SI, nCS, and SCK pins. The recommended value is
100 to 200 ohms. This will reduce signal undershoot caused by long traces (parasitic inductance), which can violate the
absolute maximum electrical specs and cause SPI data corruption. The HPC Explorer Rev 5 has fairly long traces to the
PICtail connector.

2. Enabling C30 2.02 compiler optimizations on the dsPIC33FJ256GP710, PIC24HJ256GP610 ES chips may produce
unreliable code.

3. When changing a C30 project to a PIC24H or dsPIC33F processor on the Explorer 16 demo board, the JTAG
configuration fuse should be disabled to free the I/O pins associated with it. JTAG is enabled by default.

4. This stack release was tested using MPLAB 7.40, C18 version 3.03, C30 version 2.02, and HI TECH PICC18 version
9.50PL1.

5. When using the Ethernet PICtail board and HPC Explorer demo boards, make sure to plug the power into the Ethernet
PICtail and not the HPC Explorer. The HPC Explorer's power regulator cannot provide enough current.

Changes:

1. Source files have been split into separate directories. To compile old applications with this new stack, application source
files may need to be updated to include the proper path to the stack header files.

2. New MPLAB projects have been created: -C18EEPROM: Equivalent to the previously named "mpnicee" project.
Designed for PIC18's using the C18 compiler. Web page content, board's IP address, MAC address, DHCP enabled
state, etc. is stored in an external SPI EEPROM (25LC256 on demo boards). FTP Server demo is included.
-C30EEPROM: New supporting PIC24 and dsPIC controllers using the C30 compiler. Similar to C18EEPROM.
-C18ProgramMem: Equivalent to the previously named "mpnicpg" project. Web page content stored in internal FLASH
program memory. Board's IP address, MAC address, DHCP enabled state, etc. is stored only in RAM and defaults are
loaded from MY_DEFAULT_* constants in StackTsk.h. FTP Server demo is not included. Web pages cannot be updated
remotely. -C30ProgramMem: New supporting PIC24 and dsPIC controllers using the C30 compiler. Similar to
C18ProgramMem. -HTC18EEPROM: Equivalent to the previously named "htnicee" project. Designed for PIC18's using
the HI TECH PICC18 compiler. Similar to C18EEPROM. -HTC18ProgramMem: Equivalent to the previously named
"htnicpg" project. Designed for PIC18's using the HI TECH PICC18 compiler. Similar to C18ProgramMem.

3. Created hardware definitions (pins, interrupt flags, special registers, etc) in Compiler.h for easy changing of hardware.
Four demo board combinations are supported out-of-box now: -EXPLORER_16: Explorer 16 motherboard + Ethernet
PICtail Plus daughter card. Tested with dsPIC33FJ256GP710, PIC24HJ256GP610, and PIC24F128GA010 ES PIMs.

3 Microchip TCP/IP Stack Help

40

-HPC_EXPLORER: PICDEM HPC Explorer motherboard + Ethernet PICtail daughter card. Tested with PIC18F8722
onboard and PIC18F87J10 PIM. -DSPICDEM11: dsPICDEM 1.1 motherboard + Ethernet PICtail daughter card (manually
air wired). See Compiler.h for proper pins to air wire. Tested with dsPIC30F6014A PIM. -PICDEMNET2: PICDEM.net 2
motherboard (PIC18F97J60) Change boards by changing the defined macro (Project -> Build Options... -> Project ->
MPLAB Cxx -> Add macro). When moving to custom hardware, add an appropriate profile to Compiler.h. YOUR_BOARD
is present as a placeholder.

4. Added Ethernet PICtail Plus schematic (reference ENC28J60 daughter card design for Explorer 16 demo board). These
boards have a Microchip part number of AC164123.

5. Latest ENC28J60 rev. B5 errata workarounds added. The code checks the EREVID register and implements the
appropriate workarounds as needed for the silicon revision, so rev. B1, B4, and B5 are all supported in this stack release.

6. Significantly revised demonstration web page content in WebPages folder to use AJAX technology. Using asynchronous
JavaScript code executing in the web browser, the status sections of the page are updated rapidly from the web server
without doing a full page refresh. As a result, a virtually real time update of the potentiometer and button values can be
displayed. Due to the constant use of new TCP sockets, multiple simultaneous users are not recommended. See the
Index.cgi file for a simple static method of retrieving dynamic variables from the HTTP server.

7. Changed IP Gleaning procedure. Now, if DHCP is enabled, the DHCP module will continue to look for a new IP
address/renew existing IP address if the IP address is configured using IP Gleaning. Previously, the DHCP module would
be disabled once a successful ICMP packet was received and used to configure the IP address.

8. MAX_RETRY_COUNTS is 3 (previously it was 3, but an interim release changed it to 5).

9. Updated TCP state machine. It now includes the TCP_FIN_WAIT_2 state. Some other changes were made to handle
errors more robustly.

10.AN0String and AN1String now return all characters excluding the null terminator when the HTTP server calls
HTTPGetVar (except when the string is 0 length). Previously, the null terminator was returned as well. 11.Dynamic pages
(ie: .cgi files) are now served with an expired HTTP header to prevent browser caching and allow more dynamic content to
be displayed. 12.Support for the HI TECH PICC18 compiler has changed. Special Function Register bits and other
definitions have changed substantially from the previous HI TECH PICC18 projects in TCP/IP stack version 3.02 and earlier.
The C18/C30 SFR and SFRbits naming conventions are now used and special remapping macros in Compiler.h are used to
maintain a consistent syntax. The HI TECH PICC18 projects were tested with compiler version 9.50PL1 on the HPC
Explorer board (PIC18F8722). 13.FTP client hash printing has been added to the FTP server. Now, whenever a chunk of
data is successfully uploaded to the device, a '#' character will appear on the FTP client screen. The numbers of bytes each
'#' represents is variable. 14.To improve maintainability, built in support for the "Compatible" A/D converter present on older
PIC18 parts (ex: PIC18F452) has been removed. 15.Removed old LCD code originally provided for the PICDEM.net demo
board. 16.Added LCDBlocking.c and LCDBlocking.h, which implement simple routines for writing to the LCD module on the
Explorer 16 and PICDEM.net 2 development boards. The LCD on the dsPICDEM 1.1 board is not supported. The stack
version and IP address are shown on the LCD on power up. 17.UART functions in MainDemo.c were replaced with C18 and
C30 peripheral library functions. However, because the UART peripheral libraries are not being updated for newer silicon
devices, the code was copied into UART.c and is compiled with the stack. 18.Multiple TX buffer support has been
implemented. Most stack layers have been touched. ENC28J60.c has the most extensive changes. Each socket may use
only one TX buffer. 19.Implemented TCP retransmission support regardless of if TCP_NO_WAIT_FOR_ACK is defined or
not. 20.TCP_NO_WAIT_FOR_ACK in StackTsk.h has been undefined by default. This should increase default TCP
connection robustness. Packets sent from the stack to the remote node will now be detected and retransmitted if lost or
corrupted. 21.All TCP packets are now retransmitted immediately after being initially transmitted when
TCP_NO_WAIT_FOR_ACK is undefined. This improves throughput greatly when communicating with systems which wait a
long time before transmitting ACKs. TCP/IP stacks, such as that used by Microsoft Windows, implement the TCP Delayed
Acknowledgement algorithm, which is why this retransmission is necessary for high performance. The double transmission
feature can be disabled in the Microchip TCP/IP stack by defining "DEBUG" either in the TCP.c file or the project compiler
macros section. Using DEBUG mode can be useful when trying to look for errors using Ethreal [http://www.ethereal/].
22.Lowered TCP_START_TIMEOUT_VAL (see page 480) from 60 seconds to 3 seconds. 60 seconds is an unreasonably
long timeout for modern day network speeds. 23.Native support for the SLIP module has been dropped.

Fixes:

1. A new IP address obtained via IP Gleaning will now update the LCD (if present), invoke the Announce (see page 150)
module (for MCHPDetect.exe), and output the new address out the RS232 port.

3 Microchip TCP/IP Stack Help

41

2. DHCP client will now correctly use the first DHCP offer received when connected to a network running multiple DHCP
servers. Previously, the board would get no IP address when attached to a network with multiple DHCP servers (unless
the DHCP request was transmitted before a second DHCP offer was received -- a relatively rare event). Additionally,
DHCPLeaseTime does not get reset to 60 seconds or the value stored in the last DHCP packet received prior to receiving
the ACK.

3. UDPProces() will now correctly process received UDP packets that have a 0x0000 checksum field. The UDP protocol
specifies that 0x0000 means the checksum is disabled. Packets with a 0x0000 checksum were previously thrown away
unless the calculated checksum also happened to be 0x0000.

4. The TCPIsPutReady (see page 451)() function will now honor the remote node's TCP window size. In other words, if
the remote application pauses or cannot handle the incoming data rate, the TCP flow control feature will correctly
function. Previously, if the remote node ran out of incoming buffer memory, the TCP layer would still allow more data to
be transmitted. This would result in the loss or corruption of application data, with a potentially broken connection. The
change requires 2 more bytes of RAM per TCP socket (TCB array).

Known Problems:

1. On PICDEM.net 2 board ENC28J60 and 25LC256 EEPROM share the same SPI1 module. At 3.3V, the 25LC256 is only
rated to 5MHz SPI clock, but the code is setting it to 10.4MHz because the MACInit() function reconfigures the same SPI1
module.

2. DHCP will continually send out DHCP Request packets when the lease expires and the original DHCP server that gave
the lease is offline. The board will continue to use the expired IP address until the DHCP server comes back online, at
which point the lease will be renewed or a new discovery will occur. A new discovery should occur after timing out,
instead. It is believe that this problem has always existed in previous stack revisions.

3. DHCP will continually send out DHCP Request packets when the lease expires and the original DHCP server that gave
the lease does not include Option 54, the Server Identifier. A new discovery should occur after timing out. It is believe that
this problem has always existed in previous stack revisions.

4. The MPFS utility has not been updated. When creating a .c image file, the include path for the Compiler.h file will be
incorrect and need to be manually updated to "..IncludeCompiler.h".

5. When an MPFS .c image file is added to a C30 project, a linking error reporting insufficient contiguous .const memory
may occur when too much data is in the MPFS image (PSV window size limitation). Using the PSV window, 1 out of every
3 program memory bytes is wasted.

6. MACSetPMFilter(), MACDisablePMFilter(), and MACCopyRxToTx() have not been tested and possibly do not work.

7. SNMP, TFTPc modules have not been tested with this version.

8. Serial numbers >32K will be displayed on the serial port as a negative value when C18 is used and the board is placed in
configuration mode (RB0 button is depressed on power up).

9. IP Gleaning may not get disabled when, through the RS232 configuration application, DHCP and IP Gleaning are
disabled.

10.The C30 linker may misplace the __CONFIG2 section or disallow usage of MPFS images that are too big (add too much
to the .const code section). The consequences of this are that the first configuration word at 0x157FC may not get set
through code (must use the Configuration Bits dialog instead), and/or the project will not compile. This problem has been
observed with C30 ver. 2.02 on the PIC24FJ128GA010 product. To work around this problem, the p24FJ128GA010.gld
linker script has been modified. Specifically, line 68 has been commented out, which causes the linker to place all .text
sections after placing all absolute sections. SSR 25966 in the C30 2.02 release notes may be related.

Guiding Notes:

1. To change processors using a C18* project: -Change the processor in the MPLAB IDE -Change linker script (ex:
18f87j10i.lkr) in the MPLAB project. Use *i.lkr if the ICD2 is going to be used to debug with. -Update the hardware
definitions in Compiler.h or change your demo board selection macro. (Project -> Build Options... -> Project -> MPLAB
Cxx -> PICDEMNET2, etc)

2. To change processors using a HTC18* project: -Change the processor in the MPLAB IDE -Update the hardware
definitions in Compiler.h or change your demo board selection macro. (Project -> Build Options... -> Project -> MPLAB
Cxx -> PICDEMNET2, etc)

3. To change processors using a C30* project: -Change the processor in the MPLAB IDE -Change linker script (ex:
p33FJ256GP710.gld) in the MPLAB project. -Update the hardware definitions in Compiler.h or change your demo board
selection macro. (Project -> Build Options... -> Project -> MPLAB Cxx -> DSPICDEM11, etc) -Disable JTAG configuration
fuse, if enabled

4. When using the PICDEM.net 2 board, to write code targeting the PIC18F97J60 family Ethernet module: -Remove

3 Microchip TCP/IP Stack Help

42

ENC28J60.c from the project -Add ETH97J60.c to the project -Plug the Ethernet cable into the left-most RJ45 jack (next
to LCD)

5. When using the PICDEM.net 2 board, to write code targeting the ENC28J60 Ethernet device: -Make sure ENC28J60.c is
in the project -Make sure that ETH97J60.c is not in the project -Plug the Ethernet cable into the right-most RJ45 jack (next
to board edge)

6. When using the PICDEM.net 2 board, to write code targeting an Ethernet PICtail module (ENC28J60): -Make sure
ENC28J60.c is in the project -Make sure that ETH97J60.c is not in the project -Make sure that the Ethernet PICtail J9
jumper is in the 2-3 position (default). -Properly update the hardware profile in Compiler.h. ENC_CS_TRIS and
ENC_CS_IO need to be changed from D3 to B3. -Plug the Ethernet cable into the PICtail -Plug power into the
PICDEM.net 2 board

7. When using the Explorer 16 and Ethernet PICtail Plus demo boards, make sure to mate the PICtail to the motherboard
using the topmost socket position, leaving the cable hanging over prototyping area. If SPI2 is desired, the PICtail should
have the same orientation but be installed in the middle slot. Using SPI2, the hardware profile will need to be updated in
Compiler.h.

v3.50 13 April 2006

Changes:

1. Improved dsPIC33F and PIC24H support. UART functions are included now instead of precompiled object files for the
PIC24F. The 12-bit A/D converter is now shown in use on the demo web content. When changing a C30 project to a
PIC24H or dsPIC33F processor on the Explorer 16 demo board, the JTAG configuration fuse should be disabled to free
the I/O pins associated with it. JTAG is enabled by default.

2. Added LCDBlocking.c and LCDBlocking.h, which implement simple routines for writing to the LCD module on the Explorer
16 development board. The stack version and IP address are shown on the LCD on power up.

3. Added "C18ProgramMem" and "C30ProgramMem" MPLAB projects for MPFS storage (web page content) on on-chip
program memory. These projects are equivalent to the previously named "mpnicpg" project in prior stack releases.

4. Multiple TX buffer support has been implemented. Most stack layers have been touched. ENC28J60.c has the most
extensive changes. Each socket may use only one TX buffer.

5. Implemented TCP retransmission support when TCP_NO_WAIT_FOR_ACK is undefined.

6. TCP_NO_WAIT_FOR_ACK in StackTsk.h has been undefined by default. This should increase default TCP connection
robustness.

7. All TCP packets are now retransmitted immediately after being initially transmitted when TCP_NO_WAIT_FOR_ACK is
undefined. This improves throughput greatly when communicating with systems which wait a long time before transmitting
ACKs.

8. Lowered TCP_START_TIMEOUT_VAL (see page 480) from 60 seconds to 3 seconds.

9. Increased MAX_RETRY_COUNTS from 3 to 5 times.

10. The example HTTP server now returns a content expiration date which has already past. This prevents web browser
caching and allows more dynamic content to be displayed.

11. Added WebPages_JScript folder, with new web pages that support dynamic page updates without a full page reload. A
tiny page of dynamic variables is returned by the web server and Javascript executing on the target web browser changes
DOM elements as needed. Button S5 (RA7) on the Explorer 16 demo board and S1 (RB0) on the HPC Explorer demo
board changes the page color scheme. The rapid dynamic updates do not work on some web browsers (Internet Explorer
works, Firefox does not).

Known Problems:

1. MPFS utility has not been updated. When creating a .c image file, the include path for the compiler.h file will be incorrect
and need to be manually updated.

2. When an MPFS .c image file is added to a C30 project, a linking error reporting insufficient contiguous .const memory
may occur (PSV window size limitation).

3 Microchip TCP/IP Stack Help

43

3. MACSetPMFilter(), MACDisablePMFilter(), and MACCopyRxToTx() have not been tested and possibly do not work.

4. SNMP, TFTPc, SLIP modules have not been tested with this version.

5. Serial numbers >32K will be displayed on the serial port as a negative value when C18 is used and the board is placed in
configuration mode (RB0 button is depressed on power up).

6. IP Gleaning may not get disabled when, through the RS232 configuration application, DHCP and IP Gleaning are
disabled.

7. The IP address being outputted out the RS232 port and through the Announce (see page 150) module does not
happen when the IP address is configured using IP Gleaning.

8. On the PIC24F with C30 compiler optimizations enabled (such as Option 3, maximum speed), the project may not work.
The PIC24F headers that come with C30 ver. 2.01 declare several SFRs without using the volatile keyword.

9. dsPIC30 support is incomplete. Currently PIC18, PIC24F, PIC24H, and dsPIC33F processors are supported.

v3.16.00: 06 March 2006

Changes:

1. Added unified support for both the Microchip C18 and C30 compilers. The intention is to allow one code base to be
compiled for any PIC18, PIC24F/H, dsPIC30, or dsPIC33 product (with adequate memory). See the "Tested Using"
section for what is known to work.

2. To improve maintainability, support for the HI-TECH PICC18 compiler has been dropped.

3. New project workspaces have been created, "C30EEPROM.mcw" and "C18EEPROM.mcw". C18EEPROM.mcw is
equivalent to the previously named "mpnicee.mcw." C30EEPROM is intended to be used for PIC24 and dsPIC 16-bit
controllers.

4. Source files have been split into separate directories.

5. Latest ENC28J60 rev. B5 errata workarounds added. The code checks the EREVID register and implements the
appropriate workarounds as needed for the silicon revision, so rev. B1, B4, and B5 are all supported in this stack release.

6. Removed old LCD code originally provided for the PICDEM.net demo board.

7. To improve maintainability, built in support for the "Compatable" A/D converter present on older PIC18 parts (ex:
PIC18F452) has been removed.

8. UART functions in MainDemo.c were replaced with C18 and C30 peripheral library functions.

Tested Using:

1. Software: -MPLAB version 7.31.01 -C18 version 3.02 -C30 version 2.01

2. Hardware: -PICDEM HPC Explorer rev. 4 (PIC18F8722) + Ethernet PICtail Daughter Board (ENC28J60

B1) -Explorer 16 rev. 4 (PIC24FJ128GA010 ES and dsPIC33FJ256GP710 ES) + Ethernet PICtail+ Daughter card
(ENC28J60 B1).

3. Notes: -MPLAB 7.31.01 is a development build. The publicly available version 7.31 should work fine, with the exception of
being unable to program dsPIC33 and PIC24H parts with the ICD 2. -No dsPIC30 or PIC24H parts have been tested yet.

Known Problems:

1. MPFS utility has not been updated. When creating a .c image file, the include path for the compiler.h file will be incorrect
and need to be manually updated.

2. When an MPFS .c image file is added to a C30 project, a linking error reporting insufficient contiguous .const memory
may occur.

3. On the PIC24FJ128GA010, it is observed that some inbound packets are lost from time to time with no anticipated reason.

4. MACSetPMFilter(), MACDisablePMFilter(), and MACCopyRxToTx() have not been tested and possibly do not work.

5. SNMP, TFTPc, SLIP modules have not been tested with this version.

3 Microchip TCP/IP Stack Help

44

6. Serial numbers >32K will be displayed on the serial port as a negative value when C18 is used and the board is placed in
configuration mode (RB0 button is depressed on power up).

7. IP Gleaning may not get disabled when, through the RS232 configuration application, DHCP and IP Gleaning are
disabled.

8. The IP address being outputted out the RS232 port and through the Announce (see page 150) module does not
happen when the IP address is configured using IP Gleaning.

9. Multiple TX buffer support is not fully inplemented in the MAC layer, ENC28J60.c. Stack behavior when
TCP_NO_WAIT_FOR_ACK is undefined may be unexpected.

v3.02.00: 20 Feb 2006

Fixes:

1. Changed TXSTART in ENC28J60.c to stop wasting a byte.

2. Changed RXSTOP in ENC28J60.c to always be an odd value to properly implement an ENC28J60 silicon errata
workaround.

3. Changed initialization of ERXRDPT in MACInit() to agree with the current errata.

Changes:

1. Licence agreement

2. Schematics and other board files to the Ethernet PICtail Daughter Board have been updated to revision 5. Of significant
note, the nRESET pin has been freed and 200 ohm resistors were added to the ENC28J60 SI, nCS, and SCK pins. The
added resistors reduce undershoot caused by stray trace inductance and strong host output drivers.

Known Problems:

1. Testing on the PICDEM.net demo board with the Realtek RTL8019AS Ethernet controller has not been done. Moving to
the HPC Explorer demo board has resulted in pinout and other hardware changes.

2. MACSetPMFilter(), MACDisablePMFilter(), and MACCopyRxToTx() have not been tested and possibly do not work.

3. SNMP, TFTPc, LCD, SLIP modules have not been tested with this version.

4. The stack may behave incorrectly if compiled using the Hitech compiler with a high optimizations setting.

5. Serial numbers >32K will be displayed on the serial port as a negative value when C18 is used and the board is placed in
configuration mode (RB0 button is depressed on power up).

6. IP Gleaning may not get disabled when, through the RS232 configuration application, DHCP and IP Gleaning are
disabled.

7. The IP address being outputted out the RS232 port and through the Announce (see page 150) module does not
happen when the IP address is configured using IP Gleaning.

8. Multiple TX buffer support is not fully inplemented in the MAC layer, ENC28J60.c. Stack behavior when
TCP_NO_WAIT_FOR_ACK is undefined may be unexpected.

v3.01.00: 18 Jan 2006

Fixes:

1. Implemented latest ENC28J60 silicon errata workarounds.

2. Fixed a bug in TCP.c and UDP.c which would incorrectly write the packet checksum into the RX buffer incorrectly when

3 Microchip TCP/IP Stack Help

45

the checksum field was exactly spanning the RX wrapparound boundary in the ENC28J60. This problem would have
caused packets to be discarded in rare circumstances

Known Problems:

1. Testing on the PICDEM.net demo board with the Realtek RTL8019AS Ethernet controller has not been done. Moving to
the HPC Explorer demo board has resulted in pinout and other hardware changes.

2. MACSetPMFilter(), MACDisablePMFilter(), and MACCopyRxToTx() have not been tested and possibly do not work.

3. SNMP, TFTPc, LCD, SLIP modules have not been tested with this version.

4. The stack may behave incorrectly if compiled using the Hitech compiler with a high optimizations setting.

5. Serial numbers >32K will be displayed on the serial port as a negative value when C18 is used and the board is placed in
configuration mode (RB0 button is depressed on power up).

6. IP Gleaning may not get disabled when, through the RS232 configuration application, DHCP and IP Gleaning are
disabled.

7. The IP address being outputted out the RS232 port and through the Announce (see page 150) module does not
happen when the IP address is configured using IP Gleaning.

8. Multiple TX buffer support is not fully inplemented in the MAC layer, ENC28J60.c. Stack behavior when
TCP_NO_WAIT_FOR_ACK is defined may be unexpected.

v3.00.00: 16 Jan 2006

Changes:

1. The stack now targets the PICDEM HPC Explorer demo board (PIC18F8722 MCU) with an attached Ethernet PICtail
Daughter Board (with the Microchip ENC28J60 Ethernet controller).

2. IP Gleaning is no longer enabled (STACK_USE_IP_GLEANING is not defined) by any of the default project files.

3. The IP address, whenever it changes, is outputted out the RS232 serial port in human readable form. Any terminal
program, such as HyperTerminal can be used to read it. This allows the IP address to be easily determined when DHCP
is used. The serial port defaults to 19200 baud when CLOCK_FREQ in Compiler.h is properly defined.

Additions:

1. Microchip ENC28J60 Ethernet controller support. Support is included through the ENC28J60.c and ENC28J60.h files.
Various other files were modified to take advantage of ENC28J60 specific features, like the hardware DMA/IP checksum
engine. This new MAC driver incorporates several new functions which can be called from any layer above the MAC. The
functions are: MACSetDuplex() MACPowerDown() MACPowerUp() MACSetPMFilter() MACDisablePMFilter()
CalcIPBufferChecksum (see page 211)() MACCalcRxChecksum() MACCalcTxChecksum() MACCopyRxToTx() See the
ENC28J60.c file comments for function descriptions. The ENC28J60.c file also incroporates TestMemory() which can do
a power on self test of various hardware functions. TestMemory() is included and used when MAC_POWER_ON_TEST is
defined in StackTsk.h. It is undefined by default. Defining it will require some program memory.

2. Announce (see page 150) module. Announce.c and announce.h have been added. When included in the project,
STACK_USE_ANNOUNCE must be defined. This module will broadcast a UDP message to port 30303 containing the
local MAC address whenever the local IP address changes. This addition is intended to facilitate device discovery on
DHCP enabled networks and eliminate the need for an RS232 connection if board reconfiguration is not needed. To
retrieve the UDP message on your computer, use the new MCHPDetect.exe program included in the MCHPDetect
subfolder.

3. The spieeprom.c file was added to support SPI EEPROM chips for MPFS storage. ENC28J60.c and spieeprom.c may
both be included and they will share the same SPI module.

Improvements:

1. Renamed files/edited files so that the HI-TECH compiler won't raise messages stating that include files were spelled
wrong.

2. Moved MAX_ICMP_DATA_LEN from StackTsk.c to ICMP.h file for easier maintenance.

3. Corrected STACK_USE_SIIP typo in dhcp.c file - Thanks to Gisle J.B.

3 Microchip TCP/IP Stack Help

46

4. Implemented UDP checksum logic in UDPProcess (see page 531)() in UDP.c file.

5. Renamed CalcTCPChecksum() in tcp.c file to CalcIPBufferChecksum (see page 211)().

6. Moved CalcIPBufferChecksum (see page 211)() to helpers.c to reuse it for UDP checksum calculation.

7. Modified UDPProcess (see page 531)() in UDP.c and TCPProcess (see page 464)() in TCP.c to include localIP as
third new parameter. This makes pseudo header checksum calculation correct in both functions. StackTsk.h, UDP.h and
TCP.h files were also modified to reflect these changes.

8. Modified TCP.C file to include compile-time check of STACK_USE_TCP define. If it is not defined, an error will be
displayed.

9. Removed an unnecessary call to MACDiscardRx() when an IP packet is received but fails version, options length, or
header checksum tests.

10. Changed LCD code to be compile time removable by undefining USE_LCD.

Fixes:

1. IPHeaderLen in IP.c is initialized properly now when IPGetHeader() is called.

2. Under some circumstances, HandleTCPSeg (see page 470)() would acknowlege, but throw valid received TCP packets
away, resulting in loss of application data. An invalid comparison in HandleTCPSeg (see page 470)() has been fixed to
prevent this situation from occuring. *** Thanks go to Richard Shelquist for identifying this problem.

3. Fixed StackTsk.c file so that if a static IP address is used and the LINK is removed, the node IP address is not cleared.

4. Invalid ICMP echo replies are no longer generated for echo requests with a data length of 33 (one more than the
configured maximum).

5. Changed MAX_OPTIONS_LEN from 20 to 40. The maximum IP options length is now in agreement with the IP RFC.

6. Changed IPSetRxBuffer() from a macro to a function. The function takes into account any options which may be present
in the header of received IP packets. Previously, possible options were not taken into account when calculating the offset.

Known Problems:

1. Testing on the PICDEM.net demo board with the Realtek RTL8019AS Ethernet controller has not been done. Moving to
the HPC Explorer demo board has resulted in pinout and other hardware changes.

2. Sometimes when the FTP sever is used, an attempt to put a file is unsuccessful. The problem may be caused when an
HTTP request to GET a file is made at the wrong time.

3. MACSetPMFilter(), MACDisablePMFilter(), and MACCopyRxToTx() have not been tested and possibly do not work.

4. SNMP, TFTPc, LCD, SLIP modules have not been tested with this version.

5. The stack may behave incorrectly if compiled using the Hitech compiler with a high optimizations setting.

6. Serial numbers >32K will be displayed on the serial port as a negative value when C18 is used and the board is placed in
configuration mode (RB0 button is depressed on power up).

7. IP Gleaning may not get disabled when, through the RS232 configuration application, DHCP and IP Gleaning are
disabled.

8. The IP address being outputted out the RS232 port and through the Announce (see page 150) module does not
happen when the IP address is configured using IP Gleaning.

9. Multiple TX buffer support is not fully inplemented in the MAC layer, ENC28J60.c. Stack behavior when
TCP_NO_WAIT_FOR_ACK is defined may be unexpected.

v2.20.04.01: 9/24/03

1. Recreated MPLAB projects to avoid problems when source is not at MCHPStack location.

3 Microchip TCP/IP Stack Help

47

v2.20.04: 9/5/03

Fixes:

1. Modified DHCPReset() in DHCP.c to not reset DHCP state machine if it was previously disabled using DHCPDisable().
This would make sure that if DHCP module was enabled and application had run-time disabled DHCP and network cable
is disconnected, stack will not clear its IP address.

2. Rebuilt mib2bib.exe file with static library options. This fixes problem where one tries to execute this exe, an error occurs
about missing DLLs.

v2.20.03:

Improvements:

1. When DHCP is enabled, LINK is monitored and IP address is reset on disconnect. New IP configuration is obtained on
LINK reconnect. - For RealTek only. Modified DHCP.c to add DHCPReset() Modified MAC.c to add MACIsLinked()
Modified StackTsk.h to add BYTE_VAL def.

Changes:

1. Modified SMSC91c111.c to add empty MACIsLinked() - will be populated in next rev.

Bug Fixes:

1. Corrected DHCP logic to accept (see page 164) first DHCP offer instead of second response.

2. Corrected DHCP logic to check for chaddr in DHCP offer and accept (see page 164) one that matches with local MAC
address. This will fix problem where if multiple nodes were on bus and all requested DHCP address, all would accept (
see page 164) response from one server instead of verifying who was intended node.

3. Fixed UDPClose (see page 522)() in UDP.c to use INVALID_UDP_PORT (see page 519) instead of
INVALID_UDP_SOCKET (see page 519) because of which a closed socket would not be scanned correctly.

4. Modified UDP.h to use long contsant designators for INVALID_UDP_OPRT to explicitly state that it is a long.

v2.20.02:

Beta version containing TFTP client module.

Addition:

1. TFTP Client module - See TFTPc.* and TFTPcDemo.c for more information. See MpTFTPcDemo and HtTFTPcDemo
projects for build information.

Bug Fix:

1. UDPIsGetReady (see page 524)() was modified to overcome compiler rule where only 8-bit value was used to evaluate
non-zero condition.

2. ARPResolve (see page 153)() in ARPTsk was fixed to clear Cache.IPAddr value.

3 Microchip TCP/IP Stack Help

48

v2.20.01:

Bug fix:

1. Fixed SMSC91C111.c where MACInit() would hand if ethernet link is not detected.

v2.20:

Bug Fixes:

1. General - Removed most of harmless warnings.

2. C18Cfg.asm - Fixed "include" instead of "define".

3. DHCP.c - Increased DHCP_TIMEOUT_VAL to 2 seconds. Fixed problem where UDP active socket was not set before
calling UDP

functions in SM_DHCP_BROADCAST state.

4. MAC.c - Fixed MACIsTxReady() where under heavy traffic it would always return

FALSE. This fixes bug where all high level applications would stop transmitting.

5. TCP.c - Enabled portion of code that performs timeout logic even if

TCP_NO_WAIT_ACK is defined. This fixes bug where occasionally, tcp applications such as HTTP server would stop
working after few hours.

6. UDP.c - Fixed UDPGet (see page 523)() where it would return FALSE on last good byte. Fixed UDPProcess (see
page 531)() where it was calculating incorrect length.

Added bFirstRead flag with UDP sockets similar to TCP sockets so that whenever first UDP byte is read, MAC read pointer
will be reset to begining of correct packet. This change fixes problem where if one transmits a packet while UDP packet is
pending in a socket, next get to pending UDP socket would return wrong data. (This is apparent only when there is heavy
network traffic)

Known Issues:

1. HiTech v8.20 PL4 with all optimization enabled may not work properly.

2. C18 "Static" and "Auto" mode may not be used - there are too many local variables to

fit in standard stack of 256 bytes. One may modify linker script file to avoid this limitation.

Improvements:

1. Modified TICK def. in Tick.h to unsigned long to support 32-bit wide SNMP tick.

2. Added SNMP Module (SNMP.c)

3. Added Two new demo projects - DemoSNMPApp and HtDemoSNMPApp.

4. Created MPLAB 6.X projects for different demo configurations.

5. MAC.c - Added MACGetTxOffset().

6. MPFS.c - Added MPFSSeek (see page 278)(), MPFSTell (see page 283)().

7. MPFSImg.*- Rebuilt to reflect v2.20, footprint changes etc.

8. StackTsk.h- Enhanced WORD_VAL, DWORD_VAL defs. Added STACK_USE_SNMP and related compile-time checks.

3 Microchip TCP/IP Stack Help

49

9. UDP.h - Added UDPSetTx and UDPSetRx macros. Moved UDP_SOCKET_INFO (see page 535) structure to header
file.

10. WebSrvr.c- Modifed MCHPStack version message and added DATE info to BoardSetup menu.

11. Added support for SMSC LAN91C111 10/100 Non-PCI ethernet controller Use "SMSC91C111.C" instead of MAC.c.
"mpnicee_smsc" is a sample project that uses PIC18F8720 and SMSC NIC. "MasterDemo.c" is a main source file for
above project that includes all modules - must use device with more than 32KB of memory.

v2.11:

Bug Fixes:

1. Fixed dhcp.c to make it work with new C18 startup code.

Improvements:

1. Modified websrvr.c DownloadMPFS() to make use of compiler allocated XMODEM data block rather than use fixed
address block starting at 0x400.

v2.10: 7/9/02

Bug Fixes:

1. Fixed HTTP Server bug where a form submission with empty parameter value would not parse correctly.

v2.0: 5/22/02

New Modules:

1. Added UDP, DHCP, FTP and IP Gleaning

2. Added PICDEM.net LCD support

3. Added board setup through RS-232.

Improvements:

3 Microchip TCP/IP Stack Help

50

1. Optimized serial EEPROM access routines in terms of speed and size (Replaced ee256.* files with eeprom*.h)

2. Improved board setup through RS-232.

Known Issues:

1. LCD may not display properly on MCLR only. Workaround: 1. Debug XLCDInit() routine in "xlcdlh"

2. Always do POR reset.

2. SLIP connection is not very robust. Workaround: None at this time.

3. Hi-Tech Compiler:

1. Aggressive optimization breaks the functionality. Workaround: Apply optimization listed in each source file comment

header.

2. In order to use V8.12, you will need to remove "FTP Server" from

Ht*.pjt. You will also need to disable all optimizations.

4. C18 Compler: 1. Static model does not compile. Workaround: None at this time.

2. Overlay model breaks the functionality. Workaround: None at this time.

3. All modules does not fit in 32KB memory. Workaround: 1. None at this time.

2. Sample project disables some modules.

New Files:

==
==================================== File Purpose
==
====================================

1. delay.* Provides CLOCK_FREQ depenent delay routines.

2. dhcp.* DHCP client support

3. ftp.* FTP server

4. udp.* UDP socket support

5. xeeprom.* Improved ee256.* and renamed.

6. xlcd.* External LCD support.

7. version.log To track changes and history.

3 Microchip TCP/IP Stack Help

51

Changes:

==
==================================== File Change To-do for v1.0 stack applications
==
====================================

1. arptsk.c 1. Fixed STACK_CLIENT_MODE compile errors.

None

2. Modifed ARPIsResolved (see page 154)() to support IP Gleaning

None

2. c18cfg.asm 1. Added PIC18F452 configuration

None

2. Fixed "include" errors.

None

3. compiler.h 1. Included "stdlib.h" in both C18 and Hi-Tech compilers.

None

2. Moved CLOCK_FREQ from "stacktsk.h" to this file.

None

3. Added PORTA defs.

None

4. htnicee.pjt 1. Removed "ee256.c".

None

2. Added "udp.c", "dhcp.c", "ftp.c", "xlcd.c", "xeeprom.c" files

Add these files if needed.

5. htnicpg.pjt None

6. htslee.pjt 1. Removed "ee256.c".

None

2. Added "ftp.c", "xlcd.c", "xeeprom.c" files

None

7. http.c 1. Included compile-time verification that HTTP module is included.

None

2. Put HTTP message strings into one array "HTTPMessages".

3 Microchip TCP/IP Stack Help

52

None

3. Modified to return "Service Unavailable" message if MPFS is being

None remotely programmed.

4. Modified SendFile() to make use of sequential EEPROM read.

None

8. ip.c 1. Added one more paramter to IPGetHeader() to support IP Gleaning

Custom apps using IP needs to be

modified.

9. mac.c 1. Replaced fixed delay routines with CLOCK_FREQ dependent

None routines

10. mpfs.c 1. Replaced ee256.h with xeeprom.h.

None

2. Added MPFSFormat (see page 269)(), MPFSPut() etc. routines

None

3. Added sequential read and page write operations

Custom apps using MPFS directly

needs to be modified.

4. Defined MPFS_WRITE_PAGE_SIZE (see page 282) for MPFSPut operations.

Apps using different EEPROM page size

needs to be modified.

11. mpnicee.pjt 1. Removed "ee256.c"

None

2. Added "xcld.c", "xeeprom.c" files

None

12. stacktsk.c 1. Replaced ee256.h with xeeprom.h

None

2. Added IP Gleaning and DHCP support.

None

13. stacktsk.h 1. Moved CLOCK_FREQ to compiler.h

None

2. Added STACK_USE_DHCP, STACK_USE_FTP_SERVER etc. options

None

3. Added compile-time enable/disable of modules based on selection of higher level modules.

3 Microchip TCP/IP Stack Help

53

None

4. Modified MY_DEFAULT_MAC_BYTE? to use Microchip OUI id.

None

5. Added compiler-time check to confirm available TCP sockets

None

6. Added MSB and LSB macros.

None

7. Added SerialNumber etc. to AppConfig structure

None

8. Commented module selection defines: They are defined by cmopiler

None command-line options. Real application should define them here in this file.

14. tcp.c 1. Moved TCP_STATE (see page 463) and TCP_INFO to .h file.

None

2. Fixed TCPIsConnected (see page 450)()

None

3. Fixed TCPDisconnect (see page 443)()

None

4. Modified TransmitTCP() to set receive window of one segment

None

5. Modified TransmitTCP() to use max segment size equal to predefined value.

None

6. Improved TCP State machine

None

15. tick.c 1. Modified TICK type to 16-bit.

None

2. Made use of TICK_PRESCALE_VALUE

None

3. Added code to blink PICDEM.net "System LED"

Remove if not required.

16. websrvr.c 1. Added LCD support

N/A

2. Made TickUpdate (see page 515)() on Timer0 interrupt

N/A

3. Added code to save/restore board configuration

N/A

4. Added board setup via RS-232.

N/A

3 Microchip TCP/IP Stack Help

54

5. Added call to FTP modules

If needed, add this.

3.1 Stack Performance
Note that this table will not appear in the PDF version of the help file; see the "TCPIP Stack Performance.htm" file in the
TCPIP documentation folder in the Microchip Application Library help folder.

3.2 Memory Usage
These tables contain the PIC program and data memory requirements for the TCP/IP stack. The first two rows list the
program memory consumption of the stack's required files (see page 132), and each additional row contains the additional
memory required to implement specific modules. These values are approximations; the program memory size may increase
depending on application code, or decrease based on optimizations of modules with overlapping code. Modules that require
user-implemented API functions (SNMP, HTTP) are tested without additional code. The global data memory column includes
only the RAM needed for the required structures in the stack; it does not include the memory used for socket allocation (
see page 147).

The C18 code uses the PIC18F97J60 family Ethernet controller as the MAC/PHY chip; the C30 and C32 measurements are
made using the ENC28J60 Ethernet controller (ENCX24J600 sizes are similar). All compilers include a separate Required
Stack Code line for Wi-Fi applications using the MRF24WB0M as the network controller. These two Required Stack Code
lines are mutually exclusive -- do not add them together. Instead, chose the line representing your network controller.

These values are approximations obtained from TCP/IP Stack version 5.31. Note that these tables will not appear in the PDF
version of the help file; see the "TCPIP Cxx Memory Usage.htm" files in the TCPIP documentation folder in the Microchip
Application Library help folder.

C18

C30

C32

3.3 Peripheral Usage
Several microcontroller peripherals can/must be used to implement a TCP/IP stack application.

Type Specific/Configurable Polled/Interrupt Purpose

Timer Timer 0 for PIC18, Timer 1 otherwise Interrupt. Used to implement a tick timer

SPI
or
PMP

Select via #define in HardwareProfile.h.
See Hardware Configuration (see
page 137).

Polled. The SPI module is used to drive the ENC28J60 or
MRF24WB0M. An ENCX24J600 can be driven by the
SPI module or a PMP module.

SPI Select via #define in HardwareProfile.h.
See External Storage (see page 137).

Polled. Used to interface to an EEPROM or Serial Flash chip,
as an option to store web pages for MPFS/MPFS2 (
see page 266) or the AppConfig (see page 133)
structure.

3.3 Peripheral Usage Microchip TCP/IP Stack Help

55

SPI Select via #define in HardwareProfile.h.
See External Storage (see page 137).

Polled. Used to interface to a serial RAM as a optional socket
(see page 147) allocation method.

3.3 Peripheral Usage Microchip TCP/IP Stack Help

56

4 Silicon Solutions

One of the first choices to make when designing your application is which hardware layer to use. Microchip supports a
number of hardware TCP/IP solutions, each with an integrated MAC and/or PHY. The ENC28J60 and ENCX24J600 are
stand-alone Ethernet controller chips, developed by Microchip Technology. The MRF24WB0M is a stand-alone 802.11b
wireless transceiver. The PIC18F97J60 is a PIC18 microcontroller with an integrated Ethernet peripheral. The
PIC32MX7XX/6XX series of 32-bit microcontrollers are high performance devices with integrated Ethernet MAC peripheral
(MII/RMII interface to external PHY).

For information about demonstration boards that use these devices, see the Demo Kits (see page 63) section.

Feature ENC28J60 ENCX24J600 PIC18F97J60 MRF24WB0M PIC32MX7XX/6XX

Technology Wired Ethernet Wired Ethernet Wired Ethernet 802.11
Wireless

Wired Ethernet

MAC Internal Internal Internal Internal Internal

PHY Internal
(10-Base-T)

Internal
(10/100-Base-T)

Internal
(10-Base-T)

Internal External PHY (MII/RMII
Interface)

RAM Buffer
(bytes)

8,192 24,576 3,808 14,170 Configurable descriptors in
Internal RAM (128k of
Internal RAM)

Interface SPI SPI, 8 or 16 bit
multiplexed or
demultiplexed
parallel interface

None (built-in
Ethernet
MAC/PHY)

SPI None (built-in Ethernet
MAC)

Pins 28 44, 64 64/80/100 36 64/100/121

Package SOIC, SPDIP,
SSOP, QFN
(6x6 mm)

TQFP, QFN TQFP Surface
Mount WiFi
I/O module

TQFP, QFN (9x9 mm), BGA

Cryptographic
Engines

No Yes No No No

Pre-programmed
MAC address

No(1) Yes No(1) Yes Yes

1: For devices without a pre-programmed MAC address, you may consider using an EEPROM with a built-in MAC address, such as the
device family described here (see page 142).

4 Microchip TCP/IP Stack Help

57

5 Software

This section will discuss the computer software applications included with Microchip's TCP/IP Stack.

These tools are implemented using the C# or Java programming languages, or both. The C# tools (*.exe) will require the
Microsoft® .NET Framework v2.0 to be installed on the local PC. The Java tools (*.jar) require Java Runtime Environment
(JRE) 1.6 or later to be installed on the target computer.

5.1 TCP/IP Configuration Wizard
The TCP/IP Configuration Wizard is the easiest, safest way to set up firmware (and some hardware) configuration options. It
will read and parse configuration settings from a copy of TCPIPConfig.h and then provide a graphical user interface that
will easily allow you to view and modify those settings. In addition, if a feature that you enable will require another resource
or feature to operate, the additional features will be enabled automatically. The TCP/IP Configuration Wizard will be installed
to the Start menu when the TCP/IP Stack is installed.

When you launch the configuration wizard, you will be prompted to enter the path to a copy of TCPIPConfig.h and given
the opportunity to modify advanced configuration settings. The advanced setting option will give more precise control over
stack features, but will also require a greater working knowledge of Microchip's TCP/IP Stack.

5.2 MPFS2 Utility
The MPFS2 Utility packages web pages into a format for efficient storage in an embedded system. It is a graphical
application for PCs that can generate MPFS2 and the older MPFS Classic images for storage in external storage or internal
Flash program memory.

When used to build MPFS2 images, the MPFS2 Utility also indexes the dynamic variables found. It uses this information to
generate HTTPPrint.h, which ensures that the proper callback functions are invoked as necessary. It also stores this index
information along with the file in the MPFS2 image, which alleviates the task of searching from the embedded device.

5.2 MPFS2 Utility Microchip TCP/IP Stack Help

58

Finally, when developing an application that uses external storage, the MPFS2 Utility can upload images to the external
storage device using the upload functionality built into the HTTP2 web server (for MPFS2) or FTP server (for MPFS Classic).

5.2.1 Building MPFS2 Images

The MPFS2 Utility has four steps, which are denoted on the left hand side of the dialog. To build an MPFS image, select
Start With: Webpage Directory in step 1 and choose the directory in which the web pages are stored.

Step 2 selects the output format. If storing the web pages in external EEPROM or serial Flash, choose the BIN Image output
format. If internal program memory will be used, select C18/C32 Image for use with 8-bit and 32-bit parts, or ASM30 Array
for 16-bit targets. To store the web pages on a device formatted with the FAT file system without compressing them into an
MPFS image, select MDD (see the Demo App MDD Getting Started guide for more information).

Step 3 asks for the MPLAB IDE project directory. The MPFS tool will write the image file to the project directory, and will also
update the HTTPPrint.h file there if needed. Select the correct directory so that the right files are modified.

Step 4 controls the upload settings. When external EEPROM or serial flash is used for storage, the option to upload the
newly created image to the board is available. Check the box next to Upload Image To to enable this feature. The Settings
button on the right can be used to configure the correct host name.

If internal program memory is being used, the image will be compiled in with the project and so direct uploads are not
available. Make sure to include the output source file indicated in step 3 as part of the project.

Once all the correct settings have been chosen, click the Generate button to create the image. If uploads are enabled, this
will also attempt to upload the file to the device.

5.2.2 Uploading Pre-built MPFS2 Images

There are two ways to upload a pre-built image to external storage. The first is described in the Getting Started (see page
73) section, and involves uploading from the browser directly. The second is to use the MPFS2 Utility to upload the image.
You can select HTTP or FTP uploading to match the protocol that your application uses.

To use the MPFS2 Utility to upload an image, begin by selecting Start With: Pre-Build MPFS Image in step 1 at the top.
Choose the image file to upload.

5.2 MPFS2 Utility Microchip TCP/IP Stack Help Uploading Pre-built MPFS2 Images

59

Steps 2 and 3 are not required for pre-built images. Proceed directly to step 4 and verify that the upload settings are correct.
The host name may need to be changed to the one chosen when the board was first configured. Use the Settings button to
edit these values.

Once all the settings are correct, click the Upload button. The image will be uploaded to the board.

5.2.3 Advanced MPFS2 Settings

The Advanced Settings dialog found in step 2 provides greater control over how files are processed.

The Dynamic Files list indicates which file types to parse for dynamic variables. By default, all files with the extensions htm,
html, cgi, or xml are parsed. If an application has dynamic variables in other file types, these types must be added to the list.
This field must be a comma-separated list of extensions and file names.

The Do Not Compress field indicates which file types should never be compressed. Compressing files with GZIP saves
both storage space and transmission time. However, this is only suitable for static content such as CSS or JavaScript. Any
files with dynamic variables will automatically be excluded. In addition, any file that the PIC may need to process internally
should be excluded. Files included via ~inc:filename~ should not be compressed, nor should any BIB file used for the SNMP
module (if present). Additional file types can be added to this list if a custom application will be accessing the MPFS.

The GZIP compressor will attempt to shrink all files. In some cases, especially with images, little or no compression is
achieved. When this occurs the file is stored as-is in the MPFS image.

5.2.4 MPFS2 Command Line Options

To facilitate batch files and automation, the MPFS2 Utility also supports execution from the command line. The syntax is as
follows:

MPFS2.jar [options] <SourceDir> <ProjectDir> <OutputFile>

The SourceDir, ProjectDir, and OutputFile options are required and should be enclosed in quotation marks. The
OutputFile option will be relative to ProjectDir, and cannot be a full path name.

The various option switches are described in the table below:

5.2 MPFS2 Utility Microchip TCP/IP Stack Help MPFS2 Command Line Options

60

Switch Short Description

/BIN /b Output a BIN image (Default)

/C18_C32 /c Output a C18 or C32 image

/ASM30 /s Output an ASM30 image

/mpfs2 /2 Use the MPFS2 format (Default)

/html "..." /h "..." File types to be parsed for dynamic variables (Default: "*.htm, *.html, *.cgi, *.xml")

/xgzip "..." /z "..." File types to be excluded from GZIP compression (Default: "*.bib, *.inc")

The command-line interface does not support image uploads. For batch or production uploads, use a tool such as wget to
upload the generated BIN image.

5.3 Hash Table Filter Entry Calculator
This Hash Table receive filter on the ENC28J60, ENCX24J600, and PIC18F97J60 microcontroller family performs a CRC
calculation over the six destination address bytes in a received packet, then uses that value as a pointer into the
EHT0-EHT7 registers. If the bit that the pointer points to is set, the packet will be received. The Microchip Hash Table Filter
Entry Calculator will determine the bit that must be set in this register bank for a given destination address. If you have a
fixed MAC address, known at design time, you can set up your Hash Table receive filter in your code using the value
obtained from this tool; otherwise, you must use the SetRXHashTableEntry() function to set it during runtime. To use this
tool, specify the address of your device, click calculate, and the CRC value and the corresponding bit will be displayed in the
output box.

5.4 Microchip TCP/IP Discoverer
The Microchip TCP/IP Discoverer PC project (fomerly known as the Embedded Ethernet Device Discoverer) will aid in
embedded product device discovery (with the Announce (see page 150) protocol) and will demonstrate how to write PC
applications to communicate to embedded devices.

When the "Discover Devices" button is clicked, this application will transmit a broadcast UDP packet containing the
message, "Discovery: Who is out there?" on the local network to port 30303. If any embedded devices with the Announce (
see page 150) protocol enabled are connected to the network, they will respond with a UDP packet containing their host
name (NBNS (see page 285)) and MAC address.

The Java source code for this application is also included. This source code should provide a rough idea of how to write a
PC-based application to communicate with your embedded devices.

5.4 Microchip TCP/IP Discoverer Microchip TCP/IP Stack Help

61

5.4 Microchip TCP/IP Discoverer Microchip TCP/IP Stack Help

62

6 Getting Started

This section describes the steps necessary to begin using Microchip's TCP/IP Demo Applications. This section contains
specific information for setting up and using the generic TCPIP Demo App (see page 82). Most of this setup information
can be applied to get started with other demo applications as well.

6.1 Hardware Setup
The first step to use the stack is to make sure an appropriate development board is configured. To get started, select a
platform from the topics presented below.

6.1.1 Daughter Boards

Microchip offers four daughter boards that provide different Ethernet functionality to available demo boards. Each board is
designed with:

• A PICtail™ connector, which enables an interface to the PICDEM.net 2 (see page 64) or the PIC18 Explorer (see
page 66) board (populated with a PIC18 processor)

and/or

• A PICtail Plus connector, which will allow it to interface to an Explorer 16 (see page 67) development board (populated
with a PIC24, dsPIC33, or PIC32 processor) or a PIC32 Starter Kit (see page 67).

Note that the PICDEM.net 2 is populated by default with an ENC28J60 and a PIC18F97J60.

Ethernet PICtail Daughter Board

The Ethernet PICtail Daughter board is populated with an ENC28J60, an RJ-45 connector (with integrated magnetics), and
the few other components required for Ethernet operation. It provides a 10-Base-T Ethernet connection for any demo board
with a PICtail connector. This daughter board has been largely superseded by the PICDEM.net 2 (see page 64) for
debugging Ethernet applications using the PIC18. Visit the Microchip web site to view the Ethernet PICtail Product Page.

Ethernet PICtail Plus Daughter Board

The Ethernet PICtail Plus Daughter Board is the PICtail Plus version of the Ethernet PICtail Daughter Board. It allows the

6.1 Hardware Setup Microchip TCP/IP Stack Help Daughter Boards

63

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en025831

interface of an ENC28J60 to any demo board with a PICtail Plus connector. Visit the Microchip web site to view the Ethernet
PICtail Plus Daughter Board Product Page.

Fast 100Mbps Ethernet PICtail Plus Daughter Board

The Fast 100Mbps Ethernet PICtail Plus Daughter Board provides a method for testing and demonstrating the ENC624J600
Ethernet Controller. The board is designed for flexibility and can be connected to a PICtail or a PICtail plus connector. In
addition, it is designed to allow the use of any of the parallel or SPI connection modes featured on the ENC624J600 on the
PICtail Plus connector. This daughter board provides 10/100-Base-T functionality. Visit the Microchip web site to view the
Fast 100Mbps Ethernet PICtailTM Plus Daughter Board Product Page.

Microchip 802.11b WiFi PICtail Plus Daughter Board

The Micorchip 802.11b WiFi PICtail Plus Daughter Board is a demonstration board for evaluating Wi-Fi connectivity on
boards with a PICtail or a PICtail Plus connector. The board features the Microchip MRF24WB0MA module, which includes
a Wi-Fi transceiver and associated circuit elements. Visit the Microchip Web Site to view more information on Wireless
Solutions and the 802.11b WiFi PICtail Product Page..

6.1.2 PICDEM.net 2

Visit the Microchip web site to view the PICDEM.net 2 Product Page.

The PICDEM.net 2 development board comes populated with a PIC18F97J60 with an integrated Ethernet controller, as well
as a standalone ENC28J60 Ethernet controller. The integrated controller is connected to the left Ethernet jack (closest to the
LCD), and the standalone part is connected to the right one. By default the stack is configured to use the integrated
controller, so the left port should be connected to the network cable. No other configuration of the board is necessary.

The User's Guide that shipped with this development board may refer to an older version of the TCP/IP Stack. This
document updates much of that documentation for version 5.36.2.

6.1 Hardware Setup Microchip TCP/IP Stack Help PICDEM.net 2

64

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en027750
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en543132
http://www.microchip.com/WiFi
http://www.microchip.com/WiFi
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en549227
http://www.microchip.com/picdemnet2

Using the Fast Ethernet PICtail

By default, this board will use the ENC28J60 or the PIC18F97J60 for Ethernet communication. However, by connecting the
Fast Ethernet PICtail to the PICtail connector on the board, you can use it to test the ENC624J600. To use the Fast Ethernet
PICtail, insert it as shown in the picture, with header J4 on the PICtail inserted into connector J5 on the demo board.

The Fast Ethernet PICtail is designed to use the SPI communication bus when connected through a PICtail header, so the
jumper settings are unused in this configuration, with one exception: the JP2 jumper on the PICtail, labeled ISENSE, should
be shorted. The pre-compiled and pre-configured versions of the demo that correspond to this setup are already written to
enable ENC624J600 functionality; for manual configuration information, see the ENCX24J600 (see page 139)
configuration page.

Using the Microchip 802.11b WiFi PICtail

The PICDEM.net 2 can be used to debug wireless functionality by connecting the PICtail as show in the picture, with header
J1 on the PICtail inserted into connector J5 on the demo board.

Note if jumper JP3 exists, it must be shorted between pins 2 and 3 when used on this development platform.

6.1 Hardware Setup Microchip TCP/IP Stack Help PICDEM.net 2

65

Once your hardware is configured, you can program your board with your preferred demo project. The next few topics (
see page 70) in the Getting Started section of this help file provide a tutorial for setting up the generic TCPIP demo
application.

6.1.3 PIC18 Explorer

Visit the Microchip web site to view the PIC18 Explorer Product Page.

The PIC18 Explorer is for evaluation of high pin-count PIC18 microcontrollers. By connecting a TCP/IP daughter board to it,
you can test and debug Ethernet functionality with a variety of PIC18s. The PIC18F97J60 family includes a built-in Ethernet
peripheral, making it the default low-cost, PIC18 Ethernet development platform; the PICDEM.net 2 (see page 64) is the
recommended development board for this part.

When using the PIC18 Explorer, ensure that jumpers JP2 and JP3 are shorted to enable the LCD and EEPROM, and switch
S4 is configured to properly select the on-board PIC or the ICE setting, as your application requires.

Using the Ethernet PICtail

Unlike the PICDEM.net 2, the PIC18 Explorer does not include an ENC28J60 on the board. To enable testing and
debugging using the ENC28J60, you must connect (see page 166) an Ethernet PICtail, as shown in the picture (insert
header J2 into connector J3 on the demo board).

When using this configuration, short pins 2 and 3 on jumper J9, to indicate that the PIC18 Explorer is providing a 5V power

6.1 Hardware Setup Microchip TCP/IP Stack Help PIC18 Explorer

66

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en535770

supply. The pre-compiled and pre-configured versions of the demo that correspond to this setup are already written to
enable ENC28J60 functionality; for manual configuration information, see the ENC28J60 (see page 138) configuration
page.

Using the Fast Ethernet PICtail

By connecting the Fast Ethernet PICtail to the PICtail connector on the board, you can use it to test the ENC624J600. To
use the Fast Ethernet PICtail, insert it as shown in the picture, with header J4 on the PICtail inserted into connector J3 on
the demo board.

The Fast Ethernet PICtail is designed to use the SPI communication bus when connected through a PICtail header, so the
jumper settings are unused in this configuration, with one exception: the JP2 jumper on the PICtail, labeled ISENSE, should
be shorted. The pre-compiled and pre-configured versions of the demo that correspond to this setup are already written to
enable ENC624J600 functionality; for manual configuration information, see the ENCX24J600 (see page 139)
configuration page.

Using the Microchip 802.11b WiFi PICtail

The PIC18 Explorer can be used to debug wireless functionality by connecting the PICtail as show in the picture, with header
J1 on the PICtail inserted into connector J3 on the demo board.

Note if jumper JP3 exists, it must be shorted between pins 2 and 3 when used on this development platform.

Once your hardware is configured, you can program your board with your preferred demo project. The next few topics (
see page 70) in the Getting Started section of this help file provide a tutorial for setting up the generic TCPIP demo
application.

6.1.4 Explorer 16 and PIC32 Starter Kit

Visit the Microchip web site to view the Explorer 16 Product Page and the PIC32 Starter Kit Product Page.

The Explorer 16 board is an all-purpose demonstration and development board for 16-bit and 32-bit parts. It can be
expanded for TCP/IP support using the Ethernet PICtail Plus, Fast 100Mbps Ethernet PICtail Plus, or 802.11b WiFi PICtail
Plus daughter board.

Before using the Explorer 16, check that:

6.1 Hardware Setup Microchip TCP/IP Stack Help Explorer 16 and PIC32 Starter Kit

67

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en024858
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2615&dDocName=en532453

1. Switch S2 selects PIM

2. Jumper J7 selects PIC24 (even though the label reads PIC24, this jumper setting selects the programming signals to any
PIC on the Explorer 16).

The PIC32 Starter Kit performs a similar function for 32-bit PIC32 parts. By using the PIC32 I/O Expansion Board you can
connect (see page 166) the same PICtail Plus board that connect (see page 166) to the Explorer 16.

Using the Ethernet PICtail Plus

To enable testing and debugging of the ENC28J60 on these boards, you must connect (see page 166) an Ethernet PICtail
Plus, as shown in the picture (insert header J2 into the upper card-edge connector J5 (Explorer 16) or J4 (I/O Expansion
Board)). Note that for some demos, the Ethernet PICtail Plus will need to be inserted into the center card-edge connector of
the PICtail Plus connector to use the SPI2 module. See the Demo Compatibility Table (see page 78) for more information.

6.1 Hardware Setup Microchip TCP/IP Stack Help Explorer 16 and PIC32 Starter Kit

68

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2615&dDocName=en535444

The pre-compiled and pre-configured versions of the demo that correspond to this setup are already written to enable
ENC28J60 functionality; for manual configuration information, see the ENC28J60 (see page 138) configuration page.

Using the Fast Ethernet PICtail Plus

By connecting the Fast 10/100 Ethernet PICtail Plus to the PICtail Plus connector on your board, you can use it to test the
ENC624J600. The Fast Ethernet PICtail Plus can be used with these boards in either serial (SPI) or parallel communication
mode. For serial mode, connect (see page 166) header J2 of the daughter board to connector J5 (Explorer 16) or J4 (I/O
Expansion Board), as seen in the pictures. When operating in serial mode, the jumpers on the Fast Ethernet PICtail are
unused, with one exception: the JP2 jumper on the PICtail, labeled ISENSE, should be shorted.

To use the Fast Ethernet PICtail Plus board in parallel mode, insert header J1 into connector J5 of the Explorer 16 or J4 of
the I/O Expansion Board, as seen in the pictures. In this configuration, the jumpers must be shorted or opened
corresponding to the parallel communication mode being used. A matrix outlining which jumper connections must be made
for the jumpers labeled PSPCFG3, PSPCFG2, PSPCFG1&4, PMA to AD, and PMA to A is printed on the back side of the
daughter board.

The pre-compiled and pre-configured versions of the demo that correspond to this setup are already written to enable
ENC624J600 functionality; for manual configuration information, see the ENCX24J600 (see page 139) configuration page.

Using the Microchip 802.11b WiFi PICtail

The Explorer 16 and PIC32 Starter Kit can be used to debug wireless functionality by connecting the PICtail as show in the
pictures, with header J2 on the PICtail inserted into the top slot of connector J5 (Explorer 16) or J4 (I/O Expansion Board) on
the demo boards.

6.1 Hardware Setup Microchip TCP/IP Stack Help Explorer 16 and PIC32 Starter Kit

69

Note if jumper JP3 exists, it must be shorted between pins 1 and 2 when used on this development platform.

Once your hardware is configured, you can program your board with your preferred demo project. The next few topics (
see page 70) in the Getting Started section of this help file provide a tutorial for setting up the generic TCP/IP demo
application.

6.1.5 PIC24FJ256DA210 Dev Board

Visit the Microchip web site to view the PIC24FJ256DA210 Development Kit Product Page.

The PIC24FJ256DA210 Development Kit is a low cost and efficient development kit to evaluate the features and
performance of the PIC24FJ256DA210 with integrated graphics, mTouch™ and USB.

You can add network connectivity to this demo board by inserting an Ethernet PICtail Plus, Fast Ethernet PICtail Plus, or
Microchip 802.11b WiFi PICtail into the PICtail Plus connector on the demo board. The method for doing this is functionally
identical to the method used for the Explorer 16 and PIC32 Starter Kit (see page 67).

6.2 Programming and First Run
Once the hardware is configured (see page 63), you are ready to program the device for the first time.

Project Setup

Open a session of the MPLAB IDE.

6.2 Programming and First Run Microchip TCP/IP Stack Help

70

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en547641

1. From the "File" menu, select "Import." Browse to the Precompiled Hex subdirectory in your demo project directory and
select the *.hex file that matches your hardware setup. The hex file names describe the hardware that the file has been
compiled for. For example, the file "Microchip Solutions v2011-06-02\TCPIP\Demo App\Precompiled
Hex\C18-PICDN2_ETH97 18F97J60.hex" corresponds to the generic TCP/IP Demo application for the PIC18F97J60
on the PICDEM.net 2, using the PIC's internal Ethernet module. A document enumerating the abbreviations used in the
hex file and project file names is available in the Microchip Solutions v20xx-xx-xx/Help directory.

2. Verify that the MPLAB IDE processor target selection and linker script (if one is present) match the part on your
demonstration board (ex: PIC18F97J60).

Note that the projects and source code used to build each hex file are present in the project directory. The hardware and
firmware configuration files used to build each project are included in the Configs subdirectory.

Programming

Select your device programmer from the Programmer menu in MPLAB, and then use the Program shortcut button or the
Program menu option to program the code you imported to your board.

Clearing the EEPROM

The TCP/IP Stack stores network configuration settings (such as the host name, MAC address, default static IP addresses,
SNMP strings, WiFi network name (SSID), etc) in external EEPROM on the board. The demo project will detect if the default
values have been changed in the EEPROM, and if so, use the new values. If not, the demo will use the default values
configured in TCPIPConfig.h and WF_Config.h. Checksums stored in the EEPROM are used to determine if the structures
stored in EEPROM are valid. Manually clearing the EEPROM will allow the demo to resume using the default settings.

Use the following procedure to clear the EEPROM:

1. Make sure the development board is programmed and not in debug mode

2. Disconnect the MPLAB® ICD 2/3 or MPLAB REAL ICETM from the board

3. Press and hold BUTTON0 (RD13/S4 on Explorer 16 or RB3/S5 on PICDEM.netTM 2)

4. Press and release the MCLR button

5. Continue holding BUTTON0 until several LEDs flash indicating that EEPROM has been cleared. This takes about 4
seconds.

6. Release BUTTON0

7. Press and release MCLR again to reset the software

Once you see LED0 (right-most LED) blinking, the software is running and ready for use.

If you are using the MRF24WB0M WiFi PICtail, you'll need to configure your wireless access point (see page 71) first. For
all Ethernet devices, Connect your Development Board (see page 73) to your network.

6.3 Configure your WiFi Access Point
To run the Wi-Fi demos with the MRF24WB0M PICtail, you'll also need to setup a wireless access point. As an example, this
guide will walk through the setup of a Linksys WRT54G2 access point.

Access Point Browser GUI

The Linksys, along with many other popular router brands, uses a built-in webserver on the router to administer the network
(both wired and wireless). Please consult the documentation that came with your router for more information on configuration
and setup. For a list of known compatible routers refer to section "Access Point Compatibility" (see page 598). To gain
access to this web page, you'll need to point your browser to http://192.168.1.1. By default, the username field is left blank,
and the password is admin.

6.3 Configure your WiFi Access Point Microchip TCP/IP Stack Help

71

Wireless Setup

Along the top of the webpage, there should be many tabs for all the different features of the access point. One of the tabs
should read "Wireless". After clicking the tab, you will be presented with the Wi-Fi protected setup page. You'll need to click
the manual tab to be able to enter your own wireless settings to match the demo.

The out of box demo is looking for an AP with the following parameters (note that the SSID is case sensitive):

SSID MicrochipDemoAP

Security None

Channel Either 1, 6, or 11

You should have settings similar to the following:

6.3 Configure your WiFi Access Point Microchip TCP/IP Stack Help

72

Once the network is setup, you can connect your device to the network (see page 73).

6.4 Connecting to the Network
All devices on a TCP/IP network must be assigned an IP address (see page 143). Whereas the MAC address (see page
142) is the hardware address of the device, the IP address is a software address. The DHCP (Dynamic Host Configuration
Protocol) allows this assignment to take place automatically (for more address information and configuration options, see the
Addresses (see page 142) topic).

The demo application comes with both a DHCP server and DHCP client configured. This allows the board to connect (see
page 166) to most networks without configuration. If a free Ethernet port is available on a nearby router, switch, or wall plate,
the board can be connected directly using any standard straight-through Ethernet cable. Under this configuration, the board
will attempt to obtain an IP address from your network's DHCP server.

If this method is not possible, a crossover Ethernet cable can be used to connect (see page 166) the board directly to a
PC's Ethernet port. Using this configuration, the board will act as its own DHCP server and will assign a single IP address to
the computer. (The Fast 100Mbps Ethernet PICtail Plus and some newer PCs do not require a special crossover cable, so
any Ethernet cable can be used.)

Connect the development board to the network and wait for the link LED on the Ethernet jack to light up. The board is now
on the network and capable of communicating with other devices.

If the link LED on the Ethernet jack does not light, your board cannot link to the network. Ensure that you have selected the
proper cable, and try switching from a straight-through to a crossover cable, or vice versa.

Now that the board is online, you can Upload the Demo Web Pages (see page 73).

6.5 Uploading Web Pages
Web pages are stored as an MPFS2 (see page 266) image. This image can be placed in either external non-volatile
storage (see page 137) (EEPROM or SPI Flash), or in the microcontroller's internal Flash program memory. For this
example, the EEPROM chip (25LC256) on your demo board will be programmed with a pre-built MPFS2 BIN image. This
location can be changed via a compile-time option in TCPIPConfig.h.

The target application on the development board must be running for this procedure to work. Make sure the right most status
LED is blinking.

Each hex file is configured to provide a Host Name for your development board. This will be the name by which your board
is accessed. In the default hex files, the host name is mchpboard, so you board can be accessed at http://mchpboard. This

6.5 Uploading Web Pages Microchip TCP/IP Stack Help

73

http://ww1.microchip.com/downloads/en/DeviceDoc/21822F.pdf

host name uses the NetBIOS Name Service (see page 285). It is only available on your local subnet, and will not be
accessible from the Internet. Note that this service is not supported by all operating systems. If you have difficulty accessing
your board, try using the IP address shown on the LCD screen instead (e.g. access the board at http://192.168.1.101). You
can also determine the IP address by using the Microchip TCP/IP Discoverer (see page 61).

Open a web browser and access the board at http://mchpboard/mpfsupload. This form will allow web pages stored
on the device to be updated. If you mistype this URL, the board will provide a default HTTP 404 error page with a link to the
MPFS Upload page. This default 404 page will not appear if you've configured your browser to override custom error pages
(e.g. by checking "Show friendly HTTP error messages" in Internet Explorer 7's internet options menu). Select the file
MPFSImg2.bin from the TCPIP\Demo App folder as shown below.

This update method is only available when using external storage.

When the Upload button is clicked, the MPFS image is sent to the board and programmed into the EEPROM. As this
happens, the activity LED on the Ethernet jack will blink. Once the browser reports that the upload has completed, click the
link provided within the status message to access the board's web pages.

You can now Access the Demo Application (see page 74).

6.6 Accessing the Demo Application
The board is now accessible at the mchpboard host name or at the board's IP address. When accessed in a web browser,
a real-time update of the board's controls is displayed. The demo application will show off several features, and will explain
how to modify the web pages and application to suit various needs.

6.6 Accessing the Demo Application Microchip TCP/IP Stack Help

74

If you attempt to access the Network Configuration or SNMP Configuration web pages from the red menu on the left, you will
be prompted for a username and password. The default username is "admin" and the default password is "microchip". More
information is available on the Authentication (see page 85) web page, or in the HTTP2 server authentication (see page
231) help topic.

Some features of the default demo application may not be available on certain hardware platforms. For more information,
see the TCPIP Demo App Features by Hardware Platform (see page 82) topic. For information about how to use each
feature of the TCP/IP Demo Application, consult the subtopics in the TCP/IP Demo Application Demo Modules (see page
83) topic.

Once you have finished exploring the demo application, you can proceed to the Stack API (see page 150) section to learn
more about the stack and start developing your own application.

If you are exploring the Wi-Fi demo applications and want to set up security, you can get more information on the WLAN
security page (see page 75).

6.7 Configuring WiFi Security
The MRF24WB0M can be configured to connect (see page 166) to wireless networks with encryption enabled. The
MRF24WB0M supports WEP (40-bit and 104-bit), as well as WPA (TKIP) and WPA2 (TKIP/AES).

Device Security Modes

Security settings for the MRF24WB0M are located in the file WF_Config.h. To enable security features the #define
preprocessor definition for MY_DEFAULT_WIFI_SECURITY_MODE must be defined as one of the following options:

6.7 Configuring WiFi Security Microchip TCP/IP Stack Help

75

WF_SECURITY_WEP_40 40-bit WEP security. This equates to 5 ASCII characters or 10 hex
digits. MY_DEFAULT_WEP_KEYS_40 contains up to four keys that can
be programmed (default is key 0).

WF_SECURITY_WEP_104 104-bit WEP security. This equates to 13 ASCII characters or 26 hex
digits. MY_DEFAULT_WEP_KEYS_104 contains up to four keys that can
be programmed (default is key 0).

WF_SECURITY_WPA_WITH_KEY

WF_SECURITY_WPA2_WITH_KEY

WF_SECURITY_WPA_AUTO_WITH_KEY

Uses the 32 bytes in MY_DEFAULT_PSK as the key to join the network.
These values are generated from a hash of the SSID name and WPA
passphrase. For the purpose of the demo, the 32-bytes in
MY_DEFAULT_PSK in WF_Config.h correspond to an SSID of
"MicrochipDemoAP" and passphrase "Microchip 802.11 Secret PSK
Password".

WF_SECURITY_WPA_WITH_PASS_PHRASE

WF_SECURITY_WPA2_WITH_PASS_PHRASE

WF_SECURITY_WPA_AUTO_WITH_PASS_PHRASE

Instructs the MRF24WB0M to generate the 32 byte PSK using the
SSID and passphrase. The default in WF_Config.h corresponds to an
SSID of "MicrochipDemoAP" and passphrase "Microchip 802.11 Secret
PSK Password". Note that it takes approximately 30 seconds for the
MRF24WB0M to calculate this value[1].

Note: Some routers try to increase the random nature of the WEP key by adding an additional layer that will convert an
ASCII passphrase into a hexadecimal key. The MRF24WB0M PICtail will require a hexadecimal key, no matter which way it
is generated.

Access Point Security Settings

The access point will also need to be changed to match the same security settings. Wireless security settings can be found
in the "Wireless Security" tab under the main "Wireless" tab (example shows a Linksys WRT5G2). The drop-down box for
security has all the different security options. Note that for WPA/WPA2, the MRF24WB0M only supports personal security
levels (as opposed to enterprise, which is not supported).

[1]: Once the 32-byte PSK is calculated, it can be retrieved by the host from the MRF24WB0M. The host can then save this
key to external non-volatile memory. On future connection attempts, the host can program the MRF24WB0M with the

6.7 Configuring WiFi Security Microchip TCP/IP Stack Help

76

WF_SECURITY_*_WITH_KEY options, provide the saved key, and not have to wait 30 seconds to reconnect to the network.

Pre-generated PSK

You also have the option to pre-generate the PSK and use the 32-byte PSK directly in the source code. One handy tool to
generate the PSK can be found online at the Wireshark Foundation http://www.wireshark.org/tools/wpa-psk.html. The
Wireshark website can generate the expected 32-byte PSK key with the SSID name and the passphrase. You can then use
these values in the variable MY_DEFAULT_PSK in TCPIPConfig.h.

6.7 Configuring WiFi Security Microchip TCP/IP Stack Help

77

http://www.wireshark.org/tools/wpa-psk.html

7 Demo Information

This section describes Microchip's TCP/IP Demo projects, including information about demo-hardware compatibility. For
information about how to load and configure the demos, please consult the Getting Started section.

7.1 Demo Compatibility Table
Each stack demonstration project comes with several predefined, tested configurations. Pre-built hex files for each demo are
available in the Precompiled Hex subdirectory in that demo's project folder (i.e. the files for Demo App are located in
<install directory>\Microchip Solutions v20xx-xx-xx\TCPIP\Demo App\Precompiled Hex). This
section will specify the combinations of demo boards, processors, MAC/PHY layers, and communication buses that are set
up to work by default.

TCPIP Demo App (see page 82)

Demo Board Processor MAC/PHY Layer Comm. Bus Notes

PIC18 Explorer 18F87J11 ENC28J60 SPI Requires
silicon
revision
A4 or
later.

PIC18 Explorer 18F87J11 ENCX24J600 SPI

PIC18 Explorer 18F87J11 MRF24WB0M SPI

PIC18 Explorer 18F87J50 ENC28J60 SPI

PIC18 Explorer 18F87J50 ENCX24J600 SPI

PIC18 Explorer 18F87J50 MRF24WB0M SPI

PIC18 Explorer 18F8722 ENC28J60 SPI

PIC18 Explorer 18F8722 ENCX24J600 SPI

PIC18 Explorer 18F8722 MRF24WB0M SPI

PICDEM.net 2 18F97J60 ETH97J60 -

PICDEM.net 2 18F97J60 ENC28J60 SPI

PICDEM.net 2 18F97J60 ENCX24J600 SPI

PICDEM.net 2 18F97J60 MRF24WB0M SPI

Explorer 16 24FJ128GA010 ENC28J60 SPI

Explorer 16 24FJ128GA010 ENCX24J600 SPI

Explorer 16 24FJ128GA010 MRF24WB0M SPI

Explorer 16 24FJ128GA010 ENCX24J600 PSP 5
Indirect

Explorer 16 24FJ256GA110 ENC28J60 SPI2

Explorer 16 24FJ256GA110 ENCX24J600 SPI2

Explorer 16 24FJ256GA110 ENCX24J600 PSP 5
Indirect

Explorer 16 24FJ256GA110 MRF24WB0M SPI2

7.1 Demo Compatibility Table Microchip TCP/IP Stack Help

78

Explorer 16 24FJ256GB110 ENC28J60 SPI

Explorer 16 24FJ256GB110 ENCX24J600 SPI

Explorer 16 24FJ256GB110 ENCX24J600 PSP 5
Indirect

Explorer 16 24FJ256GB110 MRF24WB0M SPI

Explorer 16 24FJ256GB210 ENC28J60 SPI

Explorer 16 24FJ256GB210 ENCX24J600 SPI

Explorer 16 24FJ256GB210 ENCX24J600 PSP 5
Indirect
Bitbang

Explorer 16 24FJ256GB210 MRF24WB0M SPI

Explorer 16 33FJ256GP710 ENC28J60 SPI

Explorer 16 33FJ256GP710 ENCX24J600 SPI

Explorer 16 33FJ256GP710 ENCX24J600 PSP 5
Indirect

Explorer 16 33FJ256GP710 MRF24WB0M SPI

Explorer 16 32MX360F512L ENC28J60 SPI

Explorer 16 33EP512MU810 ENC28J60 SPI2

Explorer 16 24EP512GU810 ENC28J60 SPI2

Explorer 16 32MX360F512L ENCX24J600 SPI

Explorer 16 32MX360F512L ENCX24J600 PSP 5
Indirect

Explorer 16 32MX360F512L ENCX24J600 PSP 9

Explorer 16 32MX360F512L MRF24WB0M SPI

Explorer 16 32MX460F512L ENC28J60 SPI

Explorer 16 32MX460F512L ENCX24J600 SPI

Explorer 16 32MX460F512L MRF24WB0M SPI

Explorer 16 32MX795F512L ENC28J60 SPI

Explorer 16 32MX795F512L ENCX24J600 SPI

Explorer 16 32MX795F512L MRF24WB0M SPI

PIC24FJ256DA210 Development
Board

24FJ256DA210 ENC28J60 SPI

PIC24FJ256DA210 Development
Board

24FJ256DA210 ENCX24J600 SPI

PIC24FJ256DA210 Development
Board

24FJ256DA210 ENCX24J600 PSP 5
Indirect
Bitbang

PIC24FJ256DA210 Development
Board

24FJ256DA210 MRF24WB0M SPI

PIC32 General Purpose Starter Kit
(DM320001)

32MX360F512L ENC28J60 SPI

PIC32 General Purpose Starter Kit
(DM320001)

32MX360F512L ENCX24J600 SPI

PIC32 General Purpose Starter Kit
(DM320001)

32MX360F512L ENCX24J600 PSP 5
Indirect

PIC32 General Purpose Starter Kit
(DM320001)

32MX360F512L MRF24WB0M SPI

7.1 Demo Compatibility Table Microchip TCP/IP Stack Help

79

PIC32 USB Starter Kit (DM320003_2) 32MX795F512L ENC28J60 SPI2

PIC32 USB (DM320003_2) 32MX795F512L ENCX24J600 SPI2

PIC32 USB (DM320003_2) 32MX795F512L ENCX24J600 PSP 5
Indirect

PIC32 USB (DM320003_2) 32MX795F512L ENCX24J600 PSP 9

PIC32 USB (DM320003_2) 32MX795F512L MRF24WB0M SPI2

PIC32 Ethernet Starter Kit 32MX795F512L Internal MAC, National
DP83848C PHY

-

dsPIC33E USB Starter Kit 33EP512MU810 ENCX24J600 SPI2

dsPIC33E USB Starter Kit 33EP512MU810 ENCX24J600 PSP 5

dsPIC33E USB Starter Kit 33EP512MU810 ENCX24J600 PSP 5
Indirect

dsPIC33E USB Starter Kit 33EP512MU810 MRF24WB0M SPI2

PIC24E USB Starter Kit 24EP512GU810 ENCX24J600 SPI2

PIC24E USB Starter Kit 24EP512GU810 ENCX24J600 PSP5

PIC24E USB Starter Kit 24EP512GU810 ENCX24J600 PSP 5
Indirect

PIC24E USB Starter Kit 24EP512GU810 MRF24WB0M SPI2

TCPIP WebVend (see page 121)

Demo Board Processor MAC/PHY Layer Comm.
Bus

Notes

PICDEM.net 2 18F97J60 ENC28J60 SPI

PICDEM.net 2 18F97J60 ETH97J60 -

Explorer 16 24FJ128GA010 ENC28J60 SPI

Explorer 16 24FJ128GA010 ENCX24J600 SPI

Explorer 16 24FJ128GA010 MRF24WB0M SPI

Explorer 16 33FJ256GP710 ENC28J60 SPI

Explorer 16 33FJ256GP710 ENCX24J600 SPI

Explorer 16 33FJ256GP710 MRF24WB0M SPI

Explorer 16 32MX360F512L ENC28J60 SPI

Explorer 16 32MX360F512L ENCX24J600 SPI

Explorer 16 32MX360F512L MRF24WB0M SPI

Explorer 16 32MX460F512L ENC28J60 SPI

Explorer 16 32MX460F512L ENCX24J600 SPI

Explorer 16 32MX460F512L MRF24WB0M SPI

Explorer 16 32MX795F512L ENC28J60 SPI

Explorer 16 32MX795F512L ENCX24J600 SPI

Explorer 16 32MX795F512L MRF24WB0M SPI

TCPIP WiFi EasyConfig Demo App (see page 129)

Demo Board Processor MAC/PHY Layer Comm.
Bus

Notes

Explorer 16 24FJ128GA010 MRF24WB0M SPI

7.1 Demo Compatibility Table Microchip TCP/IP Stack Help

80

Explorer 16 33FJ256GP710 MRF24WB0M SPI

Explorer 16 32MX360F512L MRF24WB0M SPI

Explorer 16 32MX460F512L MRF24WB0M SPI

Explorer 16 32MX795F512L MRF24WB0M SPI

PIC24FJ256DA210 Development
Board

PIC24FJ256DA210 MRF24WB0M SPI

TCPIP WiFi Console Demo App (see page 123)

Demo Board Processor MAC/PHY Layer Comm.
Bus

Notes

PICDEM.net 2 18F97J60 MRF24WB0M SPI

Explorer 16 24FJ128GA010 MRF24WB0M SPI

Explorer 16 33FJ256GP710 MRF24WB0M SPI

Explorer 16 32MX360F512L MRF24WB0M SPI

Explorer 16 32MX460F512L MRF24WB0M SPI

Explorer 16 32MX795F512L MRF24WB0M SPI

PIC24FJ256DA210 Development
Board

PIC24FJ256DA210 MRF24WB0M SPI

TCPIP Internet Radio App (see page 122)

Demo Board Processor MAC/PHY Layer Comm. Bus Notes

Internet Radio Board 18F67J60 ENC28J60 SPI

TCPIP Internet Bootloader (see page 116)

Demo
Board

Processor MAC/PHY Layer Comm.
Bus

Notes

N/A 18F66J60 ETH97J60 -

N/A 18F66J60 ETH97J60 - Extended Instruction Mode

N/A 18F66J65 ETH97J60 -

N/A 18F66J65 ETH97J60 - Extended Instruction Mode

N/A 18F67J60 ETH97J60 -

N/A 18F67J60 ETH97J60 - Extended Instruction Mode

N/A 18F86J60 ETH97J60 -

N/A 18F86J60 ETH97J60 - Extended Instruction Mode

N/A 18F86J65 ETH97J60 -

N/A 18F86J65 ETH97J60 - Extended Instruction Mode

N/A 18F87J60 ETH97J60 -

N/A 18F87J60 ETH97J60 - Extended Instruction Mode

N/A 18F96J60 ETH97J60 -

N/A 18F96J60 ETH97J60 - Extended Instruction Mode

N/A 18F96J65 ETH97J60 -

N/A 18F96J65 ETH97J60 - Extended Instruction Mode

N/A 18F97J60 ETH97J60 -

7.1 Demo Compatibility Table Microchip TCP/IP Stack Help

81

N/A 18F97J60 ETH97J60 - Extended Instruction Mode

TCPIP MDD Demo App (see page 131)

Demo Board Processor MAC/PHY
Layer

Comm.
Bus

Notes

Explorer 16 PIC24FJ256GB110 ENC28J60 SPI Uses USB Thumb Drive as a storage medium for web
pages.

Explorer 16 PIC24FJ128GA010 ENC28J60 SPI Uses SD Card as a storage medium for web pages.

Google Map

For information on the Google Map demo compatibility, see the file "Getting Started - Running the Graphics Google Map
Demo" in the Combo Demos/Google Map directory in your Microchip Applications Library installation directory.

7.2 Available Demos
The TCP/IP Stack comes with several example applications. These applications are described in the following sections.

7.2.1 Demo App

The TCPIP\Demo App project folder contains the main demo application for the Microchip TCP/IP Stack. Besides showing
example applications using the web server, e-mail client, SNMP server, and more, this application also includes examples
for implementing custom application layers. Details about these applications are provided here.

For a list of pre-tested demo hardware configurations, please consult the Demo Compatibility Table (see page 78).
Unspecified hardware configurations may also be useable with the Demo App, but some additional configuration may be
necessary.

Some demo features are disabled in certain Demo App projects to support the associated hardware platform and TCP/IP
controller. Please consult the following table to determine which features are available on which configurations:

7.2.1.1 TCPIP Demo App Features by Hardware Platform
Some hardware platforms cannot support all of the features implemented in the TCP/IP Demo Application. The following
table outlines which features are available for each combination of demo board and MAC/PHY layer supported natively by
the TCP/IP Demo App. Note that this table will not appear in the PDF version of the help file; see the "TCPIP Demo App
Features.htm" file in the TCPIP documentation folder in the Microchip Application Library help folder.

NVM Storage

A board with Non-Volatile Memory can modify and save its configuration variables at runtime. In the TCP/IP Demo App, this
allows you to change the board name, IP Address (see page 142), wireless SSID, wireless security, or other configuration
parameters via a web page interface. The data will be written to SPI Flash or EEPROM and then used to reinitialize the
board if it is reset. A board without this feature will always use the default settings after power-up.

Buttons and LEDs

The TCP/IP Stack-compatible demo boards have a variable number of buttons and LEDs. By default, the TCP/IP Demo App
is configured to display and accept (see page 164) input from 8 LEDs and 4 buttons on the demo's index page; the
buttons and LEDs used depend on what is available on the board.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

82

7.2.1.2 Demo Modules
Modules

Name Description

Web Page Demos (see page 83) Provides an example for building a custom HTTP application using the HTTP2
server and allows several other demo features to be accessed and controlled
via web interface.

E-mail (SMTP) Demo (see page 92) Demonstrates how to use an e-mail client to send messages when events
occur. This is a standalone demo; for the web page "Send Email" demo, see
the Forms using POST (see page 86) topic.

Generic TCP Client (see page 93) Demonstrates how to build a TCP Client application through an HTTP client
example.

Generic TCP Server (see page 96) Demonstrates how to build a TCP server application

Ping (ICMP) Demo (see page 97) Demonstrates how to build a Ping client.

Network Management (SNMP) Server (
see page 99)

Describes the Simple Network Management Protocol Demo.

Description

Several custom modules are used in this demo. This section will describe the components and functionality of these
modules.

7.2.1.2.1 Web Page Demos
Functions

Name Description

HTTPPostSNMPCommunity
(see page 88)

This is function HTTPPostSNMPCommunity.

HTTPPostConfig (see
page 89)

Processes the configuration form on config/index.htm

HTTPPostDDNSConfig (
see page 89)

Parsing and collecting http data received from http form.

HTTPPostEmail (see page
90)

Processes the e-mail form on email/index.htm

HTTPPostLCD (see page
90)

Processes the LCD form on forms.htm

HTTPPostMD5 (see page
91)

Processes the file upload form on upload.htm

Variables

Name Description

DDNSData (see page 91) RAM allocated for DDNS parameters

lastFailure (see page 92) Stick status message variable. See lastSuccess (see page 92) for details.

lastSuccess (see page 92) Sticky status message variable. This is used to indicated whether or not the
previous POST operation was successful. The application uses these to store
status messages when a POST operation redirects. This lets the application
provide status messages after a redirect, when connection instance data has
already been lost.

Description

The CustomHTTPApp.c file demonstrates how to build a custom HTTP application on top of the HTTP2 server. All the
features of the TCPIP Demo App web pages are implemented here. Examples can be found for handling Authentication (
see page 85), processing web forms (using HTTP GET and POST), and providing status information through the output of
dynamic variables.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

83

7.2.1.2.1.1 Dynamic Variables

Module

Web Page Demos (see page 83)

Description

Overview

This section describes how to view dynamic variables in the TCP/IP Demo App HTTP2 demo. For information about how to
implement dynamic variables in your own page, see the HTTP2 dynamic variables topic (see page 226).

Instructions

1. Program your board with the demo code and upload the demo app web page. Open your web browser and navigate to
the board's web page (http://mchpboard by default).

2. Observe the LED output, button state, and potentiometer reading in the box in the upper right of the web page. The button
and potentiometer values will be updated dynamically based on the status of the buttons on your board. In addition, if you
click the LEDs to toggle them, their status will be dynamically updated on the page. Note that some LEDs or buttons may
not be implemented, depending on your hardware setup. Consult the TCPIP Demo App Features by Hardware Platform
(see page 82) topic for more information.

3. Observe the current Stack Version and Build Date in the top center of the Overview Page.

4. Navigate to the Dynamic Variables page using the navigation panel on the left of the page.

5. Observe the Build Date and Time, LED state, stack version, and current IP address- these variables are output to this
page dynamically when it's downloaded by the browser.

Exercises

You can optionally complete the exercises described on the Dynamic Variables page. You may want to read the HTTP2
dynamic variables topic (see page 226) first. The first exercise is to implement the display of LED0 on the dynamic
variable demo page.

1. Start by opening dynvars.htm in your "TCPIP Demo App\WebPages2" folder.

2. Locate the dynamic variables in the page and replace the question mark with a dynamic variable to display the value of
LED 0. You can use the other LED variables as a template, but specify 0 as the LED to open.

3. In your MPLAB project, open CustomHTTPApp.c and ensure that the HTTPPrint_led function (if you used ~led(0)~
as your dynamic variable) if written to output data when 0 is passed in as a parameter.

4. Rebuild your web page with the MPFS2 Utility.

5. Rebuilt your project, and reprogram your board. Navigate to the dynamic variable page and verify that the LED0 field
reflects the status of the LED on your board. Since the LED on your board is blinking, you may need to refresh the web
page to view its current status.

The second exercise on this page simply demonstrates how to dynamically insert a file into a web page.

1. Start by opening dynvars.htm in your "TCPIP Demo App\WebPages2" folder.

2. Locate the dynamic variables that include header.inc and footer.inc. Observe the difference between the
declaration of these variables and the other variables on the page.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

84

7.2.1.2.1.2 Authentication

Module

Web Page Demos (see page 83)

Description

Overview

This section describes how to use the authentication demo in the TCP/IP Demo App HTTP2 demo. For information about
how to implement authentication in your own page, see the HTTP2 Authentication topic (see page 231).

Instructions

1. Program your board with the demo code and upload the demo app web page. Open your web browser and navigate to
the board's web page (http://mchpboard by default).

2. Navigate to the Authentication page using the navigation panel on the left of the page.

3. Note the authentication user name ("admin") and password ("microchip").

4. Click on the "Access Restricted Page" link on the Authentication page.

5. Enter an incorrect combination of usernames and passwords. The browser will not advance to the Access Restricted
Page. After 3 incorrect username/password combinations, the browser will be redirected to an "Unauthorized" screen.

6. Click the back button in your browser. Click on the "Access Restricted Page" link and enter the correct username and
password.

7. You will advance to the "Login Successful" page. Your browser will store this username/password combination until it is
closed and reopened.

Exercise

You can optionally complete the exercise described on the "Login Successful" page. In this exercise, you will change the
username and password that you use to log in to this page.

1. Open CustomHTTPApp.c in your TCP/IP Demo App MPLAB project.

2. Locate the HTTPCheckAuth (see page 236) function.

3. Change the values being compared to the function inputs to a username and password of you choosing.

4. Rebuild your project and program your board.

7.2.1.2.1.3 Forms using GET

Module

Web Page Demos (see page 83)

Description

Overview

This section describes how to use web forms in the TCP/IP Demo App HTTP2 demo. For information about how to
implement forms in your own page, see the HTTP2 form processing topic (see page 228).

Instructions

1. Program your board with the demo code and upload the demo app web page. Open your web browser and navigate to
the board's web page (http://mchpboard by default).

2. Observe the LED state on the board. Click on an LED indicator in the box on the top right of the Overview page. Verify
that the LED state changes on the board. Note that some LEDs or buttons may not be implemented, depending on your
hardware setup. Consult the TCPIP Demo App Features by Hardware Platform (see page 82) topic for more
information.

3. Navigate to the Form Processing page using the navigation panel on the left of the page.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

85

4. Select new LED states in the pull-down boxes. Click "Save" and observe that the LED states of your board changed to
match the settings you selected.

Exercise

You can optionally complete the exercise described on the "Form Processing" page. In this exercise, you will change the
example to support LED5. You may want to read the HTTP2 form processing topic (see page 228) first.

1. Start by opening forms.htm in your "TCPIP Demo App\WebPages2" folder.

2. Locate the GET method implementation the will display the LEDs. You should see select forms for the four LEDs that
are already implemented. Each of these has two options: the On option will send a '1' to the server when submitted and
the Off option will send a '0' when submitted. Each of the declarations of these options also use the ledSelected
dynamic variable to determine which option will be selected by default, based on the current status of the corresponding
LED on the board. This dynamic variable accepts two arguments: the first defines which LED is being checked, and the
second describes the state being checked for. So, for example, the ~ledSelected(4,TRUE)~ variable will be replaced
by the word "SELECTED" if LED4 is on when this variable callback function is called. In this case,
~ledSelected(4,FALSE)~ would be replaced by nothing. This would result in the 'On' option being selected by default
in the page.

3. Create a new select input for LED5.

4. Open CustomHTTPApp.c in the TCP/IP Demo App MPLAB project.

5. Verify that the HTTPPrint_ledSelected dynamic variable callback function has been implemented for LED5.

6. Find the HTTPExecuteGet (see page 237) function. Locate the section of code the processes GET arguments
for the forms.htm file.

7. Add implementation to search for the "led5" argument string in the GET data buffer and then set LED5_IO based on the
associated value.

7.2.1.2.1.4 Forms using POST

Module

Web Page Demos (see page 83)

Description

Overview

This section describes how to use web forms in the TCP/IP Demo App HTTP2 demo. For information about how to
implement forms in your own page, see the HTTP2 form processing topic (see page 228).

Instructions

1. Program your board with the demo code and upload the demo app web page. Open your web browser and navigate to
the board's web page (http://mchpboard by default).

2. Navigate to the Form Processing page using the navigation panel on the left of the page.

3. Enter a text string into the "LCD" text box and click on "Save." Verify that this string was written to the LCD display on
your demo board.

4. Navigate to the File Uploads page using the navigation panel on the left of the page.

5. Browser for a file on your computer and click "Get MD5." The application will read your file using a series of POST
transfers and calculate and display and MD5 hash of the contents.

6. Navigate to the Send E-mail page using the navigation panel on the left of the page.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

86

7. Fill in the form fields with the appropriate information.

1. No SSL - You will need a local SMTP server that does not require a secure connection. Enter the address in the SMTP
Server field, set the port to 25, and enter your user name and password for the server. Set the "To:" field to the email
recipient and press "Send Message."

2. SSL - Enter the address of a public SMTP server (e.g. smtp.gmail.com). Set the port number to 465 or 587. Enter your
email account information (e.g. username@gmail.com and your Gmail password). Set the "To:" field to the email
recipient and press "Send Message." Note that some corporate subnets may block outgoing secure traffic on the
SMTP port. If this is the case, you'll have to establish a VPN tunnel outside this network or connect (see page 166)
your board to a network that's not blocked by this type of firewall. You must have installed the Microchip Data
Encryption Libraries to use SSL, and SSL Client support must be enabled. See the SSL API (see page 373) topic for
more information.

8. Verify that the e-mail was received on the recipient e-mail address.

7.2.1.2.1.5 Cookies

Module

Web Page Demos (see page 83)

Description

Overview

This section describes how to use the cookie demo in the TCP/IP Demo App HTTP2 demo. For information about how to
implement cookies in your own page, see the HTTP2 Cookies topic (see page 233).

Instructions

1. Program your board with the demo code and upload the demo app web page. Open your web browser and navigate to
the board's web page (http://mchpboard by default).

2. Navigate to the Cookies page using the navigation panel on the left of the page.

3. Type your first name into the "First Name" text box and click "Set Cookies." Verify that the name was read successfully
and displayed in the "Name" output field.

Exercise

You can optionally complete the exercise described on the "Cookies" page. In this exercise, you will create a cookie called
"fav" with the value in the favorite field in the example box. You may want to read the HTTP2 dynamic variable (see page
226), GET (see page 228), and cookie (see page 233) topics first.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

87

1. Start by opening cookies.htm in your "TCPIP Demo App\WebPages2" folder.

2. Locate the code for the example box that displays the name and favorite PIC architecture. Replace (see page 217) the
"not implemented" string with a dynamic variable to output the data from the cookie.

3. Locate the code for the select box form input for the favorite architecture. Note the value of the name field of the select
form.

4. Open CustomHTTPApp.c in the TCP/IP Demo App MPLAB project. Locate the HTTPExecuteGet (see page
237) function and find the code that handles GET method inputs from cookies.htm.

5. Set the value of curHTTP.hasArgs to indicate that two form arguments are present in the data buffer.

6. In CustomHTTPApp.c, create a function to output data for the dynamic variable you created in step 2. The name of the
function will depend on the name of the variable. For a variable named ~cookiefavorite~ you would implement a
function called HTTPPrint_cookiefavorite. This function should search through the curHTTP.data data buffer to
try and find a name/value pair with the name equal to the name of your select form from step 3. If it finds it, it should write
the value for that pair to the TCP buffer; otherwise, it should write "not set." See the implementation of
HTTPPrint_cookiename for an example.

void HTTPPrint_cookiename(void)
{
 BYTE *ptr;

 ptr = HTTPGetROMArg(curHTTP.data, (ROM BYTE*)"name");

 if(ptr)
 TCPPutString(sktHTTP, ptr);
 else
 TCPPutROMString(sktHTTP, (ROM BYTE*)"not set");

 return;
}

7. Compile your web page using the MPFS2 Utility and upload it to your board. You may receive a warning that your
dynamic variables have changed in your page.

8. Rebuild your project and program your board.

9. Verify that both cookies can be set.

7.2.1.2.1.6 Functions

Functions

Name Description

HTTPPostSNMPCommunity
(see page 88)

This is function HTTPPostSNMPCommunity.

HTTPPostConfig (see
page 89)

Processes the configuration form on config/index.htm

HTTPPostDDNSConfig (
see page 89)

Parsing and collecting http data received from http form.

HTTPPostEmail (see page
90)

Processes the e-mail form on email/index.htm

HTTPPostLCD (see page
90)

Processes the LCD form on forms.htm

HTTPPostMD5 (see page
91)

Processes the file upload form on upload.htm

Module

Web Page Demos (see page 83)

7.2.1.2.1.6.1 HTTPPostSNMPCommunity Function

File

CustomHTTPApp.c

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

88

C

static HTTP_IO_RESULT HTTPPostSNMPCommunity();

Description

This is function HTTPPostSNMPCommunity.

7.2.1.2.1.6.2 HTTPPostConfig Function

File

CustomHTTPApp.c

C

static HTTP_IO_RESULT HTTPPostConfig();

Description

Accepts configuration parameters from the form, saves them to a temporary location in RAM, then eventually saves the data
to EEPROM or external Flash.

When complete, this function redirects to config/reboot.htm, which will display information on reconnecting to the board.

This function creates a shadow copy of the AppConfig structure in RAM and then overwrites incoming data there as it
arrives. For each name/value pair, the name is first read to curHTTP.data[0:5]. Next, the value is read to newAppConfig.
Once all data has been read, the new AppConfig is saved back to EEPROM and the browser is redirected to reboot.htm.
That file includes an AJAX call to reboot.cgi, which performs the actual reboot of the machine.

If an IP address cannot be parsed, too much data is POSTed, or any other parsing error occurs, the browser reloads
config.htm and displays an error message at the top.

Preconditions

None

Return Values

Return Values Description

HTTP_IO_DONE all parameters have been processed

HTTP_IO_NEED_DATA data needed by this function has not yet arrived

7.2.1.2.1.6.3 HTTPPostDDNSConfig Function

File

CustomHTTPApp.c

C

static HTTP_IO_RESULT HTTPPostDDNSConfig();

Description

This routine will be excuted every time the Dynamic DNS Client configuration form is submitted. The http data is received as
a string of the variables seperated by '&' characters in the TCP RX buffer. This data is parsed to read the required
configuration values, and those values are populated to the global array (DDNSData (see page 91)) reserved for this
purpose. As the data is read, DDNSPointers is also populated so that the dynamic DNS client can execute with the new
parameters.

Preconditions

curHTTP (see page 235) is loaded.

Return Values

Return Values Description

HTTP_IO_DONE Finished with procedure

HTTP_IO_NEED_DATA More data needed to continue, call again later

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

89

HTTP_IO_WAITING Waiting for asynchronous process to complete, call again later

7.2.1.2.1.6.4 HTTPPostEmail Function

File

CustomHTTPApp.c

C

static HTTP_IO_RESULT HTTPPostEmail();

Description

This function sends an e-mail message using the SMTP client and optionally encrypts the connection to the SMTP server
using SSL. It demonstrates the use of the SMTP client, waiting for asynchronous processes in an HTTP callback, and how to
send e-mail attachments using the stack.

Messages with attachments are sent using multipart/mixed MIME encoding, which has three sections. The first has no
headers, and is only to be displayed by old clients that cannot interpret the MIME format. (The overwhelming majority of
these clients have been obseleted, but the so-called "ignored" section is still used.) The second has a few headers to
indicate that it is the main body of the message in plain- text encoding. The third section has headers indicating an attached
file, along with its name and type. All sections are separated by a boundary string, which cannot appear anywhere else in the
message.

Preconditions

None

Return Values

Return Values Description

HTTP_IO_DONE the message has been sent

HTTP_IO_WAITING the function is waiting for the SMTP process to complete

HTTP_IO_NEED_DATA data needed by this function has not yet arrived

7.2.1.2.1.6.5 HTTPPostLCD Function

File

CustomHTTPApp.c

C

static HTTP_IO_RESULT HTTPPostLCD();

Description

Locates the 'lcd' parameter and uses it to update the text displayed on the board's LCD display.

This function has four states. The first reads a name from the data string returned as part of the POST request. If a name
cannot be found, it returns, asking for more data. Otherwise, if the name is expected, it reads the associated value and
writes it to the LCD. If the name is not expected, the value is discarded and the next name parameter is read.

In the case where the expected string is never found, this function will eventually return HTTP_IO_NEED_DATA when no
data is left. In that case, the HTTP2 server will automatically trap the error and issue an Internal Server Error to the browser.

Preconditions

None

Return Values

Return Values Description

HTTP_IO_DONE the parameter has been found and saved

HTTP_IO_WAITING the function is pausing to continue later

HTTP_IO_NEED_DATA data needed by this function has not yet arrived

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

90

Section

Function Prototypes and Memory Globalizers

7.2.1.2.1.6.6 HTTPPostMD5 Function

File

CustomHTTPApp.c

C

static HTTP_IO_RESULT HTTPPostMD5();

Description

This function demonstrates the processing of file uploads. First, the function locates the file data, skipping over any headers
that arrive. Second, it reads the file 64 bytes at a time and hashes that data. Once all data has been received, the function
calculates the MD5 sum and stores it in curHTTP.data.

After the headers, the first line from the form will be the MIME separator. Following that is more headers about the file, which
we discard. After another CRLFCRLF, the file data begins, and we read it 16 bytes at a time and add that to the MD5
calculation. The reading terminates when the separator string is encountered again on its own line. Notice that the actual file
data is trashed in this process, allowing us to accept (see page 164) files of arbitrary size, not limited by RAM. Also notice
that the data buffer is used as an arbitrary storage array for the result. The ~uploadedmd5~ callback reads this data later to
send back to the client.

Preconditions

None

Return Values

Return Values Description

HTTP_IO_DONE all parameters have been processed

HTTP_IO_WAITING the function is pausing to continue later

HTTP_IO_NEED_DATA data needed by this function has not yet arrived

7.2.1.2.1.7 Variables

Module

Web Page Demos (see page 83)

Variables

Name Description

DDNSData (see page 91) RAM allocated for DDNS parameters

lastFailure (see page 92) Stick status message variable. See lastSuccess (see page 92) for details.

lastSuccess (see page 92) Sticky status message variable. This is used to indicated whether or not the
previous POST operation was successful. The application uses these to store
status messages when a POST operation redirects. This lets the application
provide status messages after a redirect, when connection instance data has
already been lost.

7.2.1.2.1.7.1 DDNSData Variable

File

CustomHTTPApp.c

C

BYTE DDNSData[100];

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

91

Description

RAM allocated for DDNS parameters

7.2.1.2.1.7.2 lastFailure Variable

File

CustomHTTPApp.c

C

BOOL lastFailure = FALSE;

Description

Stick status message variable. See lastSuccess (see page 92) for details.

7.2.1.2.1.7.3 lastSuccess Variable

File

CustomHTTPApp.c

C

BOOL lastSuccess = FALSE;

Description

Sticky status message variable. This is used to indicated whether or not the previous POST operation was successful. The
application uses these to store status messages when a POST operation redirects. This lets the application provide status
messages after a redirect, when connection instance data has already been lost.

7.2.1.2.2 E-mail (SMTP) Demo
Functions

Name Description

SMTPDemo (see page 93) Demonstrates use of the e-mail (SMTP) client.

Description

Overview

This file provides two examples for using the SMTP client module to send e-mail messages. The first transmits short alert
messages whose entire bodies can be stored in RAM at once. The second example demonstrates how to generate
messages on-the-fly when the entire body cannot be allocated in RAM. (This second example is commented. You must
comment the first example and uncomment this one to use it.)

A third example of using the SMTP client is provided in HTTPPostEmail (see page 90). This example shows how to send
messages with attachments, as well as how to dynamically configure the recipient and e-mail server at run-time.

Instructions (Short Message Demo)

1. Open your project in MPLAB and open SMTPDemo.c. Scroll down to the MAIL_BEGIN case in the switch statement in
the SMTPDemo (see page 93)() function.

1. Replace (see page 217) the initializer of the RAMStringTo[] array with the target email address.

2. Replace (see page 217) the initializer of the SMTPClient.Server.szROM structure element with the address of your
mail server. Note that this demo does not include security features, so you will need a mail server that does not require
SSL. To test this functionality with a mail server that does support SSL (including most public mail servers), please use
the HTTPPostEmail (see page 90) SMTP demo.

2. Compile the code, program your board, and run the demo.

3. Press buttons 2 and 3 on your board to transmit an email message. LED1 on your board will indicate that the message is
being transmitted; LED2 will indicate that is was sent successfully. Check the BUTTON2_IO, BUTTON3_IO, LED1_IO,

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

92

and LED2_IO macros in the copy of HardwareProfile.h that corresponds to your project to determine which buttons and
LEDs are used for your hardware setup.

4. Verify that the message was received by the email account you specified in the RAMStringTo[] array.

Description

The short-message SMTPDemo (see page 93) task function implements a four-state state machine. When the board is
powered on, the state machine is initialized to the SM_HOME state, in which it waits for buttons 2 and 3 to be pressed. Once
they are pressed, the task will enter the MAIL_BEGIN state.

In the MAIL_BEGIN state, the task will attempt to requisition the SMTP module. Once it's able to do this, it will populate the
SMTPClient (see page 299) structure with message parameters and transmit the message. It will then enter the
MAIL_SMTP_FINISHING state.

In the MAIL_SMTP_FINISHING state, the task will check a callback function (SMTPIsBusy (see page 300)) to determine
when the module is finished. It will then give up control of the SMTP module and toggle LEDs based on the successful
operation of the SMTP module. The state machine will then enter the MAIL_DONE state, which will wait at least 1 second
before transitioning back to MAIL_HOME, allowing another email to be sent.

7.2.1.2.2.1 SMTPDemo Function

File

MainDemo.h

C

void SMTPDemo();

Module

E-mail (SMTP) Demo (see page 92)

Returns

None

Description

This function demonstrates the use of the SMTP client. The function is called periodically by the stack, and checks if
BUTTON2 and BUTTON3 are pressed simultaneously. If they are, it attempts to send an e-mail message using parameters
hard coded in the function below.

While the client is executing, LED1 will be used as a busy indicator. LED2 will light when the transmission has been
completed successfully. If both LEDs extinguish, an error occurred.

For an example of sending a longer message (one that does not exist in RAM all at once), see the commented secondary
implementation of this function in this file (SMTPDemo.c) below. For an example of sending a message using parameters
gathered at run time, and/or a message with attachments, see the implementation of HTTPPostEmail (see page 90) in
CustomHTTPApp.c.

Preconditions

The SMTP client is initialized.

7.2.1.2.3 Generic TCP Client
Functions

Name Description

GenericTCPClient (see
page 94)

Implements a simple HTTP client (over TCP).

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

93

Variables

Name Description

RemoteURL (see page 95) Defines the URL to be requested by this HTTP client

ServerName (see page 95) Defines the server to be accessed for this application

ServerPort (see page 95) Defines the port to be accessed for this application

Description

Overview

The Generic TCP Client provides an example of how to build an HTTP client (or any other TCP client) using the Microchip
TCP/IP Stack. It will print out the results from a search engine query to the PIC's UART module. The result data can be
viewed on a PC terminal.

Instructions

1. Connect the programmed demo board to a router that is connected to the Internet.

2. Connect your PC to your demo board with an RS-232 cable. Open a terminal program like HyperTerminal, and configure
it to the following settings: 19200 bps, 8 data bits, No parity, 1 stop bit, No flow control.

3. Press Button 1 on your demo board (check the BUTTON1_IO macro in the copy of HardwareProfile.h that corresponds to
your project to determine which button is Button 1).

4. Observe the search results for "Microchip" at www.microchip.com on your terminal.

Description

The Generic TCP Client demo implements a task function with five states. When the board is powered on, the initial state will
be set to SM_DONE. This state will wait for the user to press Button 1; when a button-press event occurs, the state will
switch to SM_HOME. In the SM_HOME state, the task will attempt to open a TCP client socket (see page 147). This
socket will use a TCP_PURPOSE_GENERIC_TCP_CLIENT socket type (see page 147) from the TCP socket structure (
see page 148) that was initialized in your configuration files. The targeted server will be the Google search engine, and the
server port will be 80, the port used for HTTP connections. The task will switch the state machine to the
SM_SOCKET_OBTAINED state.

The task will wait in the SM_SOCKET_OBTAINED state until a connection is established with Google or a 5-second timeout
elapses. If a timeout occurs, the state will close the socket and change the state back to SM_HOME. Otherwise, it will wait
until the TCP buffer can accept (see page 164) 125 bytes of data and then use an HTTP GET (see page 228) to search
for the word "Microchip" at the site "microchip.com." Once the GET has been sent, the state will switch to
SM_PROCESS_RESPONSE.

In the SM_PROCESS_RESPONSE state, the task will wait until a response is received or the socket was disconnected. If a
response is received, it will print it to the UART. In either case, the task will transition to the SM_DISCONNECT state, where
it will close the client socket and return to the SM_DONE state.

7.2.1.2.3.1 GenericTCPClient Function

File

MainDemo.h

C

void GenericTCPClient();

Module

Generic TCP Client (see page 93)

Returns

None

Description

This function implements a simple HTTP client, which operates over TCP. The function is called periodically by the stack,

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

94

and waits for BUTTON1 to be pressed. When the button is pressed, the application opens a TCP connection to an Internet
search engine, performs a search for the word "Microchip" on "microchip.com", and prints the resulting HTML page to the
UART.

This example can be used as a model for many TCP and HTTP client applications.

Preconditions

TCP is initialized.

7.2.1.2.3.2 Variables

Module

Generic TCP Client (see page 93)

Variables

Name Description

RemoteURL (see page 95) Defines the URL to be requested by this HTTP client

ServerName (see page 95) Defines the server to be accessed for this application

ServerPort (see page 95) Defines the port to be accessed for this application

7.2.1.2.3.2.1 RemoteURL Variable

File

GenericTCPClient.c

C

ROM BYTE RemoteURL[] = "/search?as_q=Microchip&as_sitesearch=microchip.com";

Description

Defines the URL to be requested by this HTTP client

7.2.1.2.3.2.2 ServerName Variable

File

GenericTCPClient.c

C

BYTE ServerName[] = "www.google.com";

Description

Defines the server to be accessed for this application

7.2.1.2.3.2.3 ServerPort Variable

File

GenericTCPClient.c

C

WORD ServerPort = 80;

Description

Defines the port to be accessed for this application

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

95

7.2.1.2.4 Generic TCP Server
Functions

Name Description

GenericTCPServer (see
page 97)

Implements a simple ToUpper TCP Server.

Macros

Name Description

SERVER_PORT (see
page 97)

Defines which port the server will listen (see page 170) on

Description

Overview

The Generic TCP Server example demonstrates how to build a TCP server application. Once you connect (see page 166)
to the demo server, it will echo your keystrokes back to you after converting the characters to UPPER CASE.

Instructions

1. Connect the programmed demo board to a computer either directly or through a router. For Ethernet, a direct connection
may require a crossover cable; for WiFi, the board may need to be in AdHoc mode to establish a direct connection.

2. Determine the IP address of the demo board. This can be done several different ways.

1. If you are using a demo setup with an LCD display (e.g. Explorer 16 or PICDEM.net 2), the IP address should be
displayed on the second line of the display.

2. Open the Microchip TCP/IP Discoverer from the start menu. Press the "Discover Devices" button to see the addresses
and host names of all devices with the Announce (see page 150) Protocol enabled on your network. You may have
to configure your computer's firewall to prevent it from blocking UDP port 30303 for this solution.

3. If your board is connected directly with your computer with a crossover cable:

1. Open a command/DOS prompt and type 'ipconfig'. Find the network adaptor that is connected to the board. The IP
address of the board is located in the 'Default Gateway' field

2. Open up the network status for the network adaptor that connects the two devices. This can be done by right
clicking on the network connection icon in the network settings folder and select 'status' from the menu. Find the
'Default Gateway' field.

3. Open a command/DOS prompt. Type "telnet ip_address 9760" where ip_address is the IP address that you got from step
2 and 9760 is the TCP port chosen for the Generic TCP Server implementation.

4. As you type characters, they will be echoed back in your command prompt window in UPPER CASE.

5. Press Escape to end the demo.

Description

The GenericTCPServer (see page 97) demo implements a task function with 3 states. In the first state, SM_HOME, the
task will attempt to open a TCP server socket (see page 147). This socket will use a
TCP_PURPOSE_GENERIC_TCP_SERVER socket type (see page 147) from the TCP socket structure (see page 148)
that was initialized in your configuration files. It will also listen (see page 170) on TCP port 9760 (defined by the macro
SERVER_PORT (see page 97)).

Once the socket has been successfully opened, the task function will enter the SM_LISTENING state. In this state, the task
will always return unless a client has connected to it (by establishing a telnet connection on port 9760). Once a client has
connected to the server, the server will read received data from the TCP socket's RX buffer, convert it to upper case, and
write it to the TCP socket's TX buffer.

If an Escape character is received, the server will enter the SM_CLOSING state. In this state, it will close the server socket
to break the current connection. The server will then re-enter the SM_HOME state, where it will reopen the
TCP_PURPOSE_GENERIC_TCP_SERVER socket to listen (see page 170) for new connections.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

96

7.2.1.2.4.1 GenericTCPServer Function

File

MainDemo.h

C

void GenericTCPServer();

Module

Generic TCP Server (see page 96)

Returns

None

Description

This function implements a simple TCP server. The function is invoked periodically by the stack to listen (see page 170)
for incoming connections. When a connection is made, the server reads all incoming data, transforms it to uppercase, and
echos it back.

This example can be used as a model for many TCP server applications.

Preconditions

TCP is initialized.

7.2.1.2.4.2 Macros

Macros

Name Description

SERVER_PORT (see
page 97)

Defines which port the server will listen (see page 170) on

Module

Generic TCP Server (see page 96)

7.2.1.2.4.2.1 SERVER_PORT Macro

File

GenericTCPServer.c

C

#define SERVER_PORT 9760

Description

Defines which port the server will listen (see page 170) on

7.2.1.2.5 Ping (ICMP) Demo
Functions

Name Description

PingDemo (see page 98) Demonstrates use of the ICMP (Ping) client.

Macros

Name Description

HOST_TO_PING (see
page 99)

Address (see page 142) that ICMP client will ping. If the DNS client module is
not available in the stack, then this hostname is ignored and the local gateway
IP address will be pinged instead.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

97

Description

Overview

The Ping Demo explains how to use the ICMP client to check if a remote node is reachable. If the project with this demo
includes the DNS module, the PIC will ping "ww1.microchip.com." Otherwise, it will ping the local gateway. This demo is only
available on hardware setups with LCD displays (e.g. Explorer 16 or PICDEM.net 2).

Instructions

1. Press Button 0 on your demo board. Button 0 is usually the rightmost or topmost button on the board (check the
BUTTON0_IO macro in the copy of HardwareProfile.h that corresponds to your project to determine exactly which button
is Button 0).

2. When the device receives an echo response from the remote node or when the ping times out, the LCD will be updated
with the appropriate information.

Description

The PingDemo (see page 98) task function implements a two-state state machine. The task will wait in the SM_HOME
state until the user presses button 0. Once the button is pressed, the task will attempt to obtain ownership of the ICMP
module with the ICMPBeginUsage (see page 259) function. If it does, it will send a ping to the specified address and
transition to the SM_GET_ICMP_RESPONSE state.

In the SM_GET_ICMP_RESPONSE state, the task will call the ICMPGetReply (see page 261) callback function and take
action depending on the return value:

Value Action

-2 Remain in this state and keep waiting for a response.

-1 Write a message to the LCD indicating that the ping timed out. Change state to SM_HOME.

-3 Write a message to the LCD indicating that the DNS module couldn't resolve the target address. Change state to
SM_HOME.

Other Convert the response time to a text string and print it to the LCD. Change state to SM_HOME.

7.2.1.2.5.1 PingDemo Function

File

MainDemo.h

C

void PingDemo();

Module

Ping (ICMP) Demo (see page 97)

Returns

None

Description

This function implements a simple ICMP client. The function is called periodically by the stack, and it checks if BUTTON0
has been pressed. If the button is pressed, the function sends an ICMP Echo Request (Ping) to a Microchip web server. The
round trip time is displayed on the UART when the response is received.

This function can be used as a model for applications requiring Ping capabilities to check if a host is reachable.

Preconditions

TCP is initialized.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

98

7.2.1.2.5.2 Macros

Macros

Name Description

HOST_TO_PING (see
page 99)

Address (see page 142) that ICMP client will ping. If the DNS client module is
not available in the stack, then this hostname is ignored and the local gateway
IP address will be pinged instead.

Module

Ping (ICMP) Demo (see page 97)

7.2.1.2.5.2.1 HOST_TO_PING Macro

File

PingDemo.c

C

#define HOST_TO_PING "ww1.microchip.com" // Address that ICMP client will ping. If the
DNS client module is not available in the stack, then this hostname is ignored and the
local gateway IP address will be pinged instead.

Description

Address (see page 142) that ICMP client will ping. If the DNS client module is not available in the stack, then this
hostname is ignored and the local gateway IP address will be pinged instead.

7.2.1.2.6 Network Management (SNMP) Server
Functions

Name Description

SendNotification (see page
111)

Prepare, validate remote node which will receive trap and send trap pdu.

SNMPGetTimeStamp (see
page 112)

Obtains the current Tick value for the SNMP time stamp.

Macros

Name Description

MAX_TRY_TO_SEND_TRAP (
see page 113)

SNMP_MAX_NON_REC_ID_OID
(see page 114)

Update the Non record id OID value which is part of CustomSnmpDemo.c
file

STACK_USE_SMIV2 (see
page 114)

Default STACK_USE_SMIV2 is enabled . For Stack V5.31,
STACK_USE_SMIV2 should be disabled.

Variables

Name Description

gSendTrapSMstate (see
page 112)

This is variable gSendTrapSMstate.

gSnmpNonMibRecInfo (
see page 113)

OLD snmp.mib file with SMIv1 standard

gSnmpv3UserSecurityName
(see page 113)

This is variable gSnmpv3UserSecurityName.

Description

The Microchip SNMP server is a multilingual implementation which supports SNMPv1, V2c and V3 server features
simultaneously. SNMP server is implemented to address the requirements of embedded applications. The SNMPv3 support

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

99

is added with TCPIP Stack Version 5.31. SNMPv1 and V2c are enabled with single macro. The SNMPv3 server could be
selectively enabled with an independent macro.

This series of topics will address the application- and demo-specific implementation of an SNMP server included with the
TCP/IP Demo applications. For information describing the SNMP module in general, please see the SNMP API topic.

V2c is implemented with support for the configuration of multiple community names, which are stored in selected non-volatile
memory (SPI EEPROM or SPI Flash). The community names can be configured through the TCP/IP Configuration Wizard or
through the HTTP/MPFS2 web interface. An access-restricted web page is provided with the demo application to allow
dynamic configuration of SNMP communities.

SNMPv3 RFC specifies different types of access mechanism, user security model (USM), authentication and privacy
protocols. Microchip SNMPv3 server is implemented with support for USM, AES 128 CFB 128 privacy protocol, MD5 and
SHA1 message authentication protocols. The demo implementation of the server is configured with 3 different types of user
names with respective authentication and privacy credentials and authentication types. These credentials and other user
information are stored in the global array. The user of the SNMPv3 stack can decide on the number of user names in the
User’s data base to be stored with the Server. According to the SNMPv3 recommendation, SNMPv3 server should not be
configured with the authentication and privacy passwords. Instead could be configured with the respective localized keys of
the password. Microchip SNMPv3 agent is provided with the password information in the database for the “Getting Started”
and for understanding purpose only. It is recommended that the SNMPv3 stack should be modified to restrict access to the
password OIDs declared in the user data base.

You will require two firmware packages to run the SNMPv3 server demo. Each of these must be installed in the order listed,
as some files will be overwritten. The software encryption library is not required if the SNMPv3 services are not intended.

1. The Microchip Application Libraries, including TCP/IP Stack v5.31 or later. This code is available at
www.microchip.com/mal.

2. Microchip's Data Encryption Libraries. This demo uses the SSL security layer to communicate with Google. To use SSL
with the TCP/IP stack, you will require these libraries. They are available in a CD-based or downloadable format from
MicrochipDirect for a small fee (required to comply with U.S. cryptographic export restriction screening). You must
execute the "Microchip TCPIP Stack vX.XX Encryption Add-on.exe" installer to install the files required by the demo. The
ARCFOUR.c/h and RSA.c/h cryptographic files in this installer will replace the dummy versions found with the default
TCP/IP Stack installation.

To enable SNMPv3 functionality, you must add the PIC32_AES.a library from the Data Encryption Libraries to your demo
project.

Note: For existing Microchip SNMP V1 and V2c users.

• SNMP V1/V2c users wanting to upgrade the Microchip TCP/IP Stack from older versions to the latest version and continue
to use SNMP V1/V2c can get the SNMP V1/V2c services from this agent, provided they do not modify the default settings of
the SNMP module in v5.25 onward.

• The implementation framework for V1 and V2c remains the same, except for a few new features and functions. The names
and parameters of some of the functions have been changed. V1/V2c users may have to make changes to their
application-specific code. There should not be any change in the SNMP stack code unless users have incorporated
application code in the SNMP stack.

• Users should build a new MPFS image using the MPFS File System Generator utility and upload it to the selected
EEPROM or Flash memory, as the AppConfig structure is updated to accommodate community names in V2c and SNMP
engine ID for SNMPv3.

7.2.1.2.6.1 MIB Files

Module

Network Management (SNMP) Server (see page 99)

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

100

Description

SNMP describes the hierarchal storage of management objects (referred to with object IDs or OIDs) with Management
Information Base (MIB) files. The Microchip SNMP server demo includes two MIB files:

• mchip.mib - This is an Abstract Syntax Notation One (ASN.1) formatted MIB file containing information about the variables
used in the demo.

• snmp.mib - This is a custom-formatted file that can be parsed to create webpage and header resources that can be
accessed with a PIC microcontroller.

The TCP/IP stack includes the mib2bib utility, which will compile the custom Microchip MIB script (snmp.mib) to generate
two files called snmp.bib and mib.h. The snmp.bib file is a compressed record of management objects that will be stored with
web pages and the mib.h file contains C defines for each OID. These files are included in the appropriate directories for the
TCP/IP Demo Apps, but for a custom application you must copy snmp.bib to your web page directory, copy mib.h to your
application directory and include it in your project, rebuild your project, and then rebuild and re-upload your web page. This
will bundle the BIB file into your web page image, which will allow the SNMP agent to search for the required variable
information with the MPFS file system.

7.2.1.2.6.2 MIB Browsers

Module

Network Management (SNMP) Server (see page 99)

Description

Several SNMP MIB browsers are available. Users can also install a customized MIB browser specific to their application.
This help file describes using the iReasoning MIB browser to run the demo app. The iReasoning MIB browser can be
obtained from: http://www.ireasoning.com/downloadmibbrowserlicense.shtml. The MIB script upload, the MIB tree structure
display, and the SNMP query mechanism procedures vary from browser to browser.

Note that the use of a MIB browser or other third-party tools may require that users review and agree to the terms of a
license. Microchip's reference to the iReasoning MIB browser is for the users' convenience. It is the user's responsibility to
obtain information about, and comply with the terms of, any applicable licenses.

Once your browser installation has been completed, perform the following steps:

1. Copy the mchip.mib file to the MIB file directory of your browser (e.g. "C:\Program Files\ireasoning\mibbrowser\mibs").

2. Open the iReasoning browser, select File->Load MIBs, and select the mchip.mib, RFC1213.mib and
SNMP-FRAMEWORK-MIB.mib (If SNMPv3 server is enabled) file.

The Microchip MIB directory will be displayed in the SNMP MIB pane.

The minimum set of RFC 1213 MIB2 variables that are required to identify the Microchip node as an SNMP node to the
network are implemented. These variables can be accessed by any SNMP browser with a "public" type community name.
Refer to AN870 - "SNMP V2c Agent for Microchip TCP/IP Stack" for more details on the MIB scripts, community names, and
demo SNMP MIB variable tree structure. The following figure shows the variables implemented in the Microchip SNMP
Agent.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

101

http://www.ireasoning.com/downloadmibbrowserlicense.shtml

The ASN.1 format mchip.mib file is defined with a private variable tree structure for the MIB variables. Also the mchp.mib is
added with number of OIDs which could be accessed only with SNMPv3 request. The browser can access every variable in
the MIB database provided the community name matches. The access to the MIB variables is restricted to the type of the
request. The RFC1213 mib variables could be accessed with SNMPv2c/v3 request. But the SNMP-FRAMEWORK-MIB.mib
variables could only be accessed with SNMPv3 reqeust if the credentials are matched and the message is authenticated. To
modify these MIB variables, corresponding changes must be made to both MIB scripts (snmp.mib and mchip.mib). The
following figure shows the Microchip private MIB variable tree structure in the browser.

Configuring the Browser

To configure the iReasoning MIB browser:

1. Select the "Advanced" tab in the browser.

The following configuration window will be displayed:

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

102

2. If V2C services are required, select SNMP version V2c, configure the Read and Write community to the browser.

• The V2c agent will respond only to the queries from SNMP MIB browsers using the same community. That is, the V2c
agent and the browser should be members of the same community.

• If the community fields are left blank, the manager sends the SNMP request with the community name as "public."

• The V2c agent is configured by default with 3 Read communities ("public", "read", "") and 3 Write communities
("private","write","public").

• The default maximum community length is 8 characters.

• As the default communities also contain the "public" community name, the agent will respond to all of the browsers
requesting the "public" community.

• The TCP/IP Configuration Wizard (see page 58) can be used to configure the default SNMP community names. At
run time, the community names can be dynamically configured using the HTTP interface for SNMP community name
configuration.

If the V2c agent receives an SNMP request with an unknown community name, the agent will generate an Authentication (
see page 85) trap.

The V2c agent's multiple community support feature enables the user application to provide limited access to the requesting
browser based on the community name used by the browser to access the MIB database variables of the agent.

3. If SNMPv3 services are required, select the SNMP Version as 'V3' in the 'Advanced' tab of the SNMP MIB Browser. The
following configuration window will be displayed:

4. If SNMPv3 services are required, SNMPv3 browser is required to be configured with the user name, authentication and
privacy password, message authentication hash type, privacy protocol type. The SNMP server would respond only if one
of the user credentials and user security parameters in the below table is configured at the manager. The below table is
stored in the global structure with the SNMPv3 server stack. The SNMPv3 server would only respond if the request
credentials of the MIB browser matches to that of the stored user data base of the SNMP server.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

103

USER 1 USER 2 USER 3

USM User microchip SnmpAdmin root

Security Level auth, priv auth, no priv no auth, no
priv

Auth Algorithm MD5 SHA1

Auth password auth12345 ChandlerUS

Privacy Algorithm AES

Privacy password priv12345

5. The Microchip SNMPv3 stack does support only one Context Engine ID with the server. Leave the "Context Name" option
in the "Advanced" tab empty. It is ignored on the server.

6. According to the user and the auth and privacy protocols configured with the SNMP browser, the UDP authenticated and
encrypted message would be exchanged between server and the client.

• If the USER 1 values, as in above table, are configured in the MIB browser, the data exchange between client and server
is encrypted and authenticated. The PDU could be captured in the Ethernet packet sniffer like WireShark and examined.
As the data is encrypted and authenticated, the data integrity and the privacy is achieved.

• If USER 2 values, as in above table, are configured in the MIB browser, the data exchange between client and server is
authenticated. The data integrity would be checked once the data is received at either end. The message authentication
mechanism protects from the possible data sniffing and modification threat, and alos guarantees that the data is received
from the authenticated and guaranteed source.

• if USER3 values, as in above table, are configured in the MIB browser, the data exchange between client and server is
neither authenticated nor encrypted.

• Considering the above three USER configurations, if the SNMP server is to be accessed over WAN, in the internet cloud,
tha data should be encrypted and authenticated to have the highest level of data privacy and integrity.

7. Configure the IP address of the SNMP agent to the "Address (see page 142) field.

7. Select the variable to be accessed from the agent MIB database from the SNMP MIBs pane. The selected variable's OID
can be seen in the OID tab in the following figure.

8. Select the SNMP Get operation from the operations tab.

9. The SNMPv3 server demo MIB is included with RFC1213 SNMPv2 MIB variables, private mib variables and the
SNMP-FRAMEWORK-MIB variables. If the SNMPv2C request with validated community name is generated from the MIB
Browser, only set of few variables is accessed. The access to the MIB variables is restricted to the type of SNMP version
request received. If the SNMPv3 request with correct credentials is generated from the MIB Browser, the complete MIB
access is provided.

10. The user would require to decide on which part of the MIB should be required to be restricted depending upon the

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

104

SNMP version type. The MIB design is the one of the important step in deciding the MIB tree structure and the variable to
be placed accordingly.

11. The SNMP server demo MIB is added with a static variable OID named as "snmpv3PvtObject" with OID value as
43.6.1.4.1.17095.6.1. This variable is placed in the private branch of the MIB by creating an independent branch. All the
other variables in the private branch are accessible by SNMPv2c request. The access to this static variable is restricted
by the SNMP version type. Only the SNMPv3 request with correct credentials could access this variable.

Exploring the Demo

After the MIB script is uploaded to the SNMP browser, the MIB tree structure will be displayed in the browser. Any of the
variables in this tree can be accessed (using SNMP operations) from the agent if the agent supports these variables. The
browser and agent should be members of the same community. To learn more about SNMP operations, PDU types, and
terminology, refer to AN870 - "SNMP V2C Agent for Microchip TCP/IP Stack."

7.2.1.2.6.3 SNMP Operations

Module

Network Management (SNMP) Server (see page 99)

Description

Get

1. Select the "Advanced" tab and configure the SNMP version to '1' and the Read community to "public".

2. Select "Get" from the operations menu.

3. Select the sysDescr variable from the MIB Tree.

The Result Table displays the sysDescr variable information. Repeat this procedure for any MIB variable. For SNMP V2c,
repeat the same procedure, substituting '2' in place of '1' in the version configuration.

As explained earlier, the V2c agent is configured with three Read and Write community defaults. Configure the browser to
use any of these communities and try accessing the MIB variables. You should be able to access some of the MIB variables
even with the Read Community configured as any of the 'write' community defaults. For GET operations, if the Read or Write
community matches, the agent processes the request. For SET operations, the received community names must match any
of the 'write' community names.

For SNMP V3, substitute '3' in place of '1' in the version configuration in the "Advanced" tab. Configure the other user based
auth and priv credentials as explained in the "MIB Browsers" section.

With appropriate credentials, all the MIB variables are accessible. Select any of the MIB variables in the MIB tree and do a
GET operation.

Get_Next

1. Repeat the process for GET. Select the sysDescr variable from the MIB tree. Select "Get Next" from the operations
menu. The result table will display the sysObjectID variable information.

2. Repeat for additional MIB variables to get the information for the corresponding next variable.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

105

3. Set the SNMP MIB Browser version to v1/v2c. Try to access the private MIB variable "snmpv3PvtObject" with OID value
as 43.6.1.4.1.17095.6.1. The access should be restricted. Set the verison to V3, configre the credentails, again try a
Get_Next operation for the sae variable. The access should be granted.

Get_Bulk

This operation is supported in SNMP V2c and SNMP V3. Get_Bulk enables the collection of bulk information from the agent
with a single request from the manager.

1. Configure the SNMP version to '2' or '3' in the SNMP browser.

2. If version is configured to '2', set the Read Community to 'public' or 'read.'

3. If version is configured to '3', configure the appropriate V3 credentials.

4. Select the sysDescr variable from the MIB tree.

5. Select the Get Bulk operation from the Operations menu.

The result table will display information for 10 MIB variables in a single request (if the Max-Repetitions=10 and
Non-Repeaters=0 is configured). These variables are the lexicographical successors of the sysDescr variable. The number
of variables that the agent will respond with can be configured in the browser through the menus:
"Tools->Options->Non-Repeaters" and "Tools->Options->Max-Repetitions." The Non-Repeaters and Max-Repetitions
numbers are extracted by the SNMP agent from the received Get_Bulk request and the number of variables that will be
included in the response PDU is calculated. for more information on calculating the number of variables, Non-Repeaters,
and Max-Repetitions, refer to RFC 3416.

Set

The Set command updates the variable information of the MIB database in the agent. The Set command can be performed
only on those variables which are declared as 'READWRITE' in the MIB scripts, and only if the community name matches
any one of the 'write' community names configured with the agent.

1. Select the ledD5 variable from the MIB tree.

2. Configure the SNMP version to '1' or '2.' Configure the Write Community to 'public', 'write', or 'private'.

3. If version is configured to '3', configure the appropriate V3 credentials.

4. Select 'Set' from the Operations menu.

The SNMP SET window will pop up. Enter the value for the browser in the OID field.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

106

A success message will appear.

A 'Get' operation for the same variable should now return the new 'Set' value for this variable. LED5 on the demo board
should now be ON. Repeat the procedure to set LED5 to OFF. LED6 can also be set ON or OFF.

7.2.1.2.6.4 SNMP Traps

Module

Network Management (SNMP) Server (see page 99)

Description

The SNMP agent in version 5.25 and later of Microchip's TCP/IP Stack supports SNMP V1 and V2c formatted traps. Traps
are notifications from the agent to the manager that are used when a predefined event occurs at the agent.

By default, traps are enabled in the agent. The following preprocessor macro in the TCPIPConfig.h header file can be
used to disable traps in the agent:

#define SNMP_TRAP_DISABLED

The user must configure the expected trap format at the SNMP Manager. SNMPv2 entities acting as an agent should be
able to generate and transmit SNMP V2 trap PDUs when the manager is configured to received and process SNMP V2 trap
PDUs. To configure the trap format, comment or uncomment the following macro in the TCPIPConfig.h header file:

#defiine SNMP_STACK_USE_V2_TRAP

If the macro has been commented out, the SNMP agent will send V1 formatted trap PDUs; otherwise, it will send V2
formatted trap PDUs. By default, the SNMP agent is configured to send V2 formatted traps. Note that the SNMP V2c agent
should only send V2 formatted traps.

Demos

Two trap demos are included with the TCP/IP Stack. The task functions for these demos are called in the main application
function:

• SNMPTrapDemo() - This API demonstrates V1 or V2 trap formats (depending of the status of the
SNMP_STACK_USE_V2_TRAP macro). The trap PDU will only have one demo variable binding on the varbind list.

• SNMPV2TrapDemo() - This API provides V2 format notifications with multiple (3) variable bindings. The user should
modify or use this routine as a reference for sending V2 trap format notifications with multiple bindings on the varbind list.

The user should only enable one SNMP demo API at a time. By default, the SNMPTrapDemo() API is enabled and
SNMPV2TrapDemo() is commented out.

V1/V2 Formatted Traps with a Single Variable Binding

In the TCPIPConfig.h header file:

• Uncomment #define SNMP_TRAP_DISABLED

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

107

• Comment //#define SNMP_STACK_USE_V2_TRAP

For the Trap demonstration, two events are defined within the V2c agent:

• If the Analog Potentiometer value is greater than 512, the agent will send a Trap every 5 seconds to the configured
'trapReceiverIPAddress.'

• If Button 3 on the demo board is pressed, an organization-specific PUSH_BUTTON trap will be sent.

The current implementation of the V2c agent also generates a standard "Authentication (see page 85) Failure Trap":

• If a request is received to modify (Set) a private MIB variable, or

• If the value of the variable is requested (get) by a browser with the wrong community name.

Procedure:

1. Open the "Advanced" configuration menu, configure the SNMP version to '2,' and configure the Write Community to
"public', 'write', or 'private'.

2. Select the 'trapEnabled.0' variable from the MIB tree.

3. Select 'Set' from the Operations menu.

4. Enter '1' in the value field of the SNMP SET window.

5. Select 'trapReceiverIPAddress.0' from the MIB tree.

6. Set the value to the IP address of the PC on which the SNMP browser is installed and running.

7. Select 'trapCommunity.0' from the MIB tree.

8. Set the community name of the SNMP browser (the default community, if not set, is 'public'). The 'trapCommunity' name
will work as a filter for the SNMP browsers on a trap-monitoring server.

9. Open the "Trap Receiver' utility that was installed with the iReasoning MIB browser (Start->Programs->iReasoning->MIB
Browser->Trap Receiver).

To test the analog potentiometer trap, adjust the potentiometer on the demo board so the value is greater than 512 (turn it
clockwise). This is an enterprise-specific trap. The SNMP Manager will receive the source IP address, the OID (as the name
of the variable), the value, the timestamp, etc. for each event. The browser will interpret the data as AnalogPot variable
information based on the OID name.

To test the push button trap, press the appropriate button on the development board (RB0 on the PICDEM.net 2 or S3 on
the Explorer 16 board).

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

108

To test the Authentication (see page 85) Failure trap, configure the Read Community in your browser to a community
name that is not supported by the agent (the default supported names are 'public' and 'read'). For example:

1. Configure 'mchp' as the Read Community name in the browser.

2. Select the private MIB variable LED5 from the MIB tree and issue a 'Get' operation from the browser.

The result table of the browser won't display any result, but the Trap Receiver will receive and Authentication (see page
85) Failure trap.

This is an intimation from the agent to the SNMP Manager that there was an unauthorized attempt to access the private MIB
variable in the database.

V2 Formatted Traps with a Multiple Variable Bindings

In the TCPIPConfig.h header file:

• Uncomment #define SNMP_TRAP_DISABLED

• Uncomment #define SNMP_STACK_USE_V2_TRAP

The SNMP V2 Trap PDU structure is:

Version (2) | community | SNMP-PDU pdu-type (TRAP=0xA7) | request-id | error-status | err-index | varbind List

The first two variable varbinds in the variable binding list of an SNMPv2-TRAP-PDU are sysUpTime.0 and snmpTrapOID.0,
respectively. If any additional variables are to be included, then each of these varbind structures must be copied to the
variable binding list.

For the SNMPv2 multiple TRAP variable varbind demonstration, ANALOG_POT0 is used to generate an event and transmit
an SNMP v2 Trap PDU. Adjust the analog potentiometer to a value greater than 512 (turn it clockwise) on the demo board.
In addition to the sysUpTime.0 and snmpTrapOID.0 varbinds, the additional varbinds that are included with the trap PDU are:

• PUSH-BUTTON

• LED0_IO

• ANALOG_POT0

The following figure shows a V2 formatted trap with ANALOG_POT0 as the variable binding to be notified.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

109

The next figure shows a multiple-variable varbind for an SNMP V2 Trap PDU, with the three additional variable bindings:

7.2.1.2.6.5 HTTP Configuration

Module

Network Management (SNMP) Server (see page 99)

Description

If an HTTP2 server is used with the Microchip TCP/IP Stack, it is possible to dynamically configure the Read and Write
community names through the SNMP Configuration web page. Follow the steps in the Getting Started section to upload the
web pages to non-volatile memory, then access the SNMP Configuration web page through the navigation bar. Use "admin"
for the username and "microchip" for the password.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

110

7.2.1.2.6.6 Functions

Functions

Name Description

SendNotification (see page
111)

Prepare, validate remote node which will receive trap and send trap pdu.

SNMPGetTimeStamp (see
page 112)

Obtains the current Tick value for the SNMP time stamp.

Module

Network Management (SNMP) Server (see page 99)

7.2.1.2.6.6.1 SendNotification Function

File

CustomSNMPApp.c

C

static BOOL SendNotification(
 BYTE receiverIndex,
 SNMP_ID var,
 SNMP_VAL val,
 UINT8 targetIndex
);

Description

This routine prepares the trap notification pdu, sends ARP and get remote device MAC address to which notification to sent,
sends the notification. Notofication state machine is getting updated if there is any ARP resolution failure for a perticular trap
destination address.

Remarks

None.

Preconditions

SNMPTrapDemo() is called.

Parameters

Parameters Description

receiverIndex The index to array where remote ip address is stored.

var SNMP var ID that is to be used in notification

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

111

val Value of var. Only value of BYTE, WORD or DWORD can be sent.

targetIndex snmpv3 target index

Return Values

Return Values Description

TRUE If notification send is successful.

FALSE If send notification failed.

7.2.1.2.6.6.2 SNMPGetTimeStamp Function

File

CustomSNMPApp.c

C

static DWORD SNMPGetTimeStamp();

Description

This function retrieves the absolute time measurements for SNMP time stamp.Use TickGet (see page 513) and
TickGetDiv64K (see page 514) to collect all 48bits of the internal Tick Timer.

Remarks

None.

Preconditions

None

Return Values

Return Values Description

timeStamp DWORD timevalue

7.2.1.2.6.7 Variables

Module

Network Management (SNMP) Server (see page 99)

Variables

Name Description

gSendTrapSMstate (see
page 112)

This is variable gSendTrapSMstate.

gSnmpNonMibRecInfo (
see page 113)

OLD snmp.mib file with SMIv1 standard

gSnmpv3UserSecurityName
(see page 113)

This is variable gSnmpv3UserSecurityName.

7.2.1.2.6.7.1 gSendTrapSMstate Variable

File

CustomSNMPApp.c

C

UINT8 gSendTrapSMstate = 0;

Description

This is variable gSendTrapSMstate.

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

112

7.2.1.2.6.7.2 gSnmpNonMibRecInfo Variable

File

CustomSNMPApp.c

C

SNMPNONMIBRECDINFO gSnmpNonMibRecInfo[SNMP_MAX_NON_REC_ID_OID] = {
{{43,6,1,4,1,0x81,0x85,0x47,6},SNMP_V3}, {{43,6,1,2,1,1},SNMP_V2C},
{{43,6,1,4,1,0x81,0x85,0x47,0x1},SNMP_V2C}, };

Description

OLD snmp.mib file with SMIv1 standard

7.2.1.2.6.7.3 gSnmpv3UserSecurityName Variable

File

CustomSNMPApp.c

C

BYTE gSnmpv3UserSecurityName[USER_SECURITY_NAME_LEN];

Description

This is variable gSnmpv3UserSecurityName.

7.2.1.2.6.8 Macros

Macros

Name Description

MAX_TRY_TO_SEND_TRAP (
see page 113)

SNMP_MAX_NON_REC_ID_OID
(see page 114)

Update the Non record id OID value which is part of CustomSnmpDemo.c
file

STACK_USE_SMIV2 (see
page 114)

Default STACK_USE_SMIV2 is enabled . For Stack V5.31,
STACK_USE_SMIV2 should be disabled.

Module

Network Management (SNMP) Server (see page 99)

7.2.1.2.6.8.1 MAX_TRY_TO_SEND_TRAP Macro

File

CustomSNMPApp.c

C

#define MAX_TRY_TO_SEND_TRAP (10)

Section

Global Variables

**

This Macro is used to provide maximum try for a failure Trap server address

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

113

7.2.1.2.6.8.2 SNMP_MAX_NON_REC_ID_OID Macro

File

CustomSNMPApp.c

C

#define SNMP_MAX_NON_REC_ID_OID 3

Description

Update the Non record id OID value which is part of CustomSnmpDemo.c file

7.2.1.2.6.8.3 STACK_USE_SMIV2 Macro

File

CustomSNMPApp.c

C

#define STACK_USE_SMIV2

Description

Default STACK_USE_SMIV2 is enabled . For Stack V5.31, STACK_USE_SMIV2 should be disabled.

7.2.1.2.7 UART-to-TCP Bridge
Overview

The UART-to-TCP bridge feature of the TCP/IP Demo App transmits all incoming TCP bytes on a socket out of the PIC's
UART module and all incoming UART bytes out of a TCP socket.

Instructions

1. Compile your MPLAB project and program the demo board.

2. Connect the RS-232 port on your demo board to an RS-232 port on your computer. On a newer computer you may need
an RS-232 to USB converter cable. On your computer, open a terminal program (such as HyperTerminal). Set it to use
the COM port you connected your board to, at 19200 baud, with 8 data bits, no parity, 1 stop bit, and no flow control.

3. Connect the programmed demo board to a computer either directly or through a router. For Ethernet, a direct connection
may require a crossover cable; for WiFi, the board may need to be in AdHoc mode to establish a direct connection.

4. Determine the IP address of the demo board. This can be done several different ways.

1. If you are using a demo setup with an LCD display (e.g. Explorer 16 or PICDEM.net 2), the IP address should be
displayed on the second line of the display.

2. Open the Microchip Ethernet Device Discoverer from the start menu. Press the "Discover Devices" button to see the
addresses and host names of all devices with the Announce (see page 150) Protocol enabled on your network. You
may have to configure your computer's firewall to prevent it from blocking UDP port 30303 for this solution.

3. If your board is connected directly with your computer with a crossover cable:

1. Open a command/DOS prompt and type 'ipconfig'. Find the network adaptor that is connected to the board. The IP
address of the board is located in the 'Default Gateway' field

2. Open up the network status for the network adaptor that connects the two devices. This can be done by right
clicking on the network connection icon in the network settings folder and select 'status' from the menu. Find the
'Default Gateway' field.

5. Open a command/DOS prompt. Type "telnet ip_address 9761" where ip_address is the IP address that you got from step
4.

6. As you type characters in the command prompt, they will be transmitted over the Telnet (see page 482) TCP port to the

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

114

PIC, and then transmitted out of the PIC's UART to appear on your terminal program. As you type characters in the
terminal program, they will be transmitted to the PIC through the UART module, and then retransmitted over the TCP
connection to appear in the command prompt Telnet (see page 482) session.

7.2.1.2.8 Zero Configuration (ZeroConf)

Zero configuration (Zeroconf), provides a mechanism to ease the configuration of a device on a network. It also provides for
a more human-like naming convention, instead of relying on IP addresses alone. Zeroconf also goes by the names Bonjour
(Apple) and Avahi (Linux), and is an IETF standard.

Enabling

Zeroconf can be enabled by setting the following two defines in TCPIPConfig.h:

• STACK_USE_ZEROCONF_LINK_LOCAL

• STACK_USE_ZEROCONF_MDNS_SD

Currently, the use of Zeroconf is limited to the WiFi demo applications (and the MRF24WB0M module). Future versions of
the stack should enable Zeroconf support across all Ethernet solutions.

Link Local

The first component of Zeroconf is the ability to self-assign an IP address to each member of a network. Normally, a DHCP
server would handle such situations. However, in cases where no DHCP server exists, Zeroconf enabled devices negotiate
unique IP addresses amongst themselves.

mDNS

The second component of Zeroconf is the ability to self-assign human-readable hostnames for themselves. Multicast DNS
provides a local network the ability to have the features of a DNS server. Users can use easily remembered hostnames to
accesses the devices on the network. In the event that devices elect to use the same hostname, as in the IP address
resolution, each of the devices will auto-negotiate new names for themselves (usually by appending a number to the end of
the name).

Service Discovery

The last component of Zeroconf is service discovery. All Zeroconf devices can broadcast what services they provide. For
instance, a printer can broadcast that it has printing services available. A thermostat can broadcast that it has an HVAC
control service. Other interested parties on the network who are looking for certain services can then see a list of devices
that have the capability of providing the service, and connect (see page 166) directly to it. This further eliminates the need
to know whether something exists on a network (and what it's IP or hostname is). As an end-user, all you would need to do
is query the network if a certain service exists, and easily connect (see page 166) to it.

Demo

The demo, when enabled, shows all three items above working together. Each development kit in the network assumes the
hostname of MCHPBOARD-x.local, where x is an incrementing number from 1 (only in the case where multiple kits are
programmed for the network). Each board will broadcast it's service, which is the DemoWebServer.

Zeroconf Enabled Environments

All Apple products have Zeroconf enabled by default. On Windows, you'll need to download the Safari web browser, and

7.2 Available Demos Microchip TCP/IP Stack Help Demo App

115

during the install, enable support for Bonjour. Note that in the Safari browser, you can browse and see a list of all Bonjour
enabled devices, and click through to them automatically.

7.2.2 Internet Bootloader

The Internet Bootloader is a stand alone application allowing new application firmware to be uploaded directly into the Flash
memory of a PIC18F microcontroller over an Ethernet network or the Internet. For other PIC and dsPIC architectures,
third-party TCP/IP bootloaders can be obtained from http://www.brushelectronics.com/. This Internet Bootloader application
implements its own private UDP/IP stack as well as a Trivial File Transfer Protocol (TFTP) server. The bootloader operates
independently of the main application and cannot update itself. Safeguards are implemented internally to minimize the risk of
non-recoverable failed upgrades.

Important attributes of the Internet bootloader include:

• Self contained TFTP, UDP, IP, ARP, and Ethernet protocol handling

• Executes on Power-on Reset instead of during main application

• Waits approximately 4 seconds before starting main application

• Requires 8KB of program Flash

• Requires 0B of RAM (all used RAM is overlaid with main application)

• Requires no CPU time while executing main application

• Requires minimal or no changes to main application code and linker script

• Does not interfere with application interrupt vector locations or add interrupt latency

• Can reprogram configuration words

• Can reuse MAC and IP address provided by main application

• Client update software is already available on most computers

7.2.2.1 Bootloader Design
Bootloader Entry

The bootloader is a TFTP server which starts automatically on Power-on Reset (POR). It can be located anywhere within
program memory. To cause the automatic startup, the bootloader transparently performs a replacement of the instruction(s)
at program memory locations 000000h-000003h. The .hex file to be programmed to the chip by the bootloader will normally
contain a GOTO instruction at address 000000h which branches to the main application. Instead of writing the original
instruction at address zero, the bootloader creates a new GOTO instruction which always branches to the start address of the
bootloader code. The original application instruction at address zero is moved to a jump table, which is later called to exit the
bootloader. The jump table also contains a GOTO 000004h instruction to ensure normal application operation if the first
instruction was not a GOTO.

If the device is programmed with only the bootloader (no application), address 000000h through the start address of the
bootloader code will be in an unprogrammed state (FFFFh). These are NOP instructions which will quickly execute until the
program counter reaches the start of the bootloader. This ensures entry into the bootloader for both programmed and
unprogrammed parts.

Bootloader Re-entry

If the running application wants to reenter the bootloader, it should clear the RCON<NOT_POR> bit and then execute a RESET
instruction. When the bootloader returns control to the main application, the NOT_POR bit will be in the set state. If an
application needs to reset quickly without waiting for the bootloader timeout, it should leave this bit in the set state. This will
cause the bootloader to skip its normal operation and return immediately to the application.

Prior to executing the RESET instruction to reenter the bootloader, the main application can specify the MAC and IP address

7.2 Available Demos Microchip TCP/IP Stack Help Internet Bootloader

116

http://www.brushelectronics.com

for the bootloader to use. To do this:

1. Select a random memory location where 12 bytes can be written

2. Copy the MAC address to the chosen memory location at offset 0

3. Copy the IP address to the chosen memory location at offset 6

4. Compute an IP checksum of the MAC and IP address stored at the memory locations 0 through 9

5. Write the IP checksum at the chosen memory location at offset 10

6. Store the address of the chosen memory location into the PRODH:PRODL registers

7. Clear the RCON<NOT_POR> bit and execute a RESET instruction to enter the bootloader

Upon entry, the bootloader will detect that the RCON<NOT_RI> bit is clear, indicating the bootloader was entered from the
main application instead of a genuine POR event. In this case, the bootloader will dereference the PRODH:PRODL pointer,
validate the checksum, and if valid, use the MAC and IP address specified. If the checksum is invalid, the bootloader will use
it's default compiled MAC and IP address.

The Microchip TCP/IP Stack library provides a Reboot (see page 312) module which can perform the above procedure
upon detection of a TFTP packet. When the Reboot (see page 312) module is used, the application IP address (possibly
obtained automatically via DHCP) can be used as the TFTP bootloader target. If the IP address used by the main application
is Internet routable, then the bootloader itself will be accessible via the Internet.

Memory Map

The entire program memory map when using the bootloader is shown below.

*: GOTO instruction is automatically generated by bootloader when writing. Application instruction at address 000000h is
moved to Bootloader Jump Table.

7.2 Available Demos Microchip TCP/IP Stack Help Internet Bootloader

117

**: Some configuration options are not supported and will automatically be changed by the bootloader before flashing. The
bootloader requires HS or HS+PLL oscillator mode and does not support 1:1 and 1:2 Watchdog Timer Postscale modes.
Switching between Extended and non-Extended mode is not supported either. (The bootloader must be recompiled to
change modes.)

The bootloader uses a block of 8256 bytes of program memory. To prevent the application from inadvertently using this
block, you should modify the linker script in your application prior to compiling. For example, for the MPLAB® C18 C
compiler, the linker script will contain a CODEPAGE line describing the available Flash memory in the device. For the
PIC18F97J60 product with 128kB of program memory, the linker script (18f97j60i.lkr) will contain a line such as:

CODEPAGE NAME=page START=0x2A END=0x1FFF7

This line indicates that the linker can place application constants and code anywhere between 00002Ah and 01FFF7h. This
line must be split into two CODEPAGE lines to describe the gap in available program memory occupied by the bootloader. Ex:

CODEPAGE NAME=page START=0x2A END=0x1DBBF

CODEPAGE NAME=page2 START=0x1FC00 END=0x1FFF7

The above example removes the Jump Table and Bootloader Code blocks for the PIC18F97J60 with 128kB of Flash
memory. Other devices with less Flash memory will need to use different start and end values according to the Jump Table
start address and Bootloader Code end address described in the memory map figure above.

Erase Operations

The TFTP server performs a "bulk erase" before starting any TFTP put (write) operation. The erase is not a true bulk erase
because the bootloader and configuration words remain intact. However, all other locations are reverted to their
unprogrammed state. The erase procedure starts with the Flash page containing the Jump Table and continues backwards
in memory towards address 000000h. After address 000000h is erased, the last program memory page containing the
device configuration words is erased. For example, assuming a PIC18F97J60 with 128kB of Flash, the erase procedure will
follow these steps:

1. Erase 01D800h-01DBFFh

2. Erase 01D400h-01D7FFh

3. Erase 01D000h-01D3FFh

4. ...

5. Erase 000400h-0007FFh

6. Erase 000000h-0003FFh

7. Erase 01FC00h-01FFFFh

After the last page containing the configuration words are erased, the configuration words are immediately reprogrammed to
their previous value. This algorithm provides very robust operation with an extremely low likelihood of destroying access to
the bootloader due to an unexpected event (ex: power or network connectivity is lost while bootloading). Unexpected events
will leave the first GOTO instruction at address 000000h intact, ensuring that the bootloader will start up again. Because the
configuration words are erased last, there will not be any means of circumventing the internal code protect feature while
application code still remains in the device.

Program Operations

Program operations are performed sequentially starting at address 000000h and growing upwards, as presented in the .hex
file to be programmed. The device configuration words are typically the last values encountered in the .hex file. Because the
erase procedure involves clearing the configuration words and then immediately reprogramming them, the configuration
words will already be programmed by the time the configuration words are encountered in the .hex file. Therefore, if the
.hex file contains different configuration words from what are already stored in the Flash memory, the bootloader will have to
perform a new erase operation on the last page prior to programming the new configuration words. This extra erase/write
cycle will reduce overall Flash endurance on the last page as compared to the rest of the device. However, the bootloader
will not perform this erase/write if the configuration words have not changed. This feature preserves endurance for most
application firmware upgrades, which typically do not require different configuration options to be programmed.

7.2 Available Demos Microchip TCP/IP Stack Help Internet Bootloader

118

Read Operations

To save code space, the bootloader currently only supports reading through the TFTP server as binary data. Instead of
getting a .hex file from a TFTP get operation, the bootloader will send back a binary file sized to the amount of internal Flash
memory available (128kB for PIC18F97J60, 64kB for PIC18F66J60, etc.). The bootloader verifies code immediately after
programming devices, so the read feature is primarily for debugging only.

Read operations are disabled if the currently programmed application has the PIC® microcontroller Code Protect feature
turned on.

7.2.2.2 Using the Bootloader
Operation

After the bootloader has started, the code will enable the Ethernet module and begin running a private UDP/IP stack. It will
use the following default addresses out of Power-on Reset:

• IP Address (see page 142): 192.168.97.60

• MAC Address (see page 142): 00-04-A3-00-00-00

These default addresses are statically defined and can only be changed by recompiling the bootloader itself. However, if the
bootloader is called from the main application, such as with the Reboot (see page 312) module, then the bootloader will
use the application assigned IP and MAC addresses (if provided).

The only services that are available during bootloader operation are TFTP and ARP. ICMP (ping) and other services are not
implemented.

Configuring Your PC (Power-on Reset entry)

To access the bootloader, the bootloader's IP address must be on the same subnet as your computer. For the default
192.168.97.60 IP address, you must temporarily change the settings on your PC. If the bootloader's IP address was
application specified and already on the same subnet as your PC, then this section should be skipped.

The following instructions assume you are using Microsoft® Windows® XP and will vary for other operating systems.

1. Open Network Connections.

2. Right click on the network adapter that you are using to communicate with the bootloader and choose Properties.

7.2 Available Demos Microchip TCP/IP Stack Help Internet Bootloader

119

3. Select Internet Protocol (TCP/IP) and click Properties.

4. Select Use the following IP address and then enter the IP address 192.168.97.61.

5. Click OK and then Close on the previous dialog to close them and set the new address.

TFTP Operation (Power-on Reset entry)

Most operating systems come with a TFTP client built in. In Microsoft Windows, this utility is named tftp.exe. This utility is

7.2 Available Demos Microchip TCP/IP Stack Help Internet Bootloader

120

a very simple console application which can be used to upload your application .hex file over the network to the bootloader.
To perform a Flash upgrade using the tftp.exe client, follow these procedures:

1. At a console, type the following command, but do not execute it. Make appropriate path changes to the .hex file. tftp
192.168.97.60 put "C:\Microchip Solutions\TCPIP Demo App\TCPIP Demo App-C18.hex"

2. Power cycle the target board or if the device has a MCLR reset button, press it.

3. Quickly press enter to execute the tftp command. If firmware is already in the device, the bootloader will automatically
terminate after approximately 4 seconds, so you must execute the tftp command within the 4 second window.

4. If successful, the TFTP client will indicate how long the transfer took. Actual programming time will vary based on
numerous factors, including need to erase the Flash first, .hex file size, .hex file complexity, and internal programming
time. The reported transfer rate is therefore not a good metric of network performance in embedded applications.

The bootloader does data read back
verification shortly after writing and does not need a second step to read back the Flash contents. If a verification error
occurs, the error will be immediately reported to the TFTP client.

The most likely cause of a verification
failure is not a Flash endurance problem, but rather, an invalid .hex file given as input. As shown in the bootloader
memory map, .hex files cannot contain any data within the 8KB area of Flash were the bootloader is stored. The
bootloader internally masks off this region of Flash and treats it as read only to prevent bootloader corruption. As a result,
if the .hex file contains data in the read-only region, the write will fail and verification will show a mismatch.

5. After a successful write, the bootloader will time out after approximately 4 seconds and begin executing the main
application that was just loaded.

After completing the TFTP upload process, restore your PC's IP address settings to allow normal network activity and
access to the application you bootloaded.

TFTP Operation (Application entry)

If using an application which auto-detects TFTP packets and enters the bootloader as needed, such as the Reboot (see
page 312) module in the Microchip TCP/IP Stack, then there will generally be no need to reconfigure your PC or go through
a time-sensitive power cycling process. Instead, you can execute a TFTP operation directly on the device without any
interactive steps.

1. At a console, type the following command and execute it. Make appropriate IP adddress/hostname and path changes.

tftp mchpboard put "C:\Microchip Solutions\TCPIP Demo App\TCPIP Demo App-C18.hex"

If the bootload process is interrupted due to a network failure or user cancellation, you can simply retry the tftp command.
The bootloader will not attempt to run a partially bootloaded application. The application specified MAC and IP address will
be retained indefinitely until the device is power cycled or otherwise reset.

If the bootload operation is interrupted due to a power failure, the bootloader will start back up using the Power-on Reset
default MAC and IP addresses. In this case, you must follow the Power-on Reset entry directions to recover.

7.2.3 WebVend

The TCPIP WebVend App is a sample web-enabled vending machine application. It is used by the TCP/IP Webinar series:

1. TCP/IP Networking Part 1: Web-Based Status Monitoring (view)

2. TCP/IP Networking Part 2: Web-Based Control (view)

3. TCP/IP Networking Part 3: Advanced Web-Based Control (view)

7.2 Available Demos Microchip TCP/IP Stack Help Internet Radio

121

http://techtrain.microchip.com/webseminars/ArchivedDetail.aspx?Active=138
http://techtrain.microchip.com/webseminars/ArchivedDetail.aspx?Active=140
http://techtrain.microchip.com/webseminars/ArchivedDetail.aspx?Active=141

7.2.4 Internet Radio

IMPORTANT: Because of changes to the SHOUTcast protocol, the Internet Radio demo app is no longer able to
perform its intended function. This demo now exists only as an TCP/IP Stack code example.

The Internet Radio app demonstrates the use of the TCP/IP Stack for a stand-alone embedded application. This application
is capable of contacting various SHOUTcast servers and playing back the audio stream to a pair of stereo speakers. The
demo requires the Internet Radio Demonstration board. A PIC18F67J60 is used for the processing of Ethernet interface,
while an external MP3 decoder handles the audio playback. Application note AN1128 "TCP/IP Networking: Internet Radio
Using OLED Display and MP3 Audio Decoder (DS01128)" describes the Internet Radio application in detail.

To run the demo, first make sure the Internet Radio board has the correct firmware programmed. Next, connect (see page
166) the board to the internet, plug in an audio headset or speaker. By default, the program will not play a radio station
automatically until a genre is selected. Follow the OLED display’s on screen menu to change genre, station, and volume.

The board can also be controlled via the web browser interface. To connect (see page 166) to the board’s web server, use
the IP address shown on the board’s OLED display. Shown below is a screen shot of the webpage. To start, first select a
genre from the drop down list box, and click 'Select'. To change station, click 'Prev' or 'Next'. To adjust volume, click 'Down'
or 'Up'. If a station does not play, it could be that the port is blocked, try a different station.

Each Internet Radio board also has a sticker containing a unique MAC address. This unique MAC address can be saved to
the board by using the web interface’s configurations section.

7.2 Available Demos Microchip TCP/IP Stack Help WiFi Console

122

http://en.wikipedia.org/wiki/SHOUTcast
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en536169

7.2.5 WiFi Console

The TCPIP WiFi Console Demo App (previously the TCPIP WiFi Iperf Demo App) is a command line interface (CLI) to the
MRF24WB0M. It allows for command line debugging and setup of network information for the wireless LAN. It also has iperf
built in for doing WLAN bandwidth testing. This application is meant more as a development debug tool, and should be
disabled in end user applications.

7.2.5.1 Standalone Commands
These CLI commands are not related to the wireless or networking interface directly.

help

Lists all the available CLI commands for the MRF24WB0M.

getwfver

Lists the WiFi firmware and host driver version numbers.

reset

Issues a host reset.

cls

Resets the prompt.

kill iperf

Kills a running iperf session. See the section on iperf (see page 127) for more information.

7.2.5.2 iwconfig Commands
Note that most of these items should not be changed while the device is in a connected state to a network.

iwconfig commands take the following structure:

iwconfig [ssid <name>]

[mode <idle|managed|adhoc>]

[channel <channel list|all>]

[power <reenable|disable|unicast|all>]

[domain <name>]

[rts <length>]

[txrate <0|1|2>]

[scan]

[hibernate]

[wakeup]

Note: iwconfig with no options will display wireless status.

7.2 Available Demos Microchip TCP/IP Stack Help WiFi Console

123

ssid

name 1-32 ASCII characters.

Currently doesn't accept (see page 164) spaces in the SSID name.

mode

idle Forces the MRF24WB0M to disconnect from any currently connected network (adhoc or
infrastructure).

managed The MRF24WB0M will connect (see page 166) to the SSID in infrastructure mode. Note that all
the network parameters must be correct before this command is called.

adhoc The MRF24WB0M will connect (see page 166) to the SSID in adhoc mode. Note that all the
network parameters must be correct before this command is called.

channel

channel list A comma separated list of all the channels to scan.

all Sets the MRF24WB0M to scan all channels in the given regulatory domain.

power

reenable Enables all power saving features (PS_POLL) of the MRF24WB0M.

disable Disables any power savings features. The MRF24WB0M will always be in an active power state.

unicast The MRF24WB0M will be in it's deepest sleep state, only waking up at periodic intervals to check
for unicast data. The MRF24WB0M will not wake up on the DTIM period for broadcast or multicast
traffic.

all The MRF24WB0M will wake up to check for all types of traffic (unicast, multicast, and broadcast).

domain

fcc United States channels 1-11.

ic Canada channels 1-11.

etsi European channels 1-13.

spain Spanish channels 10-11.

france French channels 10-13.

japana Japanese channel 14.

japanb Japanese channels 1-11.

rts

length Set the requested number of bytes to send. Default max is 2347.

txrate

0 The MRF24WB0M will do automatic rate adaptation between 1 and 2 Mbps.

1 Sets the MRF24WB0M to fixed data rate of 1Mbps.

2 Sets the MRF24WB0M to fixed data rate of 2Mbps.

scan

Instructs the MRF24WB0M to perform an active site scan. Scan results will be displayed to the
output terminal.

7.2 Available Demos Microchip TCP/IP Stack Help WiFi Console

124

hibernate

Removes power to the MRF24WB0M.

wakeup

Restores power to the MRF24WB0M and reconnects.

Note: scan is only supported by the WiFi EZConfig demo.

7.2.5.3 ifconfig Commands
Note that these items should not be changed while the device is in a connected state to a network.

ifconfig commands take the following structure:

ifconfig [<IP address>]

[<MAC address>]

[netmask <IP address>]

[gateway <IP address>]

[auto-dhcp <start|drop>]

Note ifconfig by itself will give network status.

IP address

Use a static IP address. IP address must be in dot-decimal notation.

Note that this command will return an invalid parameter if the DHCP client is enabled. First disable
the DHCP attempts (ifconfig auto-dhcp drop) before running this command.

MAC address

Redefine the device MAC address. MAC address must be specified in hexadecimal colon notation.

This command can only be issued when the MRF24WB0M is in idle mode. Doing so at other
times can have unexpected results.

netmask

IP address Use the specified IP address for the netmask. The netmask value is specified in dot-decimal
notation.

gateway

IP address Configure the gateway address. The gateway value is specified in dot-decimal notation.

auto-dhcp

start Starts the DHCP client.

Only valid if the DHCP module has been compiled in. DHCP client is started by default.

drop Stops the DHCP client. A static IP address will need to be assigned to the device.

Only valid if the DHCP module has been compiled in.

7.2 Available Demos Microchip TCP/IP Stack Help WiFi Console

125

7.2.5.4 iwpriv Commands
Note that these items should not be changed while the device is in a connected state to a network.

iwpriv commands take the following structure:

iwpriv [enc <none|wep|wpa-psk|wpa-phrase>]

[key <[1]|[2]|[3]|[4]> <value>]

[psk <value>]

[phrase <value>]

Note iwpriv by itself will display network security settings.

enc

none The MRF24WB0M will not use any encryption to connect (see page 166) to the specified
network.

wep The MRF24WB0M will use either WEP-40 (short) or WEP-104 (long) encryption to connect (see
page 166) to the specified network.

wpa-psk The MRF24WB0M will use the specified 32-byte PSK to connect (see page 166) to the
WPA/WPA2 network.

wpa-phrase The MRF24WB0M will take the given 1-32 ASCII character passphrase, along with the SSID, and
compute the required 32-byte PSK for the network.

Note that doing so takes approximately 30 seconds to complete the calculation.

key

[1] [2]

[3] [4]
Instructs the MRF24WB0M to use this key for connecting to the WEP encrypted network.

Note that only key 1 is considered safe to use among different AP vendors. Keys 2-4 can have
implementation specific entries that may not be compatible from AP to AP.

value If value is specified, this will instruct the MRF24WB0M to use the specified key number and also
program the device with this key value. For WEP-40 networks, this implies the key is either 5
ASCII characters of 10 hex characters in length. For WEP-104 networks, this implies the key is
either 13 ASCII characters or 26 hex characters in length.

The console only accepts hex WEP keys. Therefore, the user must do the ASCII to hex
conversion for their ASCII keys.

psk

value 32-byte hex value for the PSK.

This value can be calculated from the following website hosted on the Wireshark website.

phrase

value An 8-63 ASCII character phrase (delimited with quotes if using spaces). This phrase will be used
along with the SSID to generate the 32-byte PSK value for the network.

7.2 Available Demos Microchip TCP/IP Stack Help WiFi Console

126

http://www.wireshark.org/tools/wpa-psk.html

7.2.5.5 iperf Example
iperf is a networking tool that helps to measure networking bandwidth and performance. The console demo application has a
built-in iperf application, that can act as both a client and server for testing. iperf has the ability to test both UDP and TCP. In
the case of UDP, you can specify the size of the UDP datagrams. For TCP, iperf measures the throughput of the payload.

In order to run iperf, you'll need a PC that has an iperf application on it as well. There is an open source version that is
maintained, as well as many other variants across the internet. iperf is meant to be run at the command line. However, if a
GUI is desired, a variant called jperf can be used.

In the case of the demo application, iperf measures performance data in a unidirectional format. Therefore, the side that the
server is running on is considered the receiver, and provides the most accurate performance values.

Command Synopsis

iperf [-s|-c <IP addr>]

[-u]

[-i <sec>]

[-b <bandwidth>]

[-t <time>]

-s Runs the iperf server. No IP address needs to be specified.

-c <IP addr> Runs the iperf client. The IP address is the IP address of the server.

-u Server side only. Sends UDP datagrams.

-i <sec> Specified the time interval, in seconds, that the display will be updated.

-b <bandwidth> Specifies the amount of data to try and send. This option is only valid with UDP datagrams.

-t <time> Amount of time, in seconds, to run the test.

Running the Demo

After powering on the development board and associating with your wireless network, you'll need to start the server side
iperf application first. if you start iperf as a server on the development board in the console, then this implies that you are
trying to measure the MRF24WB0M receiver performance. If you start the iperf server on a PC, then you will be measuring
MRF24WB0M transmit performance. Below are two images that show receiver and transmitter performance, respectively.

7.2 Available Demos Microchip TCP/IP Stack Help WiFi Console

127

7.2 Available Demos Microchip TCP/IP Stack Help WiFi EZConfig

128

7.2.6 WiFi EZConfig

Overview

WLAN networks provide a unique challenge for configuring embedded wireless without a natural user interface. Unlike wired
networks, wireless networks require unique items such as the SSID and network type and keys, which have to be sent to the
device in some form or another. Traditionally, this means a user would enter this information using a keyboard and display.

EasyConfig is a mechanism to allow for configuration of an embedded device on a wireless network. It utilizes the web
server of the TCP/IP stack, as well as a wireless adhoc (IBSS) network to allow the user to input the desired network
information from a client browser, and then reset the device to connect (see page 166) to the desired network.

The EasyConfig demo works in roughly the following manner:

1. Upon power up the device, it broadcasts an adhoc network with SSID "EasyConfig".

2. A client device (laptop, iPod Touch/iPhone/iPad) can then connect (see page 166) to the EasyConfig network.

3. Upon connecting, the user can then use a standard web browser to go to the IP address of the demo (http://169.254.1.1).

4. The user will then be presented with some web pages from the web server. The index.htm web page has some additional
information on EasyConfig, and also shows the continually updating status of the LEDs, buttons, and potentiometer on
the development board. The configure.htm page will allow the user to scan for networks, and connect (see page 166) to
a network of their choosing.

5. The device will then reset itself, using the parameters for the new network. In order to continue using the demo, the client
device will now need to reconnect to the same network that the development board is on.

Note that the demo will always attempt to connect (see page 166) to the last known network. If the user wants to reset the
demo to startup in adhoc mode again, then button S3 on the Explorer 16 development board needs to be held down for 4
seconds.

Adhoc Networks

Upon starting the demo, the network will either connect (see page 166) to another adhoc network, or will start it's own if
one is not found. Adhoc networks are peer-to-peer networks, with no centralized coordinator for the network. All the devices
in the network share the responsibilities of keeping the network going.

One downfall of adhoc networks is that typically security is not employed on them. The MRF24WB0M module can secure the
network with WEP (40-bit/104-bit) security, as can most laptops and adhoc devices. Almost no devices in the market can
secure an adhoc network with WPA level security due to the tremendous overhead in doing so.

The demo starts an adhoc network with no security. This means that all the network information that is being configured on
the device is going over-the-air in the open. For most applications, unless somebody is specifically attempting to eavesdrop
on this network, there should be little to no impact on security. However, for applications that do require some baseline level
of security, then WEP can be employed on the network. SSL can also be used to encrypt the traffic between the web server
and client browser. Additionally, some other form of data-level security can be employed to obfuscate the ASCII network
information being sent to the device.

Network Parameters

Below is some information on the parameters that are being sent via HTTP POST from the client browser to the device. All
this information is being parsed and handled in the function HTTPPostWifiConfig() in CustomHTTPApp.c.

WLAN Type Either adhoc or infrastructure

SSID Name of network (1-32 ASCII characters)

7.2 Available Demos Microchip TCP/IP Stack Help WiFi EZConfig

129

Security Type • None

• WEP-40 (5 ASCII characters or 10 hex numbers)

• WEP-104 (13 ASCII characters or 26 hex numbers)

• WPA/WPA2 passphrase (8-63 ASCII characters)

Configured vs Un-configured State

When the demo is running in an unconfigured state (i.e, serving the default EasyConfig SSID in adhoc mode), then the
heartbeat LED (LED0) will blink twice per second to indicate that it hasn't been configured yet. Once the network has been
configured, then the heartbeat LED will change to blink once per second, in a similar fashion to the other TCP/IP demo
applications.

EasyConfig Demo Additional Features

There are four defines that enable EasyConfig as well as extend it with natural features.

STACK_USE_EZ_CONFIG The top level define to enable EasyConfig features.

EZ_CONFIG_SCAN Adds additional ability to instruct the MRF24WB0M module to scan for available
networks nearby. This can be done when you are already connected to a network.

EZ_CONFIG_STORE Store the configuration information for the new network to non-volatile memory. In
the event that WPA/WPA2 level security is used, the 32-byte PSK will be saved to
NVM.

EZ_CONFIG_STALL Before switching networks, forces the configuration state machine to pause. This
gives the client device additional time to request resources from the development
platform before it attempts to connect (see page 166) to a new network.

EZ_CONFIG_SCAN

The MRF24WB0M has the ability to scan for nearby networks. This is similar to a laptop that can show available wireless
networks that can be connected to. The scan results are stored on the MRF24WB0M module, and can be retrieved one at a
time from the device. This helps to reduce the impact of storing all the scan results on the host itself.

The scan can be performed when idle, or when connected to either an adhoc or infrastructure network.

EZ_CONFIG_STORE

The new network parameters can also be stored to non-volatile memory. For the Explorer 16 development board, this
information is stored to the 32kB EEPROM on the board.

One extremely useful feature of storing the information surfaces when connecting to a network with WPA/WPA2 security.
The computation of the 32-byte PSK is computationally heavy, and can take the MRF24WB0M up to 30 seconds to calculate
the key. In a normal application, it would be unacceptable to have to wait 30 seconds every time the device started up before
connection to the network was established.

EZ_CONFIG_STORE helps to alleviate doing the calculation each time by storing the 32-byte PSK to NVM. In doing so, there
is only one 30-second hit the very first time the key is calculated only. Successive connections to the network will be
significantly faster.

7.2 Available Demos Microchip TCP/IP Stack Help WiFi EZConfig

130

EZ_CONFIG_STALL

The configuration state machine that controls the network connections within EasyConfig can employ a wait state between
switching networks. From an end user experience, this becomes vital. If the switch between different networks was
instantaneous, a client browser would never get an indication that the HTTP session was closed after the POST information
was sent. The end user would see this as a browser that was continually waiting, which would eventually timeout.

To make the switch more natural and complete, EZ_CONFIG_STALL adds additional time to allow the client to get the
remaining web page information. For the demo, this includes a HTTP redirect to a page that highlights the new network
information.

Current Incompatibilities

The javascript being used in EasyConfig is not compatible with Internet Explorer 7. EasyConfig does work with many other
flavors of browser on different architectures, not limited to Internet Explorer 8, Mozilla Firefox, Apple Safari and Google
Chrome. The incompatibility is something that is being investigated, and should be fixed in a future stack release.

7.2.7 Demo App MDD

The TCPIP MDD Demo App is a variant of TCPIP Demo App that uses an SD card or USB Thumb Drive to store web pages.
For more information, see the TCPIP MDD Demo App Getting Started guide, installed in the stack's documentation folder.

7.2.8 Google PowerMeter

Google, Inc. has deprecated Google PowerMeter and expressed its intent to remove access to it on September 16, 2011.

Because of this development, Microchip Technology has removed the Google PowerMeter demo projects from the Microchip
Application Libraries distribution. To obtain Microchip's Google PowerMeter reference implementation, please download the
archived Microchip Application Libraries installation from June, 2011 from www.microchip.com/mal.

7.2.9 Energy Monitoring

This demo implements a power monitoring application that uploads data to Google PowerMeter. In this application, actual
power consumption data is obtained from a PIC18F87J72 Energy Monitoring PICtail Plus Daughter Board.

Google, Inc. has deprecated Google PowerMeter and expressed its intent to remove access to it on September 16, 2011.

Because of this development, Microchip Technology has removed the Google PowerMeter demo projects from the Microchip
Application Libraries distribution. To obtain Microchip's Google PowerMeter reference implementation, please download the
archived Microchip Application Libraries installation from June, 2011 from www.microchip.com/mal.

This Energy Monitoring demo has been modified to remove its Google PowerMeter upload features. However, the energy
measurements made by the PICtail can still be viewed on the demo board-hosted web page.

The PC GUI for the Energy Monitoring PICtail can be obtained from:
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en550456

7.2 Available Demos Microchip TCP/IP Stack Help Energy Monitoring

131

http://www.microchip.com/mal
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en550456

8 Using the Stack

This section describes how to use Microchip's TCP/IP Stack.

8.1 Stack Architecture

The TCP/IP stack is modular in design and written in the 'C' programming language. It follows the TCP/IP (Internet) protocol
suite. The stack currently supports the TCP and UDP transport layer modules, the IPv4 (and part of the ICMP) Internet Layer
modules, the ARP link layer modules, and a variety of application layer modules. Most of the Media Access Control link layer
functionality is provided by the hardware MAC/PHY chips (see page 57) used with the stack.

8.2 How the Stack Works
This topic contains information about how the stack works, what is required to use the stack, and how your code can be
structured to work cohesively with the TCP/IP stack.

8.2.1 Required Files

There are several base files that must be included in every project using Microchip’s TCP/IP stack. They are:

• A main file (see page 133)- this is the file with your application code in it..

• ARP.c and ARP.h- These files are used by the stack to discover the MAC address associated with a given IP address.

• Delay.c and Delay.h – These files are used to provide delays for some stack functions. Note that it would be best to
not use these delays in your own code, as they do create blocking conditions.

• Physical layer files – These files are used to enable a specified physical layer. More information on which files to include
can be found in the Hardware Configuration (see page 137) section.

• Helpers.c and Helpers.h – These files contain helper functions used for miscellaneous stack tasks.

• IP.c and IP.h – These files provide internet layer functionality for the stack.

• StackTsk.c and StackTsk.h – These files contain the code to initialize the stack and perform the callbacks that keep
the stack going.

• Tick.c and Tick.h – These files implement a tick timer that is used to implement some timing functionality within the
stack.

• HardwareProfile.h – This configuration file is used to set up hardware options.

8.2 How the Stack Works Microchip TCP/IP Stack Help Required Files

132

• TCPIPConfig.h – This configuration file is used to set up firmware options.

• MAC.h – This header file provides macros and structures relating to the hardware MAC layer.

• TCPIP.h – This is the primary include file for the stack. Your main file should include TCPIP.h.

You may choose to include additional files to support additional protocols and features. The list of protocols and their
required files can be found in the Protocol Macros and Files (see page 145) topic in the Protocol Configuration (see
page 144) topic.

8.2.2 APP_CONFIG Structure

Most of the stack-related application variables are stored in an APP_CONFIG structure. These include addresses (see
page 142), flags, and NBNS/SSID name strings. You will need to declare one of these structures (named "AppConfig") for
your application and initialize it with the default values defined in TCPIPConfig.h. For example, you would set the bytes of
the MyIPAddr field to the values of the MY_DEFAULT_IP_ADDR_BYTEn macros in TCPIPConfig.h. The InitAppConfig
function in the file MainDemo.c of the TCPIP Demo App project demonstrates how to populate this structure completely.
The full list of parameters in the APP_CONFIG structure is defined in the file StackTsk.h.

At the beginning of most stack demonstration applications, the code will check an EEPROM to determine if it contains a valid
image of an APP_CONFIG structure. If so, it will read the image and use it to populate the AppConfig instance in the demo
project. Otherwise, it will load the application variables from your statically defined values and/or configure them based on
application protocols (DHCP/AutoIP). This allows a board to retain its configured settings even if the application loses power.

8.2.3 Main File

Because there is a huge variety of ways in which you could write your application, this section will provide an outline of what
your main file should contain. It also provides some description of the stack operation, and of best-practice programming
techniques to prevent stack problems.

8.2.3.1 Initialization
You should start by initializing your hardware. This includes PPS pins, oscillators, LEDs, LCDs, any SPI or PMP modules
you're using to control your hardware MAC/PHY chip, etc.

Next, call the hardware initialization functions for the library. TickInit (see page 514)() should be called first; it will initialize
the tick timer that manages your stack timing. Then call any additional initialization functions that require hardware
initialization. For example, the MPFSInit (see page 279)() function will need to initialize an SPI port to communicate to a
memory storage (see page 137) device to store web pages, so it should be called now.

Once your hardware is initialized, you can begin configuring your stack. Most of the stack-related application variables are
stored in the AppConfig (see page 133) structure. At this point, you should initialize the AppConfig structure with your
default values, or provide another means of initializing the AppConfig structure.

Finally, you can initialize the stack by calling the StackInit() function. This function will automatically call the initialization
functions for other firmware protocols if they have been enabled in TCPIPConfig.h (i.e. TCPInit (see page 464)() for the
TCP protocol, HTTPInit (see page 245)() for HTTP2,...). After StackInit() has been called, you can call other
application-specific firmware initialization functions.

8.2.3.2 Main Loop
Once your program has been initialized, you should enter an infinite loop which will handle your application tasks. Within this

8.2 How the Stack Works Microchip TCP/IP Stack Help Main File

133

loop, there are two functions that you must call regularly: StackTask and StackApplications.

The StackTask function will perform any timed operations that the stack requires, and will handle transmission and
reception of data packets. This function will also route any packets that have been received to the appropriate application
protocol-level function to handle it.

The StackApplications function will call loaded application modules. For example, if an application is using an HTTP2
server, StackApplications will automatically call the HTTPServer (see page 246) function to process any
HTTP2 tasks that are queued.

Most sub-tasks within StackTask and StackApplications are implemented as state-machine controlled cooperative
multitasking functions. Since these sub-tasks consists of multiple steps (which may occur at varying times) this call-back
system ensures that no single task will monopolize control of the processor.

Within this main loop, you may also want to poll for any I/O changes in your application and call any application specific
tasks that you've implemented. To avoid causing buffer overflows in your hardware or protocol timing violations you should
try to implement your own application tasks in callback functions with timing-based triggers. A method to do this is described
in the next topic.

You must make one call to StackTask for each call of StackApplications but you aren't required to call these functions
with any specific frequency. Calling StackTask too infrequently could limit your throughput, though, as each call of
StackTask can retrieve one packet (at most) from the packet buffer. Similarly, application tasks that are time-dependant
(like an ICMP ping response) may produce undesirable results if StackApplications is not called frequently enough.

The amount of time that the main loop takes to complete one iteration depends on several factors. If data is ready to be
transmitted, or if a packet of received data was received, the StackTask function will take more time than it would
otherwise. Each additional protocol included in your application will cause the main loop to take additional time as well, with
the amount of time for each varying from the length of the shortest state machine state in the task to the longest.

Once your application is complete, you can set up a test case to determine the min/average/approximate maximum time that
your loop will take to run. You can set your code up to use an internal timer to measure the duration of each iteration of the
main loop, or you can set the code up to trigger an output pin each time the main loop completes, and use an oscilloscope to
capture the network execution time. You can then provide application inputs or additional network traffic with a PC program
(or other PICs) to simulate real-world operating conditions.

8.2.4 Cooperative Multitasking

If you implement the TCP/IP stack using a cooperative multitasking approach, you must make periodic calls to task functions
to transmit/receive packets and to maintain protocol functionality. To prevent conflicts with the stack, you should write your
own custom tasks in a way that will allow them to give up the processor if it's not needed. If you create a protocol or
application task with multiple steps, it may be beneficial to divide them up between states. You can then use a global or
static variable to track your state, and call that task function periodically to move through the state machine.

The following example contains a sample application for transferring data from a machine of some type to an external target.
It includes a task function called ApplicationTask that has states to wait for button inputs, update the display, and
transfer data from the machine. The functions in the example are used to represent other actions: ButtonPressDetected
represents the code needed to check for an input from the user, LCDDisplay represents the code needed to update a
display on the machine, SampleData gets data from the machine, DataBufferIsFull indicates that the buffer used to
hold data samples needs to be sent, and TransferData is a function that writes the data to an open TCP or UDP socket.
In between each of these states, the ApplicationTask function returns to the main loop, and the StackTask and
StackApplications functions are called. This flow will allow the StackApplications function to maintain any module
tasks. The StackTask function will periodically transmit the data from the socket buffers to its destination, which will prevent
the transmit buffers from overflowing.

unsigned char gAppState; // State tracking variable

int main (void)
{

8.2 How the Stack Works Microchip TCP/IP Stack Help Cooperative Multitasking

134

 // Pseudo-initialization function
 InitializeCode();

 // Setup application state
 gAppState = STATE_DISPLAY_MENU;

 // Main Loop
 while (1)
 {
 StackTask();
 StackApplications();
 ApplicationTask();
 }
}

void ApplicationTask (void)
{
 switch (gAppState)
 {
 case STATE_DISPLAY_MENU:
 LCDDisplay (stringMainMenu);
 gAppState = STATE_MAIN_MENU;
 break;
 case STATE_MAIN_MENU:
 if (ButtonPressDetected (BUTTON_1)) // Check an input
 gAppState = STATE_MONITOR_MACHINERY;
 break;
 case STATE_MONITOR_MACHINERY:
 LCDDisplay (stringTransferringData);
 // Generate or send data
 if (DataBufferIsFull())
 {
 TransferData();
 }
 else
 {
 SampleData();
 }
 if (ButtonPressDetected (BACK_BUTTON))
 gAppState = STATE_DISPLAY_MENU;
 break;
 }
}

Some of the states in your application may be time based. Suppose, for example, that our sample application needs to send
data for 5 seconds every time an input is detected. Stack problems could occur if the application used a delay loop to wait for
5 seconds until it was time to stop, so this functionality should be implemented using the stack's built-in tick timer. When the
request to send data is received, the code will get the current tick time using the TickGet (see page 513) function,
add enough ticks to make up 5 seconds, save it in a static variable called tickCounter, and then switch to a transmit state.
Every time the ApplicationTask function gets called, it will enter this state in the state machine, call TickGet (see

page 513) again, and then compare it to the value stored in that static variable. If the current time is later than the initial
time plus the delay, the code will restore the display and re-enter the main menu state.

void ApplicationTask (void)
{
 static DWORD tickCounter;
 switch (gAppState)
 {
 case STATE_DISPLAY_MENU:
 LCDDisplay (stringMainMenu);
 gAppState = STATE_MAIN_MENU;
 break;
 case STATE_MAIN_MENU:
 if (ButtonPressDetected (BUTTON_1)) // Check an input
 gAppState = STATE_MONITOR_MACHINERY;
 break;
 case STATE_MONITOR_MACHINERY:
 LCDDisplay (stringTransferringData);
 // Save the current time, and add 5 seconds to it
 tickCounter = TickGet() + (5 * TICK_SECOND);

8.2 How the Stack Works Microchip TCP/IP Stack Help Cooperative Multitasking

135

 gAppState = STATE_CONTINUE_MONITORING;
 break;
 case STATE_CONTINUE_MONITORING:
 if ((long)(TickGet() - tickCounter) > 0)
 gAppState = STATE_DISPLAY_MENU;
 else
 {
 // Generate or send data
 if (DataBufferIsFull())
 {
 TransferData();
 }
 else
 {
 SampleData();
 }
 }
 break;
 }
}

There are three tick timing macros declared to help with delays: TICK_SECOND (see page 512) defines the number of
ticks in a second, TICK_MINUTE (see page 512) defines the number of ticks in a minute, and TICK_HOUR (see page
512) defines the number of ticks in an hour. By using the tick timer to implement delays, you can ensure that your code won't
block critical functions for too long.

8.2.5 RTOS

As an alternative to implementing your stack application in a cooperative multitasking format, you can integrate the stack into
a Real-Time Operating System. For more information, see Application Note 1264 on the Microchip web site.

8.2 How the Stack Works Microchip TCP/IP Stack Help RTOS

136

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en544728

9 Configuring the Stack

There is a wide range of configuration options available for Microchip's TCP/IP Stack. This topic will discuss the functionality
of these options, and how to implement them.

9.1 Hardware Configuration
Most hardware configuration is performed by commenting, uncommenting, or defining a series of macros in the one of the
variants of the header file HardwareProfile.h. You can see sample versions of how to set these options in the copies of
HardwareProfile.h that are included with the stack's demo projects (see page 78).

In most cases, the macro to enable a device is the same macro used to define the device's chip select pin. In the default
copies of HardwareProfile.h included with the demonstration projects, there are example sections defined for most demo
boards, delimited by preprocessor statements. For example, the section for the Explorer 16 begins with the macro "#elif
defined (EXPLORER_16)" and continues until the next demo board preprocessor statement. If you use one of these files
as a base for your project, make sure you are modifying the macros in the correct section.

9.1.1 Clock Frequency

Many TCP/IP operations are time-dependant. By specifying the oscillator frequency that you're using in your application for
the stack, you can enable automatic handling of these operations. To set hte clock value, substitute your oscillator frequency
(in Hertz) for the value in the following macro in HardwareProfile.h:

#define GetSystemClock() xxxxxxxxxxxxxxx

There are also two other clock macros. GetInstructionClock() and GetPeripheralClock() provide frequency
values for the instruction clock and peripheral clock in your microcontroller. These values will usually be set as a fraction of
the system clock (i.e. GetInstructionClock() would be defines as (GetSystemClock() / 2) for PIC24F
processors).

9.1.2 External Storage

There are several features in the TCP/IP stack that use external storage to maintain structures or web pages. Support for a
few storage devices is included with the stack; the support files can be used as a template to write drivers for other devices
as well. The HardwareProfile.h pin definitions are roughly equivalent for each storage device, except for the first word of
the macro, which indicates which type of storage device it applies to (e.g. EEPROM_CS_IO vs SPIFLASH_CS_IO). There
are three different storage media.

EEPROM

A EEPROM can be used to store MPFS2 (see page 266) web page images and custom application structures. To indicate
to the stack that it should use a EEPROM to store MPFS2 images, define the macro MPFS_USE_EEPROM in the
TCPIPConfig.h header file. By default, the stack includes a driver for Microchip’s 25LC256 EEPROM family (to use the 1
Mbit EEPROM, you must also define the macro USE_EEPROM_25LC1024 in TCPIPConfig.h). The macros to control
communication with the EEPROM will be prepended with the string EEPROM_ in this case. To enable communication, define
EEPROM_CS_TRIS and include the files SPIEEPROM.c and XEEPROM.h in your application. These files may requires

9.1 Hardware Configuration Microchip TCP/IP Stack Help External Storage

137

some changes to support additional EEPROM devices.

Serial Flash

Storage for MPFS images and custom structures is also available on serial flash devices (tested with SST 25VF016B and
Spansion 25FL040A). To indicate that the stack should use serial flash to store web pages, define MPFS_USE_SPI_FLASH
in TCPIPConfig.h. The communicaiton macros will be prepended with the string SPIFLASH_ in this case. To enable
communication functionality, define SPIFLASH_CS_TRIS and include the files SPIFlash.c and SPIFlash.h in your
application. These files may require some changes to support additional flash devices. There are several macros included
within “SPIFlash.h” that must also be defined, including macros to define the sector and page sizes, and macros to describe
whether the SST or Spansion flash device is being used.

SRAM

A serial RAM can be used to store FIFO blocks and TCP Control Blocks for sockets (see page 147) (tested with AMT
Semiconductor’s N256S0830HDA). The macros will be prepended with the string SPIRAM_ in this case. To use this
functionality, define EEPROM_CS_TRIS and include the files “SPIRAM.c” and “SPIRAM.h” in your application. These files
may require some changes to support additional RAM devices.

Macro Purpose Sample Value

xxxxxx_CS_IO Defines the LAT (or PORT, where applicable) register bit that corresponds to
the chip select pin. Defining this macro will indicate that the stack should use
the specified type of external storage.

LATDbits.LATD12

xxxxxx_CS_TRIS Defines the TRIS bit that corresponds to the chip select pin on the device. TRISDbits.TRISD12

xxxxxx_SCK_TRIS Defines the TRIS bit that corresponds to the clock pin of the SPI module
connected to the device.

TRISGbits.TRISG6

xxxxxx_SDI_TRIS Defines the TRIS bit that corresponds to the data-in pin of the SPI module
connected to the device.

TRISGbits.TRISG7

xxxxxx_SDO_TRIS Defines the TRIS bit that corresponds to the data-out pin of the SPI module
connected to the device.

TRISGbits.TRISG8

xxxxxx_SPI_IF Points to the interrupt flag for the SPI module connected to the device. IFS2bits.SPI2IF

xxxxxx_SSPBUF Points to the SPI buffer register for the SPI module connected to the device. SPI2BUF

xxxxxx_SPICON1 Points to the SPI control register for the SPI module connected to the device. SPI2CON1

xxxxxx_SPICON1bits Provides bitwise access to the SPI control register for the SPI module
connected to the device. The ____bits registers are typically defined in the
processor’s header files.

SPI2CON1bits

xxxxxx_SPICON2 Points to the second SPI control register for the SPI module connected to the
device. If your device doesn’t have an SPICON2 register (e.g. PIC32) just omit
this definition.

SPI2CON2

xxxxxx_SPISTAT Points to the SPI status register for the SPI module connected to the device. SPI2STAT

xxxxxx_SPISTATbits Provides bitwise access to the SPI status register for the SPI module
connected to the device.

SPI2STATbits

xxxxxx_SPIBRG Points to the SPI Baud Rate Generator register for the SPI module connected
to the device. If your device doesn’t have a BRG-based SPI module, just omit
this definition.

SPI2BRG

9.1.3 ENC28J60 Config

To use the ENC28J60 in your project, include the files ‘ENC28J60.c” and “ENC28J60.h” in your project and uncomment the
following macro in HardwareProfile.h:

9.1 Hardware Configuration Microchip TCP/IP Stack Help ENC28J60 Config

138

#define ENC_CS_TRIS xxxxxxxxxxxxxxx

Several macros need to be mapped to registers or register bits when using the ENC28J60. They include:

Macro Purpose Sample Value

ENC_CS_IO Defines the LAT (or PORT, where applicable) register bit that corresponds to the
chip select pin. Defining this macro will also indicate that the stack should use
the ENC28J60.

LATDbits.LATD14

ENC_CS_TRIS Defines the TRIS bit that corresponds to the chip select pin. TRISDbits.TRISD14

ENC_RST_IO Defines the LAT (or PORT, where applicable) register bit that corresponds to the
reset pin. If you leave the reset pin unconnected in your design, comment this
macro out.

LATDbits.LATD15

ENC_RST_TRIS Defines the TRIS bit that corresponds to the reset pin. TRISDbits.TRISD15

ENC_SPI_IF Points to the interrupt flag for the SPI module connected to the chip. IFS0bits.SPI1IF

ENC_SSPBUF Points to the SPI buffer register for the SPI module connected to the chip. SPI1BUF

ENC_SPISTAT Points to the SPI status register for the SPI module connected to the chip. SPI1STAT

ENC_SPISTATbits Provides bitwise access to the SPI status register for the SPI module connected
to the chip. The ____bits registers are typically defined in the processor’s header
files.

SPI1STATbits

ENC_SPICON1 Points to the SPI control register for the SPI module connected to the chip. SPI1CON1

ENC_SPICON1bits Provides bitwise access to the SPI control register for the SPI module connected
to the chip (see ENC_SPISTATbits entry).

SPI1CON1bits

ENC_SPICON2 Points to the second SPI control register for the SPI module connected to the
chip. If your device doesn’t have an SPICON2 register (e.g. PIC32) just omit this
definition.

SPI1CON2

ENC_SPIBRG Points to the SPI Baud Rate Generator register for the SPI module connected to
the chip. If your device doesn’t have a BRG-based SPI module, just omit this
definition.

SPI1BRG

9.1.4 ENCX24J600 Config

To use the ENC624J600 or -424J600 in your project, include “ENCX24J600.c” and “ENCX24J600.h” and uncomment the
following macro in HardwareProfile.h:

#define ENC100_INTERFACE_MODE 0

The parameter ‘0’ indicates that you’ll be using the device in SPI mode. Potential usable parameters include:

Parameter Functionality

0 SPI mode using CS, SCK, SI, and SO pins

1 8-bit demultiplexed PSP Mode 1 with RD and WR pins

2 8-bit demultiplexed PSP Mode 2 with R/~W and EN pins

3 16-bit demultiplexed PSP Mode 3 with Rd, WRL, and WRH pins

4 16-bit demultiplexed PSP Mode 4 with R/~W, B0SEL, and B1SEL pins

5 8-bit multiplexed PSP Mode 5 with RD and WR pins

6 8-bit multiplexed PSP Mode 6 with R/~W and EN pins

9 16-bit multiplexed PSP Mode 9 with AL, RD, WRL, and WRH pins

10 16-bit multiplexed PSP Mode 10 with AL, R/~W, B0SEL, and B1SEL pins

More information on the functionality of each mode is available in the ENC624J600 family datasheet. Note, however, that the

9.1 Hardware Configuration Microchip TCP/IP Stack Help ENCX24J600 Config

139

44-pin ENC424J600 only supports communication using the SPI mode and PSP Modes 5 and 6. Also, because of board
conflicts, PSP Modes 2, 4, 6, and 10 shouldn’t be used with the Explorer 16 (and PSP Mode 3 may cause bus contention
with the 25LC256 EEPROM).

Several macros need to be mapped to registers or register bits when using the ENCX24J600 as well. In addition, some
features can be enabled/disabled for this device by defining certain macros. Macros include:

Macro Purpose Sample Value

ENC100_INTERFACE_MODE Indicates which communication mode the stack should use
to interface to the chip. This macro will also indicate that the
stack should use the ENCX24J600.

0

ENC100_PSP_USE_INDIRECT_-

RAM_ADDRESSING

Un-commenting this macro will allow the stack to indirectly
address the RAM of the ENCX24J600 (to save some
address wires). For SPI mode or PSP Modes 9 and 10, this
option will be ignored.

N/A

ENC100_TRANSLATE_TO_PIN-

_ADDR(a)

This macro will actually remap the addresses passed into the
parallel interface to fit the configuration of the pins (if you are
using indirect addressing).

((((a)&0x100)<<6) |
((a&0x00FF))

ENC100_MDIX_IO If you design an Auto-crossover (Auto-MDIX) circuit into your
board, this macro will define the pin to use for it. See the
Fast 100Mbps Ethernet PICtail/PICtail Plus board schematic
for an example circuit.

LATBbits.LATB3

ENC100_MDIX_TRIS Defines the TRIS bit to use for the Auto-crossover circuit. TRISBbits.TRISB3

ENC100_INT_IO Defines an I/O pin to use for the chip’s interrupt signal pin.
This feature is currently unused by the stack.

PORTAbits.RA13

ENC100_INT_TRIS Defines a TRIS bit to use for the chip’s interrupt signal pin. TRISAbits.TRISA13

ENC100_CS_IO Defines a port bit for use with the chip select pin. Optional in
PSP modes.

LATAbits.LATA5

ENC100_CS_TRIS Defines a TRIS bit to use for the chip select pin. TRISAbits.TRISA5

ENC100_POR_IO Defines the port bit to use with a power disconnect circuit. If
your application doesn’t have this feature implemented,
comment out this bit.

LATCbits.LATC1

ENC100_POR_TRIS Defines the TRIS bit to use with a power disconnect circuit. TRISCbits.TRISC1

ENC100_SO_WR_B0SEL_EN_IO Defines a pin used for communication. The functionality of
this pin depends on which communication mode in selected.
It can be equivalent to the ENCX24J600 serial out pin, the
parallel mode WR strobe, the B0SEL pin, or the EN pin.

LATDbits.LATD4

ENC100_SO_WR_B0SEL_EN_TRIS Defines the TRIS bit to use with the
ENC100_SO_WR_B0SEL_EN_IO pin.

TRISDbits.TRISD4

ENC100_SI_RD_RW_IO Defines a pin used for communication. The functionality of
this pin depends on which communication mode in selected.
It can be equivalent to the ENCX24J600 serial in pin, the
parallel mode RD strobe, or the R/~W pin.

LATDbits.LATD5

ENC100_SI_RD_RW_TRIS Defines the TRIS bit to use with the ENC100_SI_RD_RW_IO
pin.

TRISDbits.TRISD5

ENC100_SCK_AL_IO Defines a pin used for communication. The functionality of
this pin depends on which communication mode in selected.
It can be equivalent to the ENCX24J600 serial clock pin or
the parallel mode address latch strobe.

LATDbits.LATDB15

ENC100_SCK_AL_TRIS Defines the TRIS bit to use with the ENC100_SCK_AL_IO
pin.

TRISDbits.TRISD15

ENC100_ISR_ENABLE Points to the bit to enable the interrupt for the I/O based
ENCX24J600-triggered interrupt. This feature is not currently
implemented.

IEC1bits.INT2IE

9.1 Hardware Configuration Microchip TCP/IP Stack Help ENCX24J600 Config

140

ENC100_ISR_FLAG Points to the interrupt flag bit for the I/O based
ENCX24J600-triggered interrupt. This feature is not currently
implemented.

IFS1bits.INT2IF

ENC100_ISR_POLARITY Points to the interrupt polarity bit for the I/O based
ENCX24J600-triggered interrupt. This feature is not currently
implemented.

INTCON2bits.INT2EP

ENC100_ISR_PRIORITY Points to the interrupt priority bit for the I/O based
ENCX24J600-triggered interrupt. This feature is not currently
implemented.

IPC7bits.INT2IP

ENC100_SPI_ENABLE Points to the SPI module enable bit if SPI mode is used. SPI1STATbits.SPIEN

ENC100_SPI_IF Points to the interrupt flag for the SPI module if SPI mode is
used.

IFS0bits.SPI1IF

ENC100_SSPBUF Points to the SPI buffer register for the SPI module if SPI
mode is used.

SPI1BUF

ENC100_SPISTAT Points to the SPI status register for the SPI module if SPI
mode is used.

SPI1STAT

ENC100_SPISTATbits Provides bitwise access to the SPI status register for the SPI
if SPI mode is used. The ____bits registers are typically
defined in the processor’s header files.

SPI1STATbits

ENC100_SPICON1 Points to the SPI control register for the SPI module if SPI
mode is used.

SPI1CON1

ENC100_SPICON1bits Provides bitwise access to the SPI control register for the
SPI module if SPI mode is used (see ENC_SPISTATbits
entry).

SPI1CON1bits

ENC100_SPICON2 Points to the second SPI control register for the SPI module
if SPI mode is used. If your device doesn’t have an
SPICON2 register (e.g. PIC32) just omit this definition.

SPI1CON2

ENC100_SPIBRG Points to the SPI Baud Rate Generator register for the SPI
module if SPI mode is used. If your device doesn’t have a
BRG-based SPI module, just omit this definition.

SPI1BRG

9.1.5 PIC18F97J60 Config

The 18F97J60 can be used in your application by selecting it as the processor in MPLAB, ensuring that the ENC_CS_TRIS
macro is commented out, and including the files “ETH97J60.c” and “ETH97J60.h.” There are no additional macros to define
for the 97J60; since it uses its own internal MAC and PHY for communication all of the register names and bit names are
fixed.

9.1.6 PIC32MX7XX Config

To use the PIC32MX795 in your project, include the files ETHPIC32IntMac.c and ETHPIC32ExtPhy.c in your project.
You’ll also have to add a specific PHY implementation file (by default ETHPIC32ExtPhyDP83848.c is provided) depending
on your actual external PHY selection.

Update the following definitions in HardwareProfile.h:

9.1 Hardware Configuration Microchip TCP/IP Stack Help PIC32MX7XX Config

141

Macro Purpose Sample
Value

PHY_RMII Define this macro if the external PHY runs in RMII mode. Comment it out if you’re
using an MII PHY.

-

PHY_CONFIG_ALTERNATE Define this symbol if the PIC32MX7XX uses the alternate configuration pins to
connect (see page 166) to the PHY. Comment it out for the default configuration
pins.

-

PHY_ADDRESS Update with the MIIM address of the external PHY you are using (the address on
which the PHY responds to MIIM transactions. See the PHY datasheet).

0x1

Update the following definitions in TCPIPConfig.h:

Macro Purpose Sample
Value

ETH_CFG_LINK Set to 0 to use the default connection characteristics (depends on the selected PHY).
Set to 1 to configure the Ethernet link to the following specific parameters.
Auto-negotiation will always be enabled if supported by the PHY.

0

ETH_CFG_AUTO Set to 1 to use auto negotiation. Strongly recommended. 1

ETH_CFG_10 Use/advertise 10 Mbps capability. 1

ETH_CFG_100 Use/advertise 100 Mbps capability. 1

ETH_CFG_HDUPLEX Use/advertise half duplex capability. 1

ETH_CFG_FDUPLEX Use/advertise full duplex capability. 1

ETH_CFG_AUTO_MDIX Use/advertise auto MDIX capability (effective only when ETH_CFG_AUTO is enabled). 1

ETH_CFG_SWAP_MDIX Use swapped MDIX if defined. Otherwise, use normal MDIX. 1

9.2 Address
A TCP/IP application will need to have both a Media Access Control (MAC) address and an Internet Protocol (IP) address.
There are multiple methods for obtaining or setting these addresses.

9.2.1 MAC Address

The 6-byte MAC address provides addressing for the Media Access Control protocol layer of the TCP/IP stack. MAC
addresses are permanent addresses tied to hardware. Blocks of MAC addresses are sold to organizations and individuals by
the IEEE; if you aren't using a Microchip device with a built-in MAC address, you will need to purchase one of these blocks
to assign MAC addresses to your products.

The MAC address is defined in the firmware configuration header "TCPIPConfig.h." There are six macros that must be
defined in this file to set the MAC address. They are:

Macro Sample Value

MY_DEFAULT_MAC_BYTE1 (0x00)

MY_DEFAULT_MAC_BYTE2 (0x04)

MY_DEFAULT_MAC_BYTE3 (0xA3)

MY_DEFAULT_MAC_BYTE4 (0x00)

9.2 Address Microchip TCP/IP Stack Help MAC Address

142

MY_DEFAULT_MAC_BYTE5 (0x00)

MY_DEFAULT_MAC_BYTE6 (0x00)

Each of these macros represents a byte of the MAC address (note that 00:04:A3:xx:xx:xx is the block of MAC addresses
reserved for Microchip products). Once you obtain your block of addresses, you will need to specify a unique address for
every device you produce. The "TCP/IP Demo App" demonstration project describes a method for using Microchip's MPLAB
PM3 programmer to serially program a range of MAC addresses into multiple parts without recompiling your project.

The ENCX24J600, MRF24WB0M, and PIC32MX7XX/6XX feature a pre-programmed MAC address (from Microchip's
address block). If you are using either of these part families in your project, you can define your MAC address as
"00:04:A3:00:00:00" and the stack will automatically use the part's pre-programmed address for your application.

Microchip also provides a family of EEPROMs that include a unique, pre-programmed EUI-48 (MAC) or EUI-64 address.
When using one of these devices, you can write your AppConfig (see page 133) initialization code so it will obtain the
device's MAC address from one of these EEPROMs instead of the default MAC address macros.

9.2.2 IP Address

The IP address is used to address nodes on an Internet Protocol network. You will need to configure your application with an
IP address, or enable a method to obtain one. You may also want to define a few other parameters that describe how your
device will try to fit into its network, by default.

The macros that you will need to define include:

Macro Property Sample
Value

MY_DEFAULT_IP_ADDR_BYTE1 Default IP address byte 1 192ul

MY_DEFAULT_IP_ADDR_BYTE2 Default IP address byte 2 168ul

MY_DEFAULT_IP_ADDR_BYTE3 Default IP address byte 3 1ul

MY_DEFAULT_IP_ADDR_BYTE4 Default IP address byte 4 100ul

MY_DEFAULT_MASK_BYTE1 Default subnet mask byte 1 255ul

MY_DEFAULT_MASK_BYTE2 Default subnet mask byte 2 255ul

MY_DEFAULT_MASK_BYTE3 Default subnet mask byte 3 255ul

MY_DEFAULT_MASK_BYTE4 Default subnet mask byte 4 0ul

MY_DEFAULT_GATE_BYTE1 Default gateway byte 1 192ul

MY_DEFAULT_GATE_BYTE1 Default gateway byte 2 168ul

MY_DEFAULT_GATE_BYTE1 Default gateway byte 3 1ul

MY_DEFAULT_GATE_BYTE1 Default gateway byte 4 1ul

The subnet address is a bit mask that defines the scope of the network. If your IP address is 192.168.5.100, and you specify
a subnet mask of 255.255.255.0, the stack will assume that addresses in the range 192.168.5.x are on the same subnet that
you are, and that packets sent to any of those addresses won't have to be routed anywhere else.

The default gateway is the IP address of the node on the network that your application will send packets to if it doesn't know
how to route them to the address it wants to send them to. If your application is on the 192.268.5.x subnet, if it wants to send
a packet to 198.175.253.160 and it doesn't know exactly how to get there, it will send it to the default gateway.

Note that if you write your own code instead of starting with a demo application, you will need to populate your AppConfig (
see page 133) structure with these values. Also note that these are only default values. Other protocols (or your application
itself) may modify any of the APP_CONFIG fields that represent these parameters.

9.2 Address Microchip TCP/IP Stack Help IP Address

143

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2542¶m=en538878&redirects=mac

There are three methods that you can use to set or obtain an IP address: static, DHCP, or AutoIP.

Static IP Addressing

Using a static address will allow you to specify a set IP address. This can either be done at compile time, by setting the
default IP address to the value you'd like to use and using the demo code (which populated your AppConfig structure
automatically), or during run-time, by programming your application to set the IP address in your AppConfig structure based
on some input. If you'd like to include the code for DCHP and AutoIP address acquisition if your project but still use static
addressing, you can call the DHCP and AutoIP functions that disable those modules to prevent them from overwriting your
IP address. Use of static addresses will usually only work if the server is configured to support that address.

DHCP

The DHCP client module will allow your application to dynamically obtain an IP address from a DHCP server on the same
network. Doing this will reset the IP address, subnet mask, gateway address, and some other configuration parameters in
your AppConfig structure. To use DHCP, include the files DHCP.c, DHCPs.c, and DHCP.h in your project, and add or
uncomment the definition "#define STACK_USE_DHCP_CLIENT" to TCPIPConfig.h. The TCP/IP stack also includes a
simple DHCP server that can supply an IP address to one DHCP client. To enable this functionality, add the macro
"#define STACK_USE_DHCP_SERVER" to TCPIPConfig.h.

AutoIP

The AutoIP module will allow your application to choose an IP address and claim it for itself. These addresses are link-local,
meaning they cannot be routed, and will only work on your local link. This functionality is based on the specification for
allocating dynamic link-local addresses, but is modified to take the form used by Microsoft's APIPA link-local address
allocation scheme. To enable this feature, include the files AutoIP.c and AutoIP.h and add the macro "#define
STACK_USE_AUTO_IP" to TCPIPConfig.h.

IP Address (see page 142) Module Interaction

It is possible to configure a default static address and enable DHCP and AutoIP at the same time. If you don't disable one or
the other, the AutoIP module will immediately choose an address in the specified address range and begin attempting to
claim it. DHCP will also begin sending messages to attempt to lease a DHCP IP address from a DHCP server. In most cases
the DHCP module will complete all of its transactions before AutoIP finishes claiming its address. In this case, the DHCP
address will be copied to the AppConfig structure and the AutoIP module will stop trying to claim its address. Since a
routable DHCP address is always preferred to a link-local AutoIP address, the stack will also immediately start using a
DHCP address if it becomes available, even if an AutoIP address was already in use (i.e. if you enable DHCP after AutoIP
has already claimed an address). This may cause existing open sockets to lose communication; they should be re-opened
with the new address. In this situation, you can also use a static address if you disable DHCP and AutoIP and set the static
address in the AppConfig structure.

If AutoIP is used in conjunction with the DHCP Server module, the AutoIP module will generate an address in the
169.254.x.x subnet and then serve another address in the same subnet to the DHCP client connected to the board.

9.3 Protocol Configuration
There are a few steps that you must take to include each protocol in your application. Most of this configuration is performed
by setting options in one of the variants of the TCPIPConfig.h header file. Nearly all protocols will require you to enable
them by defining one or more macros in TCPIPConfig.h. You will also need to include the files needed by your protocols in
your project. Some protocols will require you to define sockets for them to use in TCPIPConfig.h, and allocate memory to
them.

The TCP/IP Configuration Wizard, included with the stack, will allow you to select the features that you want while handling
most complex firmware configuration automatically. Because of this, it is the easiest (and safest) way to set up your
application protocols.

The Module APIs topic has a description of each of the modules.

9.3 Protocol Configuration Microchip TCP/IP Stack Help Protocol Macros and Files

144

9.3.1 Protocol Macros and Files

You will need to define some macros in TCPIPConfig.h and include some files in your project to enable each protocol. These
include:

Module Macro Function Required Files

ICMP (
see page
258)

STACK_USE_ICMP_SERVER Provides the ability to query and respond to
pings.

ICMP.c, ICMP.h

ICMP (
see page
258)

STACK_USE_ICMP_CLIENT Provides the ability to transmit pings. ICMP.c, ICMP.h

HTTP2 (
see page
225)

STACK_USE_HTTP2_SERVER Provides HTTP server functionality with
dynamic variables, POST, Cookies (see
page 87), Authentication (see page 85),
and other features

HTTP2.c, HTTP2.h,
TCP.c, TCP.h,
CustomHTTPApp.c
and HTTPPrint.h
(see HTTP2 (see
page 225) section for
information on these
files)

SSL (
see page
373)

STACK_USE_SSL_SERVER Provides support for SSL server sockets. SSL.c, SSL.h,
ARCFOUR.c,
ARCFOUR.h, BigInt.c,
BigInt.h, Random.c,
Random.h, RSA.c,
RSA.h

SSL (
see page
373)

STACK_USE_SSL_CLIENT Provides support for SSL client sockets. SSL.c, SSL.h,
ARCFOUR.c,
ARCFOUR.h, BigInt.c,
BigInt.h, Random.c,
Random.h, RSA.c,
RSA.h

FTP STACK_USE_FTP_SERVER Provides ability to remotely upload MPFS2
images to HTTP2 servers via FTP

FTP.c, FTP.h, TCP.c,
TCP.h

SMTP (
see page
292)

STACK_USE_SMTP_CLIENT Provides the ability to send email SMTP.c, SMTP.h,
TCP.c, TCP.h,
Helpers.c, Helpers.h

SNMP (
see page
313)

STACK_USE_SNMP_SERVER Provides a network-based machine
control/monitoring protocol

SNMP.c, SNMP.h,
UDP.c, UDP.h

TFTP (
see page
486)

STACK_USE_TFTP_CLIENT Provides unreliable file upload/download
services

TFTPc.c, TFTPc.h,
TCP.c, TCP.h

Telnet (
see page
482)

STACK_USE_TELNET_SERVER Provides telnet services. Telnet.c, Telnet.h,
TCP.c, TCP.h

Announce
(see
page 150)

STACK_USE_ANNOUNCE Provides device hostname and IP address
discovery on a local Ethernet subnet

Announce.c,
Announce.h

9.3 Protocol Configuration Microchip TCP/IP Stack Help Protocol Macros and Files

145

DNS (
see page
179)

STACK_USE_DNS Provides the ability to resolve hostnames to
IP addresses

DNS.c, DNS.h, UDP.c,
UDP.h

NBNS (
see page
285)

STACK_USE_NBNS Provides the ability to resolve hostnames to
IP addresses on the same subnet.

NBNS.c, NBNS.h,
UDP.c, UDP.h

SNTP (
see page
368)

STACK_USE_SNTP_CLIENT Provides the ability to get the date/time from
the internet

SNTP.c, SNTP.h,
UDP.c, UDP.h

Dynamic
DNS (
see page
188)

STACK_USE_DYNAMICDNS_CLIENT Provides the ability to resolve hostnames to
IP addresses that change frequently.

DynDNS.c, DynDNS.h,
TCP.c, TCP.h

MPFS2
(see
page 266)

STACK_USE_MPFS2 Provides MPFS2 services for custom
applications. This functionality will be
enabled/required automatically by
stack-based protocols that require MPFS2.

MPFS2.c, MPFS2.h

TCP (
see page
435)

STACK_USE_TCP Provides TCP transport layer services for
custom protocols. This functionality is
automatically enabled/required by
stack-based protocols that require TCP
sockets.

TCP.c, TCP.h

UDP (
see page
517)

STACK_USE_UDP Provides UDP transport layer services for
custom protocols. This functionality is
automatically enabled/required by
stack-based protocols that require UDP
sockets.

UDP.c, UDP.h

9.3.2 Additional Features

The TCP/IP stack includes some additional functionality that can be enabled in TCPIPConfig.h.

Feature Macro Description Required Files

UART Demo STACK_USE_UART Application demo using
UART for IP address display
and stack configuration.

UART.c, UART.h

UART-to-TCP
Bridge

STACK_USE_UART2TCP_BRIDGE UART to TCP Bridge
application example

UART2TCPBridge.c,
UART2TCPBridge.h

IP Gleaning STACK_USE_IP_GLEANING Allows assignment of an IP
address via reception of an
ICMP packet with a valid IP
during configuration mode

-

Reboot Server (
see page 312)

STACK_USE_REBOOT_SERVER Allows the PIC to be reset
remotely (useful for
bootloaders).

Reboot.c, Reboot.h

UDP
Performance Test
(see page 288)

STACK_USE_UDP_PERFORMANCE_TEST UDP performance test.
Monitor a local area network
for UDP packets with a
packet sniffer. This test will
transmit 1024 packets. Use
the timestamps of the first
and last packets to calculate
throughput.

UDPPerformanceTest.c,

UDPPerformanceTest.h

9.3 Protocol Configuration Microchip TCP/IP Stack Help Additional Features

146

TCP
Performance Test
(see page 288)

STACK_USE_TCP_PERFORMACE_TEST TCP performance test.
Connect a demo board to a
PC via UART, execute the
code, and monitor the
throughput on the PC
terminal.

TCPPerformanceTest.c,
TCPPerformanceTest.h

Berkeley API (
see page 162)

STACK_USE_BERKELEY_API Provides a Berkeley Sockets
(see page 147) API
abstraction layer.

BerkeleyAPI.c,
BerkeleyAPI.h

9.3.3 Sockets

Most of your application protocols will require you to allocate memory for each connection (socket) that you have open. Like
the other firmware configuration options, this is controlled by the definition of macros in TCPIPConfig.h. For TCP sockets,
you will have to specify four initialization parameters for each socket, including the purpose of that socket, the type of
memory the socket should be stored in, the size of the transmit FIFO, and the size of the receive FIFO. The stack will then
initialize the sockets with this information, and create a TCP Control Block (TCB) for each to control its operations. This topic
will outline the socket configuration functionality in the sample version of TCPIPConfig.h that is included with the TCP/IP
Demo App project.

9.3.3.1 Memory Allocation
#define TCP_ETH_RAM_SIZE (3900ul)
#define TCP_PIC_RAM_SIZE (0ul)
#define TCP_SPI_RAM_SIZE (0ul)
#define TCP_SPI_RAM_BASE_ADDRESS (0ul)

The first four macros in the socket section are used to describe the total amount of memory used to contain sockets. When
data is sent from a TCP socket, it will first be copied into the socket's transmit FIFO, and then to the MAC/PHY transmit
buffer. Similarly, received data will be read from the MAC/PHY chip into the receive FIFO. These FIFOs, as well as the TCB,
can be stored in 3 places.

TCP_ETH_RAM_SIZE is used to define the RAM available for sockets on the actual TCP/IP MAC/PHY chip. This will not be
the same as the total RAM on the chip; some memory must be reserved for packets being transmitted and received. By
default ~1518 bytes (the maximum single-packet transmission size) will be reserved for TX packets on Microchip parts. The
amount reserved for the receive packet buffer will equal the amount remaining after allocating the memory for the TX buffer
and the memory for the sockets. You may receive a compile-time warning if the RX buffer is unreasonably small.

TCP_PIC_RAM_SIZE is used to define the RAM available for sockets on the PIC microcontroller that's driving your
application.

TCP_SPI_RAM_SIZE defines the RAM available for sockets on an external SPI RAM (see External Storage (see page
137)). You can specify the base address in this RAM chip to use with the TCP_SPI_RAM_BASE_ADDRESS macro.

9.3.3.2 Socket Types
When creating an initialization list for your sockets, you will have to specify a socket type. This parameter will define which
protocol can use the socket. You can create and delete socket types as you require. In the sample version of
TCPIPConfig.h, the following types are defined:

#define TCP_SOCKET_TYPES
 #define TCP_PURPOSE_GENERIC_TCP_CLIENT 0
 #define TCP_PURPOSE_GENERIC_TCP_SERVER 1
 #define TCP_PURPOSE_TELNET 2

9.3 Protocol Configuration Microchip TCP/IP Stack Help Sockets

147

 #define TCP_PURPOSE_FTP_COMMAND 3
 #define TCP_PURPOSE_FTP_DATA 4
 #define TCP_PURPOSE_TCP_PERFORMANCE_TX 5
 #define TCP_PURPOSE_TCP_PERFORMANCE_RX 6
 #define TCP_PURPOSE_UART_2_TCP_BRIDGE 7
 #define TCP_PURPOSE_HTTP_SERVER 8
 #define TCP_PURPOSE_DEFAULT 9
 #define TCP_PURPOSE_BERKELEY_SERVER 10
 #define TCP_PURPOSE_BERKELEY_CLIENT 11
#define END_OF_TCP_SOCKET_TYPES

The TCP_PURPOSE_GENERIC_TCP_CLIENT and TCP_PURPOSE_GENERIC_TCP_SERVER socket types are used by the
generic TCP client and server examples (see GenericTCPClient.c and GenericTCPServer.c). These files are used
as an example of how to create a new, custom TCP client or server application.

If you are trying to open a Telnet (see page 482) connection, the stack will try to use a TCP_PURPOSE_TELNET socket.

The TCP_PURPOSE_FTP_COMMAND and TCP_PURPOSE_FTP_DATA socket types are used to receive FTP commands and
data.

The two TCP_PERFORMANCE_x socket types are used solely to conduct TCP performance testing.

The TCP_PURPOSE_UART_2_TCP_BRIDGE socket type is used for the UART-to-TCP bridge example.

The TCP_PURPOSE_HTTP_SERVER socket type is used for sockets on HTTP servers that listen (see page 170) for web
page view requests.

The TCP_PURPOSE_DEFAULT socket type can be used for miscellaneous applications, or for applications that only need
sockets temporairly. Dynamic DNS connections and SMTP connections use default sockets, and the legacy wrapper
implementation for the TCPListen (see page 451) and TCPConnect (see page 442) functions try to open
them.

The TCP_PURPOSE_BERKELEY_SERVER and TCP_PURPOSE_BERKELEY_CLIENT socket types indicate that a socket is
available for the use of the Berkeley API (see page 162) layer (also see BSD Sockets (see page 149)).

9.3.3.3 Initialization Structure
In the TCPIPConfig.h header file, you must also define an array of structures to declare and initialize any sockets that you
need. The sample structure is:

#define TCP_CONFIGURATION ROM struct {
BYTE vSocketPurpose, BYTE vMemoryMedium, WORD wTXBufferSize, WORD wRXBufferSize }
TCPSocketInitializer[] =
{
 {TCP_PURPOSE_GENERIC_TCP_CLIENT, TCP_ETH_RAM, 125, 100},
 {TCP_PURPOSE_GENERIC_TCP_SERVER, TCP_ETH_RAM, 20, 20},
 {TCP_PURPOSE_TELNET, TCP_ETH_RAM, 200, 150},
 //{TCP_PURPOSE_TELNET, TCP_ETH_RAM, 200, 150},
 //{TCP_PURPOSE_TELNET, TCP_ETH_RAM, 200, 150},
 //{TCP_PURPOSE_FTP_COMMAND, TCP_ETH_RAM, 100, 40},
 //{TCP_PURPOSE_FTP_DATA, TCP_ETH_RAM, 0, 128},
 {TCP_PURPOSE_TCP_PERFORMANCE_TX, TCP_ETH_RAM, 200, 1},
 //{TCP_PURPOSE_TCP_PERFORMANCE_RX, TCP_ETH_RAM, 40, 1500},
 {TCP_PURPOSE_UART_2_TCP_BRIDGE, TCP_ETH_RAM, 256, 256},
 {TCP_PURPOSE_HTTP_SERVER, TCP_ETH_RAM, 200, 200},
 {TCP_PURPOSE_HTTP_SERVER, TCP_ETH_RAM, 200, 200},
 {TCP_PURPOSE_DEFAULT, TCP_ETH_RAM, 200, 200},
 {TCP_PURPOSE_BERKELEY_SERVER, TCP_ETH_RAM, 25, 20},
 //{TCP_PURPOSE_BERKELEY_SERVER, TCP_ETH_RAM, 25, 20},
 //{TCP_PURPOSE_BERKELEY_SERVER, TCP_ETH_RAM, 25, 20},
 //{TCP_PURPOSE_BERKELEY_CLIENT, TCP_ETH_RAM, 125, 100},
};
#define END_OF_TCP_CONFIGURATION

As you can see from the structure parameters, the four parameters you'll need to include in each of your socket declarations
are:

9.3 Protocol Configuration Microchip TCP/IP Stack Help Sockets

148

• Socket purpose/type

• RAM storage location

• TX FIFO buffer size

• RX FIFO buffer size

Several example socket declarations are listed. The socket purpose for each corresponds to one of the socket types (see
page 147). The RAM storage for each socket example sets the location to TCP_ETH_RAM (the MAC/PHY chip RAM). Other
options are TCP_PIC_RAM (the PIC's own RAM) and TCP_SPI_RAM (an external SPI RAM device). Finally, the TX and RX
FIFOs are declared. Each RX buffer must contain at least one byte, to handle the SYN and FIN messages required by TCP.
Each socket you declare will require up to 48 bytes of PIC RAM, and 40 + (TX FIFO size) + (RX FIFO size) bytes of RAM on
the storage medium that you select.

9.3.3.4 UDP Sockets
UDP sockets are somewhat easier to declare than TCP sockets. Since UDP transmissions don't have to be processed in a
particular order and responses aren't required by the sender, you don't have to declare separate buffers for these sockets.
There are two options to define when using UDP:

#define MAX_UDP_SOCKETS (10u)
//#define UDP_USE_TX_CHECKSUM

The MAX_UDP_SOCKETS definition defines the size of an array of UDP_SOCKET_INFO (see page 535) structures.
These structures contain two sixteen-bit identifiers for the remote node's and local node's UDP port numbers, and a 10-byte
structure used to hold the remote node's MAC address and IP address (these structures use the packed attribute, so the
actual size of the UDP_SOCKET_INFO (see page 535) structure may very slightly depending on the PIC architecture
you use).

The UDP_USE_TX_CHECKSUM definition will cause the stack to generate checksums for transmitted data, and include them
with transmitted packets. This can provide some data integrity verification, but it will also decrease TX performance by nearly
50% unless the ENCX24J600 is used (the ENCX24J600 chips include hardware checksum calculators).

9.3.3.5 BSD Sockets
The Berkeley API socket configuration option (see page 146) will require Berkeley sockets. Each one of these internally
uses one TCP or UDP socket, defined by the TCPSocketInitializer[] array (see page 148) and the MAX_UDP_SOCKETS
(see page 149) definition. Because of this, the number of Berkeley sockets you declare must be less than or equal to the
sum of the number of UDP sockets you declare and the number of TCP Berkeley-type sockets you declare. The
TCPIPConfig.h macro to define the number of Berkeley sockets is:

#define BSD_SOCKET_COUNT (5u)

9.3 Protocol Configuration Microchip TCP/IP Stack Help Sockets

149

10 Stack API

Modules

Name Description

Announce (see page 150) Provides a UDP MAC address announcement feature.

ARP (see page 152) Provides Address (see page 142) Resolution Protocol support.

Berkeley (BSD) Sockets (see page 162) Provides a BSD socket wrapper to the Microchip TCP/IP Stack.

DNS Client (see page 179) Provides Domain Name Service resolution.

Dynamic DNS Client (see page 188) Updates an external IP address to a Dynamic DNS service.

Hashes (see page 197) Calculates MD5 and SHA-1 hash sums.

Helpers (see page 207) Provides several helper function for stack operation.

HTTP2 Server (see page 225) Provides an advanced embedded web server.

ICMP (see page 258) Provides Ping functionality.

MPFS2 (see page 266) Provides a light-weight file system.

NBNS (see page 285) Describes the NetBIOS Name Service protocol.

Performance Tests (see page 288) Tests TCP and UDP performance of an application.

SMTP Client (see page 292) Sends e-mail messages across the internet.

Reboot (see page 312) Provides a service to remotely reboot the PIC.

SNMP (see page 313) Provides an Simple Network Management Protocol agent.

SNTP Client (see page 368) Obtains absolute time stamps from a pool of network time servers.

SSL (see page 373) Implements SSL encryption for TCP connections.

TCP (see page 435) Implements the TCP transport layer protocol.

Telnet (see page 482) Describes the operation of the Telnet module.

TFTP (see page 486) Describes the TFTP module.

Tick Module (see page 510) Provides accurate time-keeping capabilities.

UDP (see page 517) Implements the UDP transport layer protocol.

Description

The Microchip TCP/IP Stack is implemented as a suite of modules. Each module exists on its own layer in the TCP/IP layer
model, and has its own set of APIs. These APIs are described in this section

10.1 Announce
This module will facilitate device discovery on DHCP enabled networks by broadcasting a UDP message on port 30303
whenever the local IP address changes. You can change the port used by the announce module by changing the following
macro definition in Announce.c.

#define ANNOUNCE_PORT 30303

The Announce protocol is designed to be used with the TCP/IP Discoverer (see page 61) PC program.

10.1 Announce Microchip TCP/IP Stack Help Announce Stack Members

150

10.1.1 Announce Stack Members

Functions

Name Description

AnnounceIP (see page
151)

Transmits an Announce (see page 150) packet.

DiscoveryTask (see page
151)

Announce (see page 150) callback task.

Module

Announce (see page 150)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.1.1.1 AnnounceIP Function
File

Announce.h

C

void AnnounceIP();

Side Effects

None

Returns

None

Description

AnnounceIP opens a UDP socket and transmits a broadcast packet to port 30303. If a computer is on the same subnet and
a utility is looking for packets on the UDP port, it will receive the broadcast. For this application, it is used to announce the
change of this board's IP address. The messages can be viewed with the TCP/IP Discoverer software tool.

Remarks

A UDP socket must be available before this function is called. It is freed at the end of the function. MAX_UDP_SOCKETS
may need to be increased if other modules use UDP sockets.

Preconditions

Stack is initialized()

10.1.1.2 DiscoveryTask Function
File

Announce.h

C

void DiscoveryTask();

10.1 Announce Microchip TCP/IP Stack Help Announce Stack Members

151

Side Effects

None

Returns

None

Description

Recurring task used to listen (see page 170) for Discovery messages on the specified ANNOUNCE_PORT. These
messages can be sent using the Microchip Device Discoverer tool. If one is received, this function will transmit a reply.

Remarks

A UDP socket must be available before this function is called. It is freed at the end of the function. MAX_UDP_SOCKETS
may need to be increased if other modules use UDP sockets.

Preconditions

Stack is initialized()

10.2 ARP
Types

Name Description

ARP_PACKET (see page
161)

ARP packet structure

Description

The Address (see page 142) Resolution Protocol, or ARP, is a foundation layer of TCP/IP. It translates IP addresses to
physical MAC addresses, or locates a gateway through which a machine may be located.

TCP and UDP applications will not need to access ARP directly. The TCPOpen (see page 452) and UDPOpen (see
page 521) functions will handle both ARP and DNS operations transparently.

Responses to incoming ARP requests are processed automatically. Resolution of ARP requests follows a simple state
machine, as indicated in the following diagram.

10.2.1 ARP Public Members

Functions

Name Description

ARPResolve (see page
153)

Transmits an ARP request to resolve an IP address.

ARPIsResolved (see page
154)

Determines if an ARP request has been resolved yet.

10.2 ARP Microchip TCP/IP Stack Help ARP Public Members

152

ARPDeRegisterCallbacks (
see page 154)

De-Registering callbacks with ARP module that are registered previously.

ARPRegisterCallbacks (
see page 155)

Registering callback with ARP module to get notified about certian events.

ARPSendPkt (see page
155)

Transmits an ARP request/Reply initated by Application or external module.

Macros

Name Description

ARP_REQ (see page 156) Operation code indicating an ARP Request

ARP_RESP (see page 156) Operation code indicating an ARP Response

MAX_REG_APPS (see
page 156)

MAX num allowed registrations of Modules/Apps

Module

ARP (see page 152)

Structures

Name Description

arp_app_callbacks (see
page 156)

This is record arp_app_callbacks.

Description

The following functions and variables are available to the stack application.

10.2.1.1 ARPResolve Function
File

ARP.h

C

void ARPResolve(
 IP_ADDR* IPAddr
);

Returns

None

Description

This function transmits and ARP request to determine the hardware address of a given IP address.

Remarks

This function is only required when the stack is a client, and therefore is only enabled when STACK_CLIENT_MODE is
enabled.

To retrieve the ARP query result, call the ARPIsResolved (see page 154)() function.

Preconditions

None

Parameters

Parameters Description

IPAddr The IP address to be resolved. The address must be specified in network byte
order (big endian).

10.2 ARP Microchip TCP/IP Stack Help ARP Public Members

153

10.2.1.2 ARPIsResolved Function
File

ARP.h

C

BOOL ARPIsResolved(
 IP_ADDR* IPAddr,
 MAC_ADDR* MACAddr
);

Description

This function checks if an ARP request has been resolved yet, and if so, stores the resolved MAC address in the pointer
provided.

Remarks

This function is only required when the stack is a client, and therefore is only enabled when STACK_CLIENT_MODE is
enabled.

Preconditions

ARP packet is ready in the MAC buffer.

Parameters

Parameters Description

IPAddr The IP address to be resolved. This must match the IP address provided to the
ARPResolve (see page 153)() function call.

MACAddr A buffer to store the corresponding MAC address retrieved from the ARP query.

Return Values

Return Values Description

TRUE The IP address has been resolved and MACAddr MAC address field indicates
the response.

FALSE The IP address is not yet resolved. Try calling ARPIsResolved() again at a later
time. If you don't get a response after a application specific timeout period, you
may want to call ARPResolve (see page 153)() again to transmit another
ARP query (in case if the original query or response was lost on the network). If
you never receive an ARP response, this may indicate that the IP address isn't
in use.

10.2.1.3 ARPDeRegisterCallbacks Function
File

ARP.h

C

BOOL ARPDeRegisterCallbacks(
 CHAR id
);

Returns

TRUE - On success FALSE - Failure to indicate invalid reg_id

Description

This function allows end user-application to de-register with callbacks, which were registered previously. This is called by
user-application, when its no longer interested in notifications from ARP-Module. This allows the other application to get
registered with ARP-module.

10.2 ARP Microchip TCP/IP Stack Help ARP Public Members

154

Preconditions

None

Parameters

Parameters Description

reg_id Registration-id returned in ARPRegisterCallbacks (see page 155) call

10.2.1.4 ARPRegisterCallbacks Function
File

ARP.h

C

CHAR ARPRegisterCallbacks(
 struct arp_app_callbacks * app
);

Returns

id > 0 - Returns non-negative value that represents the id of registration The same id needs to be used in de-registration -1 -
When registered applications exceed MAX_REG_APPS (see page 156) and there is no free slot for registration

Description

This function allows end user application to register with callbacks, which will be called by ARP module to give notification to
user-application about events occurred at ARP layer. For ex: when a ARP-packet is received, which is conflicting with our
own pair of addresses (MAC-Address (see page 142) and IP-address). This is an extension for zeroconf protocol
implementation (ZeroconfLL.c)

Preconditions

None

Parameters

Parameters Description

app ARP-Application callbacks structure supplied by user-application

10.2.1.5 ARPSendPkt Function
File

ARP.h

C

BOOL ARPSendPkt(
 DWORD SrcIPAddr,
 DWORD DestIPAddr,
 BYTE op_req
);

Returns

TRUE - The ARP packet was generated properly FALSE - Not possible return value

Description

This function transmits and ARP request/reply to determine the hardware address of a given IP address (or) Announce (
see page 150) self-address to all nodes in network. Extended for zeroconf protocol.

Remarks

This API is to give control over AR-packet to external modules.

10.2 ARP Microchip TCP/IP Stack Help ARP Public Members

155

Preconditions

ARP packet is ready in the MAC buffer.

Parameters

Parameters Description

SrcIPAddr The Source IP-address

DestIPAddr The Destination IP-Address (see page 142)

op_req Operation Request (ARP_REQ (see page 156)/ARP_RESP (see page
156))

10.2.1.6 arp_app_callbacks Structure
File

ARP.h

C

struct arp_app_callbacks {
 BOOL used;
 void (* ARPPkt_notify)(DWORD SenderIPAddr, DWORD TargetIPAddr, MAC_ADDR* SenderMACAddr,
MAC_ADDR* TargetMACAddr, BYTE op_req);
};

Description

This is record arp_app_callbacks.

10.2.1.7 ARP_REQ Macro
File

ARP.h

C

#define ARP_REQ 0x0001u // Operation code indicating an ARP Request

Description

Operation code indicating an ARP Request

10.2.1.8 ARP_RESP Macro
File

ARP.h

C

#define ARP_RESP 0x0002u // Operation code indicating an ARP Response

Description

Operation code indicating an ARP Response

10.2.1.9 MAX_REG_APPS Macro
File

ARP.c

10.2 ARP Microchip TCP/IP Stack Help ARP Public Members

156

C

#define MAX_REG_APPS 2 // MAX num allowed registrations of Modules/Apps

Description

MAX num allowed registrations of Modules/Apps

10.2.2 ARP Stack Members

Functions

Name Description

ARPInit (see page 157) Initializes the ARP module.

ARPProcess (see page
157)

Processes an incoming ARP packet.

Module

ARP (see page 152)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.2.2.1 ARPInit Function
File

ARP.h

C

void ARPInit();

Returns

None

Description

Initializes the ARP module. Call this function once at boot to invalidate the cached lookup.

Remarks

This function is only required when the stack is a client, and therefore is only enabled when STACK_CLIENT_MODE is
enabled.

Preconditions

None

10.2.2.2 ARPProcess Function
File

ARP.h

C

BOOL ARPProcess();

10.2 ARP Microchip TCP/IP Stack Help ARP Stack Members

157

Description

Retrieves an ARP packet from the MAC buffer and determines if it is a response to our request (in which case the ARP is
resolved) or if it is a request requiring our response (in which case we transmit one.)

Preconditions

ARP packet is ready in the MAC buffer.

Return Values

Return Values Description

TRUE All processing of this ARP packet is complete. Do not call again until a new
ARP packet is waiting in the RX buffer.

FALSE This function must be called again. More time is needed to send an ARP
response.

10.2.3 ARP Internal Members

Functions

Name Description

ARPPut (see page 159) Writes an ARP packet to the MAC.

SwapARPPacket (see
page 159)

Swaps endian-ness of header information in an ARP packet.

Macros

Name Description

ARP_OPERATION_REQ (
see page 160)

Operation code indicating an ARP Request

ARP_OPERATION_RESP (
see page 160)

Operation code indicating an ARP Response

HW_ETHERNET (see
page 160)

ARP Hardware type as defined by IEEE 802.3

ARP_IP (see page 160) ARP IP packet type as defined by IEEE 802.3

Module

ARP (see page 152)

Variables

Name Description

Cache (see page 160) Cache for one ARP response

reg_apps (see page 161) Call-Backs storage for MAX of two Modules/Apps
// ARP packet structure typedef struct __attribute__((aligned(2), packed)) {
WORD HardwareType; WORD Protocol; BYTE MACAddrLen; BYTE
ProtocolLen; WORD Operation; MAC_ADDR SenderMACAddr; IP_ADDR
SenderIPAddr; MAC_ADDR TargetMACAddr; IP_ADDR TargetIPAddr; }
ARP_PACKET (see page 161);

Description

The following functions and variables are designated as internal to the ARP module.

10.2 ARP Microchip TCP/IP Stack Help ARP Internal Members

158

10.2.3.1 ARPPut Function
File

ARP.c

C

static BOOL ARPPut(
 ARP_PACKET* packet
);

Description

Writes an ARP packet to the MAC.

Preconditions

None

Parameters

Parameters Description

packet A pointer to an ARP_PACKET (see page 161) structure with correct
operation and target preconfigured.

Return Values

Return Values Description

TRUE The ARP packet was generated properly

FALSE Not a possible return value

Section

Helper Function Prototypes

10.2.3.2 SwapARPPacket Function
File

ARP.h

C

void SwapARPPacket(
 ARP_PACKET* p
);

Returns

None

Description

Swaps endian-ness of header information in an ARP packet.

Preconditions

None

Parameters

Parameters Description

p The ARP packet to be swapped

10.2 ARP Microchip TCP/IP Stack Help ARP Internal Members

159

10.2.3.3 ARP_OPERATION_REQ Macro
File

ARP.h

C

#define ARP_OPERATION_REQ 0x0001u // Operation code indicating an ARP Request

Description

Operation code indicating an ARP Request

10.2.3.4 ARP_OPERATION_RESP Macro
File

ARP.h

C

#define ARP_OPERATION_RESP 0x0002u // Operation code indicating an ARP Response

Description

Operation code indicating an ARP Response

10.2.3.5 HW_ETHERNET Macro
File

ARP.c

C

#define HW_ETHERNET (0x0001u) // ARP Hardware type as defined by IEEE 802.3

Description

ARP Hardware type as defined by IEEE 802.3

10.2.3.6 ARP_IP Macro
File

ARP.c

C

#define ARP_IP (0x0800u) // ARP IP packet type as defined by IEEE 802.3

Description

ARP IP packet type as defined by IEEE 802.3

10.2.3.7 Cache Variable
File

ARP.c

10.2 ARP Microchip TCP/IP Stack Help ARP Internal Members

160

C

NODE_INFO Cache;

Description

Cache for one ARP response

10.2.3.8 reg_apps Variable
File

ARP.c

C

struct arp_app_callbacks reg_apps[MAX_REG_APPS];

Description

Call-Backs storage for MAX of two Modules/Apps

// ARP packet structure typedef struct __attribute__((aligned(2), packed)) { WORD HardwareType; WORD Protocol; BYTE
MACAddrLen; BYTE ProtocolLen; WORD Operation; MAC_ADDR SenderMACAddr; IP_ADDR SenderIPAddr; MAC_ADDR
TargetMACAddr; IP_ADDR TargetIPAddr; } ARP_PACKET (see page 161);

10.2.4 Types

Module

ARP (see page 152)

Structures

Name Description

ARP_PACKET (see page
161)

ARP packet structure

10.2.4.1 ARP_PACKET Structure
File

ARP.h

C

typedef struct {
 WORD HardwareType;
 WORD Protocol;
 BYTE MACAddrLen;
 BYTE ProtocolLen;
 WORD Operation;
 MAC_ADDR SenderMACAddr;
 IP_ADDR SenderIPAddr;
 MAC_ADDR TargetMACAddr;
 IP_ADDR TargetIPAddr;
} ARP_PACKET;

Members

Members Description

WORD HardwareType; Link-layer protocol type (Ethernet is 1).

WORD Protocol; The upper-layer protocol issuing an ARP request (0x0800 for IPv4)..

10.2 ARP Microchip TCP/IP Stack Help Types

161

BYTE MACAddrLen; MAC address length (6).

BYTE ProtocolLen; Length of addresses used in the upper-layer protocol (4).

WORD Operation; The operation the sender is performing (ARP_REQ (see page 156) or
ARP_RESP (see page 156)).

MAC_ADDR SenderMACAddr; The sender's hardware (MAC) address.

IP_ADDR SenderIPAddr; The sender's IP address.

MAC_ADDR TargetMACAddr; The target node's hardware (MAC) address.

IP_ADDR TargetIPAddr; The target node's IP address.

Description

ARP packet structure

10.3 Berkeley (BSD) Sockets
The Berkeley Socket Distribution (BSD) APIs provide a BSD wrapper to the native Microchip TCP/IP Stack APIs. Using this
interface, programmers familiar with BSD sockets can quickly develop applications using Microchip's TCP/IP Stack.

The illustration below shows a typical interaction for a TCP server or client using the Berkeley socket APIs.

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

162

10.3.1 BSD Wrapper Public Members

Functions

Name Description

accept (see page 164) This function accepts connection requests queued for a listening socket.

bind (see page 165) This function assigns a name to the socket descriptor.

closesocket (see page 166) The closesocket function closes an existing socket.

connect (see page 166) This function connects to the peer communications end point.

gethostname (see page
167)

Returns the standard host name for the system.

listen (see page 170) The listen function sets the specified socket in a listen mode

recv (see page 170) The recv() function is used to receive incoming data that has been queued for a
socket.

recvfrom (see page 171) The recvfrom() function is used to receive incoming data that has been queued
for a socket.

send (see page 172) The send function is used to send outgoing data on an already connected
socket.

sendto (see page 172) This function used to send the data for both connection oriented and
connection-less sockets.

socket (see page 175) This function creates a new Berkeley socket.

Macros

Name Description

AF_INET (see page 165) Internet Address (see page 142) Family - UDP, TCP, etc.

INADDR_ANY (see page 168) IP address for server binding.

INVALID_TCP_PORT (see
page 169)

Invalide TCP port

IP_ADDR_ANY (see page 169) IP Address (see page 142) for server binding

IPPROTO_IP (see page 169) Indicates IP pseudo-protocol.

IPPROTO_TCP (see page 169) Indicates TCP for the internet address family.

IPPROTO_UDP (see page 169) Indicates UDP for the internet address family.

SOCK_DGRAM (see page 173) Connectionless datagram socket. Use UDP for the internet address family.

SOCK_STREAM (see page
173)

Connection based byte streams. Use TCP for the internet address family.

SOCKET_CNXN_IN_PROGRESS
(see page 175)

Socket connection state.

SOCKET_DISCONNECTED (
see page 176)

Socket disconnected

SOCKET_ERROR (see page
176)

Socket error

Module

Berkeley (BSD) Sockets (see page 162)

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

163

Structures

Name Description

BSDSocket (see page 165) Berkeley Socket structure

in_addr (see page 168) in_addr structure

sockaddr (see page 173) generic address structure for all address families

sockaddr_in (see page 174) In the Internet address family

Types

Name Description

SOCKADDR (see page
174)

generic address structure for all address families

SOCKADDR_IN (see page
174)

In the Internet address family

SOCKET (see page 175) Socket descriptor

Description

The following functions and variables are available to the stack application.

10.3.1.1 accept Function
File

BerkeleyAPI.h

C

SOCKET accept(
 SOCKET s,
 struct sockaddr* addr,
 int* addrlen
);

Returns

If the accept function succeeds, it returns a non-negative integer that is a descriptor for the accepted socket. Otherwise, the
value INVALID_SOCKET (see page 438) is returned.

Description

The accept function is used to accept connection requests queued for a listening socket. If a connection request is pending,
accept removes the request from the queue, and a new socket is created for the connection. The original listening socket
remains open and continues to queue new connection requests. The socket must be a SOCK_STREAM (see page 173)
type socket.

Remarks

None.

Preconditions

listen (see page 170) function should be called.

Parameters

Parameters Description

s Socket descriptor returned from a previous call to socket. must be bound to a
local name and in listening mode.

addr Optional pointer to a buffer that receives the address of the connecting entity.

addrlen Optional pointer to an integer that contains the length of the address addr

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

164

10.3.1.2 AF_INET Macro
File

BerkeleyAPI.h

C

#define AF_INET 2 // Internet Address Family - UDP, TCP, etc.

Description

Internet Address (see page 142) Family - UDP, TCP, etc.

10.3.1.3 bind Function
File

BerkeleyAPI.h

C

int bind(
 SOCKET s,
 const struct sockaddr* name,
 int namelen
);

Returns

If bind is successful, a value of 0 is returned. A return value of SOCKET_ERROR (see page 176) indicates an error.

Description

The bind function assigns a name to an unnamed socket. The name represents the local address of the communication
endpoint. For sockets of type SOCK_STREAM (see page 173), the name of the remote endpoint is assigned when a
connect (see page 166) or accept (see page 164) function is executed.

Remarks

None.

Preconditions

socket function should be called.

Parameters

Parameters Description

s Socket descriptor returned from a previous call to socket.

name pointer to the sockaddr (see page 173) structure containing the local address
of the socket.

namelen length of the sockaddr (see page 173) structure.

10.3.1.4 BSDSocket Structure
File

BerkeleyAPI.h

C

struct BSDSocket {
 int SocketType;
 BSD_SCK_STATE bsdState;
 WORD localPort;

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

165

 WORD remotePort;
 DWORD remoteIP;
 int backlog;
 BOOL isServer;
 TCP_SOCKET SocketID;
};

Members

Members Description

int SocketType; Socket type

BSD_SCK_STATE bsdState; Socket state

WORD localPort; local port

WORD remotePort; remote port

DWORD remoteIP; remote IP

int backlog; maximum number or client connection

BOOL isServer; server/client check

TCP_SOCKET SocketID; Socket ID

Description

Berkeley Socket structure

10.3.1.5 closesocket Function
File

BerkeleyAPI.h

C

int closesocket(
 SOCKET s
);

Returns

If closesocket is successful, a value of 0 is returned. A return value of SOCKET_ERROR (see page 176) (-1) indicates an
error.

Description

The closesocket function closes an existing socket. This function releases the socket descriptor s. Any data buffered at the
socket is discarded. If the socket s is no longer needed, closesocket() must be called in order to release all resources
associated with s.

Remarks

None.

Preconditions

None.

Parameters

Parameters Description

s Socket descriptor returned from a previous call to socket

10.3.1.6 connect Function
File

BerkeleyAPI.h

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

166

C

int connect(
 SOCKET s,
 struct sockaddr* name,
 int namelen
);

Returns

If the connect() function succeeds, it returns 0. Otherwise, the value SOCKET_ERROR (see page 176) is returned to
indicate an error condition. For stream based socket, if the connection is not established yet, connect returns
SOCKET_CNXN_IN_PROGRESS (see page 175).

Description

The connect function assigns the address of the peer communications endpoint. For stream sockets, connection is
established between the endpoints. For datagram sockets, an address filter is established between the endpoints until
changed with another connect() function.

Remarks

None.

Preconditions

socket function should be called.

Parameters

Parameters Description

s Socket descriptor returned from a previous call to socket.

name pointer to the sockaddr (see page 173) structure containing the peer address
and port number.

namelen length of the sockaddr (see page 173) structure.

10.3.1.7 gethostname Function
File

BerkeleyAPI.h

C

int gethostname(
 char* name,
 int namelen
);

Returns

Success will return a value of 0. If name is too short to hold the host name or any other error occurs, SOCKET_ERROR (
see page 176) (-1) will be returned. On error, *name will be unmodified and no null terminator will be generated.

Description

This function returns the standard host name of the system which is calling this function. The returned name is
null-terminated.

Remarks

None.

Preconditions

None.

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

167

Parameters

Parameters Description

name Pointer to a buffer that receives the local host name.

namelen size of the name array.

10.3.1.8 in_addr Structure
File

BerkeleyAPI.h

C

struct in_addr {
 union {
 struct {
 BYTE s_b1, s_b2, s_b3, s_b4;
 } S_un_b;
 struct {
 WORD s_w1, s_w2;
 } S_un_w;
 DWORD S_addr;
 } S_un;
};

Members

Members Description

union {
struct {
BYTE s_b1, s_b2, s_b3, s_b4;
} S_un_b;
struct {
WORD s_w1, s_w2;
} S_un_w;
DWORD S_addr;
} S_un;

union of IP address

struct {
BYTE s_b1, s_b2, s_b3, s_b4;
} S_un_b;

IP address in Byte

struct {
WORD s_w1, s_w2;
} S_un_w;

IP address in Word

DWORD S_addr; IP address

Description

in_addr structure

10.3.1.9 INADDR_ANY Macro
File

BerkeleyAPI.h

C

#define INADDR_ANY 0x00000000u // IP address for server binding.

Description

IP address for server binding.

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

168

10.3.1.10 INVALID_TCP_PORT Macro
File

BerkeleyAPI.h

C

#define INVALID_TCP_PORT (0L) //Invalide TCP port

Description

Invalide TCP port

10.3.1.11 IP_ADDR_ANY Macro
File

BerkeleyAPI.h

C

#define IP_ADDR_ANY 0u // IP Address for server binding

Description

IP Address (see page 142) for server binding

10.3.1.12 IPPROTO_IP Macro
File

BerkeleyAPI.h

C

#define IPPROTO_IP 0 // Indicates IP pseudo-protocol.

Description

Indicates IP pseudo-protocol.

10.3.1.13 IPPROTO_TCP Macro
File

BerkeleyAPI.h

C

#define IPPROTO_TCP 6 // Indicates TCP for the internet address family.

Description

Indicates TCP for the internet address family.

10.3.1.14 IPPROTO_UDP Macro
File

BerkeleyAPI.h

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

169

C

#define IPPROTO_UDP 17 // Indicates UDP for the internet address family.

Description

Indicates UDP for the internet address family.

10.3.1.15 listen Function
File

BerkeleyAPI.h

C

int listen(
 SOCKET s,
 int backlog
);

Returns

Returns 0 on success, else return SOCKET_ERROR (see page 176).

Description

This function sets the specified socket in a listen mode. Calling the listen function indicates that the application is ready to
accept (see page 164) connection requests arriving at a socket of type SOCK_STREAM (see page 173). The
connection request is queued (if possible) until accepted with an accept (see page 164) function. The backlog parameter
defines the maximum number of pending connections that may be queued.

Remarks

None

Preconditions

bind() must have been called on the s socket first.

Parameters

Parameters Description

s Socket identifier returned from a prior socket() call.

backlog Maximum number of connection requests that can be queued. Note that each
backlog requires a TCP_PURPOSE_BERKELEY_SERVER type TCP socket to
be allocated in the TCPSocketInitializer[] in TCPIPConfig.h. Also, ensure that
BSD_SOCKET_COUNT (also in TCPIPConfig.h) is greater than the backlog by
at least 1 (more if you have other BSD sockets in use).

10.3.1.16 recv Function
File

BerkeleyAPI.h

C

int recv(
 SOCKET s,
 char* buf,
 int len,
 int flags
);

Returns

If recv is successful, the number of bytes copied to application buffer buf is returned. A value of zero indicates no data

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

170

available. A return value of SOCKET_ERROR (see page 176) (-1) indicates an error condition. A return value of
SOCKET_DISCONNECTED (see page 176) indicates the connection no longer exists.

Description

The recv() function is used to receive incoming data that has been queued for a socket. This function can be used with both
datagram and stream socket. If the available data is too large to fit in the supplied application buffer buf, excess bytes are
discarded in case of SOCK_DGRAM (see page 173) type sockets. For SOCK_STREAM (see page 173) types, the data
is buffered internally so the application can retreive all data by multiple calls of recvfrom (see page 171).

Remarks

None.

Preconditions

connect (see page 166) function should be called for TCP and UDP sockets. Server side, accept (see page 164)
function should be called.

Parameters

Parameters Description

s Socket descriptor returned from a previous call to socket.

buf application data receive buffer.

len buffer length in bytes.

flags no significance in this implementation

10.3.1.17 recvfrom Function
File

BerkeleyAPI.h

C

int recvfrom(
 SOCKET s,
 char* buf,
 int len,
 int flags,
 struct sockaddr* from,
 int* fromlen
);

Returns

If recvfrom is successful, the number of bytes copied to application buffer buf is returned. A value of zero indicates no data
available. A return value of SOCKET_ERROR (see page 176) (-1) indicates an error condition.

Description

The recvfrom() function is used to receive incoming data that has been queued for a socket. This function can be used with
both datagram and stream type sockets. If the available data is too large to fit in the supplied application buffer buf, excess
bytes are discarded in case of SOCK_DGRAM (see page 173) type sockets. For SOCK_STREAM (see page 173)
types, the data is buffered internally so the application can retreive all data by multiple calls of recvfrom.

Remarks

None.

Preconditions

socket function should be called.

Parameters

Parameters Description

s Socket descriptor returned from a previous call to socket.

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

171

buf application data receive buffer.

len buffer length in bytes.

flags message flags. Currently this is not supported.

from pointer to the sockaddr (see page 173) structure that will be filled in with the
destination address.

fromlen size of buffer pointed by from.

10.3.1.18 send Function
File

BerkeleyAPI.h

C

int send(
 SOCKET s,
 const char* buf,
 int len,
 int flags
);

Returns

On success, send returns number of bytes sent. In case of error, returns SOCKET_ERROR (see page 176). a zero
indicates no data send.

Description

The send function is used to send outgoing data on an already connected socket. This function is used to send a reliable,
ordered stream of data bytes on a socket of type SOCK_STREAM (see page 173) but can also be used to send
datagrams on a socket of type SOCK_DGRAM (see page 173).

Remarks

None.

Preconditions

connect (see page 166) function should be called for TCP and UDP sockets. Server side, accept (see page 164)
function should be called.

Parameters

Parameters Description

s Socket descriptor returned from a previous call to socket.

buf application data buffer containing data to transmit.

len length of data in bytes.

flags message flags. Currently this field is not supported.

10.3.1.19 sendto Function
File

BerkeleyAPI.h

C

int sendto(
 SOCKET s,
 const char* buf,
 int len,
 int flags,
 const struct sockaddr* to,
 int tolen

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

172

);

Returns

On success, sendto returns number of bytes sent. In case of error returns SOCKET_ERROR (see page 176)

Description

The sendto function is used to send outgoing data on a socket. The destination address is given by to and tolen. Both
Datagram and stream sockets are supported.

Remarks

None.

Preconditions

socket function should be called.

Parameters

Parameters Description

s Socket descriptor returned from a previous call to socket.

buf application data buffer containing data to transmit.

len length of data in bytes.

flags message flags. Currently this field is not supported.

to Optional pointer to the the sockaddr (see page 173) structure containing the
destination address. If NULL, the currently bound remote port and IP address
are used as the destination.

tolen length of the sockaddr (see page 173) structure.

10.3.1.20 SOCK_DGRAM Macro
File

BerkeleyAPI.h

C

#define SOCK_DGRAM 110 //Connectionless datagram socket. Use UDP for the internet address
family.

Description

Connectionless datagram socket. Use UDP for the internet address family.

10.3.1.21 SOCK_STREAM Macro
File

BerkeleyAPI.h

C

#define SOCK_STREAM 100 //Connection based byte streams. Use TCP for the internet address
family.

Description

Connection based byte streams. Use TCP for the internet address family.

10.3.1.22 sockaddr Structure
File

BerkeleyAPI.h

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

173

C

struct sockaddr {
 unsigned short sa_family;
 char sa_data[14];
};

Members

Members Description

unsigned short sa_family; address family

char sa_data[14]; up to 14 bytes of direct address

Description

generic address structure for all address families

10.3.1.23 SOCKADDR Type
File

BerkeleyAPI.h

C

typedef struct sockaddr SOCKADDR;

Description

generic address structure for all address families

10.3.1.24 sockaddr_in Structure
File

BerkeleyAPI.h

C

struct sockaddr_in {
 short sin_family;
 WORD sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

Members

Members Description

short sin_family; Address (see page 142) family; must be AF_INET (see page 165).

WORD sin_port; Internet Protocol (IP) port.

struct in_addr sin_addr; IP address in network byte order.

char sin_zero[8]; Padding to make structure the same size as SOCKADDR (see page 174).

Description

In the Internet address family

10.3.1.25 SOCKADDR_IN Type
File

BerkeleyAPI.h

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

174

C

typedef struct sockaddr_in SOCKADDR_IN;

Description

In the Internet address family

10.3.1.26 socket Function
File

BerkeleyAPI.h

C

SOCKET socket(
 int af,
 int type,
 int protocol
);

Returns

New socket descriptor. INVALID_SOCKET (see page 438) in case of error.

Description

This function creates a new BSD socket for the microchip TCPIP stack. The return socket descriptor is used for the
subsequent BSD operations.

Remarks

None.

Preconditions

BerkeleySocketInit (see page 176) function should be called.

Parameters

Parameters Description

af address family - AF_INET (see page 165).

type socket type SOCK_DGRAM (see page 173) or SOCK_STREAM (see page
173).

protocol IP protocol IPPROTO_UDP (see page 169) or IPPROTO_TCP (see page
169).

10.3.1.27 SOCKET Type
File

BerkeleyAPI.h

C

typedef BYTE SOCKET;

Description

Socket descriptor

10.3.1.28 SOCKET_CNXN_IN_PROGRESS Macro
File

BerkeleyAPI.h

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Public Members

175

C

#define SOCKET_CNXN_IN_PROGRESS (-2) //Socket connection state.

Description

Socket connection state.

10.3.1.29 SOCKET_DISCONNECTED Macro
File

BerkeleyAPI.h

C

#define SOCKET_DISCONNECTED (-3) //Socket disconnected

Description

Socket disconnected

10.3.1.30 SOCKET_ERROR Macro
File

BerkeleyAPI.h

C

#define SOCKET_ERROR (-1) //Socket error

Description

Socket error

10.3.2 BSD Wrapper Stack Members

Functions

Name Description

BerkeleySocketInit (see
page 176)

Initializes the Berkeley socket structure array.

Module

Berkeley (BSD) Sockets (see page 162)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.3.2.1 BerkeleySocketInit Function
File

BerkeleyAPI.h

C

void BerkeleySocketInit();

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Stack Members

176

Returns

None

Description

This function initializes the Berkeley socket array. This function should be called before any BSD socket call.

Remarks

None.

Preconditions

None.

10.3.3 BSD Wrapper Internal Members

Enumerations

Name Description

BSD_SCK_STATE (see
page 177)

Berkeley Socket (BSD) states

Functions

Name Description

HandlePossibleTCPDisconnection
(see page 178)

Internal function that checks for asynchronous TCP connection state
changes and resynchs the BSD socket descriptor state to match.

Module

Berkeley (BSD) Sockets (see page 162)

Variables

Name Description

BSDSocketArray (see
page 178)

Array of BSDSocket (see page 165) elements; used to track all socket state
and connection information.

gAutoPortNumber (see
page 178)

Contains the next local port number to associate with a socket.

Description

The following functions and variables are designated as internal to the module.

10.3.3.1 BSD_SCK_STATE Enumeration
File

BerkeleyAPI.h

C

typedef enum {
 SKT_CLOSED,
 SKT_CREATED,
 SKT_BOUND,
 SKT_BSD_LISTEN,
 SKT_LISTEN,
 SKT_IN_PROGRESS,
 SKT_EST,
 SKT_DISCONNECTED
} BSD_SCK_STATE;

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Internal Members

177

Members

Members Description

SKT_CLOSED Socket closed state indicating a free descriptor

SKT_CREATED Socket created state for TCP and UDP sockets

SKT_BOUND Socket bound state for TCP and UDP sockets

SKT_BSD_LISTEN Listening state for TCP BSD listener handle "socket

SKT_LISTEN TCP server listen (see page 170) state

SKT_IN_PROGRESS TCP client connection in progress state

SKT_EST TCP client or server established state

SKT_DISCONNECTED TCP client or server no longer connected to the remote host (but was
historically)

Description

Berkeley Socket (BSD) states

10.3.3.2 BSDSocketArray Variable
File

BerkeleyAPI.c

C

struct BSDSocket BSDSocketArray[BSD_SOCKET_COUNT];

Description

Array of BSDSocket (see page 165) elements; used to track all socket state and connection information.

10.3.3.3 gAutoPortNumber Variable
File

BerkeleyAPI.c

C

WORD gAutoPortNumber = 1024;

Description

Contains the next local port number to associate with a socket.

10.3.3.4 HandlePossibleTCPDisconnection Function
File

BerkeleyAPI.c

C

static BOOL HandlePossibleTCPDisconnection(
 SOCKET s
);

Returns

TRUE - Socket is disconnected FALSE - Socket is

Description

Internal function that checks for asynchronous TCP connection state changes and resynchs the BSD socket descriptor state

10.3 Berkeley (BSD) Sockets Microchip TCP/IP Stack Help BSD Wrapper Internal Members

178

to match.

Preconditions

None

Parameters

Parameters Description

s TCP type socket descriptor returned from a previous call to socket. This socket
must be in the SKT_LISTEN, SKT_IN_PROGRESS, SKT_EST, or
SKT_DISCONNECTED states.

10.4 DNS Client
The Domain Name Service associates host names (such as www.microchip.com) with IP addresses (such as 10.0.54.2).
The DNS Client module provides DNS resolution capabilities to the stack.

TCP applications do not need to use the DNS module. Any necessary DNS operations can be handled by the TCPOpen (
see page 452) function. Applications built using UDP may need to use DNS when the IP address of the remote server is
unknown.

DNS resolution operations follow a simple state machine, as indicated in the diagram below.

10.4.1 DNS Public Members

Functions

Name Description

DNSBeginUsage (see
page 180)

Claims access to the DNS module.

DNSEndUsage (see page
180)

Releases control of the DNS module.

DNSResolve (see page
181)

Begins resolution of an address.

DNSResolveROM (see
page 181)

Begins resolution of an address.

DNSIsResolved (see page
182)

Determines if the DNS resolution is complete and provides the IP.

Macros

Name Description

DNS_TYPE_A (see page
182)

Constant for record type in DNSResolve (see page 181). Indicates an A
(standard address) record.

10.4 DNS Client Microchip TCP/IP Stack Help DNS Public Members

179

DNS_TYPE_MX (see page
183)

Constant for record type in DNSResolve (see page 181). Indicates an MX
(mail exchanger) record.

Module

DNS Client (see page 179)

Description

The following functions and variables are available to the stack application.

10.4.1.1 DNSBeginUsage Function
File

DNS.h

C

BOOL DNSBeginUsage();

Description

This function acts as a semaphore to obtain usage of the DNS module. Call this function and ensure that it returns TRUE
before calling any other DNS APIs. Call DNSEndUsage (see page 180) when this application no longer needs the DNS
module so that other applications may make use of it.

Remarks

Ensure that DNSEndUsage (see page 180) is always called once your application has obtained control of the DNS
module. If this is not done, the stack will hang for all future applications requiring DNS access.

Preconditions

Stack is initialized.

Return Values

Return Values Description

TRUE No other DNS resolutions are in progress and the calling application has
sucessfully taken ownership of the DNS module

FALSE The DNS module is currently in use. Yield to the stack and attempt this call
again later.

10.4.1.2 DNSEndUsage Function
File

DNS.h

C

BOOL DNSEndUsage();

Description

This function acts as a semaphore to obtain usage of the DNS module. Call this function when this application no longer
needs the DNS module so that other applications may make use of it.

Remarks

Ensure that DNSEndUsage is always called once your application has obtained control of the DNS module. If this is not
done, the stack will hang for all future applications requiring DNS access.

Preconditions

DNSBeginUsage (see page 180) returned TRUE on a previous call.

10.4 DNS Client Microchip TCP/IP Stack Help DNS Public Members

180

Return Values

Return Values Description

TRUE The address to the host name was successfully resolved.

FALSE The DNS failed or the address does not exist.

10.4.1.3 DNSResolve Function
File

DNS.h

C

void DNSResolve(
 BYTE* HostName,
 BYTE Type
);

Returns

None

Description

This function attempts to resolve a host name to an IP address. When called, it starts the DNS state machine. Call
DNSIsResolved (see page 182) repeatedly to determine if the resolution is complete.

Only one DNS resoultion may be executed at a time. The Hostname must not be modified in memory until the resolution is
complete.

Remarks

This function requires access to one UDP socket. If none are available, MAX_UDP_SOCKETS may need to be increased.

Preconditions

DNSBeginUsage (see page 180) returned TRUE on a previous call.

Parameters

Parameters Description

Hostname A pointer to the null terminated string specifiying the host for which to resolve
an IP.

RecordType (see page 186) DNS_TYPE_A (see page 182) or DNS_TYPE_MX (see page 183)
depending on what type of record resolution is desired.

10.4.1.4 DNSResolveROM Function
File

DNS.h

C

void DNSResolveROM(
 ROM BYTE* Hostname,
 BYTE Type
);

Returns

None

Description

This function attempts to resolve a host name to an IP address. When called, it starts the DNS state machine. Call
DNSIsResolved (see page 182) repeatedly to determine if the resolution is complete.

10.4 DNS Client Microchip TCP/IP Stack Help DNS Public Members

181

Only one DNS resoultion may be executed at a time. The Hostname must not be modified in memory until the resolution is
complete.

Remarks

This function requires access to one UDP socket. If none are available, MAX_UDP_SOCKETS may need to be increased.

This function is aliased to DNSResolve (see page 181) on non-PIC18 platforms.

Preconditions

DNSBeginUsage (see page 180) returned TRUE on a previous call.

Parameters

Parameters Description

Hostname A pointer to the null terminated string specifiying the host for which to resolve
an IP.

RecordType (see page 186) DNS_TYPE_A (see page 182) or DNS_TYPE_MX (see page 183)
depending on what type of record resolution is desired.

10.4.1.5 DNSIsResolved Function
File

DNS.h

C

BOOL DNSIsResolved(
 IP_ADDR* HostIP
);

Description

Call this function to determine if the DNS resolution of an address has been completed. If so, the resolved address will be
provided in HostIP.

Preconditions

DNSResolve (see page 181) or DNSResolveROM (see page 181) has been called.

Parameters

Parameters Description

HostIP A pointer to an IP_ADDR structure in which to store the resolved IP address
once resolution is complete.

Return Values

Return Values Description

TRUE The DNS client has obtained an IP, or the DNS process has encountered an
error. HostIP will be 0.0.0.0 on error. Possible errors include server timeout (i.e.
DNS server not available), hostname not in the DNS, or DNS server errors.

FALSE The resolution process is still in progress.

10.4.1.6 DNS_TYPE_A Macro
File

DNS.h

C

#define DNS_TYPE_A (1u) // Constant for record type in DNSResolve. Indicates an A
(standard address) record.

10.4 DNS Client Microchip TCP/IP Stack Help DNS Public Members

182

Description

Constant for record type in DNSResolve (see page 181). Indicates an A (standard address) record.

10.4.1.7 DNS_TYPE_MX Macro
File

DNS.h

C

#define DNS_TYPE_MX (15u) // Constant for record type in DNSResolve. Indicates an
MX (mail exchanger) record.

Description

Constant for record type in DNSResolve (see page 181). Indicates an MX (mail exchanger) record.

10.4.2 DNS Internal Members

Functions

Name Description

DNSPutString (see page
184)

Writes a string to the DNS socket.

DNSPutROMString (see
page 184)

Writes a ROM string to the DNS socket.

DNSDiscardName (see
page 187)

Reads a name string or string pointer from the DNS socket and discards it.

Macros

Name Description

DNS_PORT (see page
185)

Default port for DNS resolutions

DNS_TIMEOUT (see page
185)

Elapsed time after which a DNS resolution is considered to have timed out

Module

DNS Client (see page 179)

Structures

Name Description

DNS_HEADER (see page
187)

Structure for the DNS header

Variables

Name Description

DNSHostName (see page
185)

Host name in RAM to look up

DNSHostNameROM (see
page 185)

Host name in ROM to look up

Flags (see page 186) Stores various flags for the UDP module

RecordType (see page
186)

Record type being queried

10.4 DNS Client Microchip TCP/IP Stack Help DNS Internal Members

183

ResolvedInfo (see page
186)

Node information about the resolved node

smDNS (see page 186) State machine for a DNS query

Description

The following functions and variables are designated as internal to the DNS module.

10.4.2.1 DNSPutString Function
File

DNS.c

C

static void DNSPutString(
 BYTE* String
);

Returns

None

Description

This function writes a string to the DNS socket, ensuring that it is properly formatted.

Preconditions

UDP socket is obtained and ready for writing.

Parameters

Parameters Description

String the string to write to the UDP socket.

Section

Function Prototypes

10.4.2.2 DNSPutROMString Function
File

DNS.c

C

static void DNSPutROMString(
 ROM BYTE* String
);

Returns

None

Description

This function writes a string to the DNS socket, ensuring that it is properly formatted.

Remarks

This function is aliased to DNSPutString (see page 184) on non-PIC18 platforms.

Preconditions

UDP socket is obtained and ready for writing.

10.4 DNS Client Microchip TCP/IP Stack Help DNS Internal Members

184

Parameters

Parameters Description

String the string to write to the UDP socket.

10.4.2.3 DNS_PORT Macro
File

DNS.c

C

#define DNS_PORT 53u // Default port for DNS resolutions

Description

Default port for DNS resolutions

10.4.2.4 DNS_TIMEOUT Macro
File

DNS.c

C

#define DNS_TIMEOUT (TICK_SECOND*1) // Elapsed time after which a DNS resolution is
considered to have timed out

Description

Elapsed time after which a DNS resolution is considered to have timed out

10.4.2.5 DNSHostName Variable
File

DNS.c

C

BYTE * DNSHostName;

Description

Host name in RAM to look up

10.4.2.6 DNSHostNameROM Variable
File

DNS.c

C

ROM BYTE * DNSHostNameROM;

Description

Host name in ROM to look up

10.4 DNS Client Microchip TCP/IP Stack Help DNS Internal Members

185

10.4.2.7 Flags Variable
File

UDP.c

C

struct {
 unsigned char bFirstRead : 1;
 unsigned char bWasDiscarded : 1;
} Flags;

Members

Members Description

unsigned char bFirstRead : 1; No data has been read from this segment yet

unsigned char bWasDiscarded : 1; The data in this segment has been discarded

Description

Stores various flags for the UDP module

10.4.2.8 RecordType Variable
File

DNS.c

C

BYTE RecordType;

Description

Record type being queried

10.4.2.9 ResolvedInfo Variable
File

DNS.c

C

NODE_INFO ResolvedInfo;

Description

Node information about the resolved node

10.4.2.10 smDNS Variable
File

DNS.c

C

enum {
 DNS_START = 0,
 DNS_ARP_START_RESOLVE,
 DNS_ARP_RESOLVE,
 DNS_OPEN_SOCKET,
 DNS_QUERY,

10.4 DNS Client Microchip TCP/IP Stack Help DNS Internal Members

186

 DNS_GET_RESULT,
 DNS_FAIL,
 DNS_DONE
} smDNS;

Members

Members Description

DNS_START = 0 Initial state to reset client state variables

DNS_ARP_START_RESOLVE Send ARP resolution of DNS server or gateway MAC address

DNS_ARP_RESOLVE Wait for response to ARP request

DNS_OPEN_SOCKET Open UDP socket

DNS_QUERY Send DNS query to DNS server

DNS_GET_RESULT Wait for response from DNS server

DNS_FAIL ARP or DNS server not responding

DNS_DONE DNS query is finished

Description

State machine for a DNS query

10.4.2.11 DNS_HEADER Structure
File

DNS.c

C

typedef struct {
 WORD_VAL TransactionID;
 WORD_VAL Flags;
 WORD_VAL Questions;
 WORD_VAL Answers;
 WORD_VAL AuthoritativeRecords;
 WORD_VAL AdditionalRecords;
} DNS_HEADER;

Description

Structure for the DNS header

10.4.2.12 DNSDiscardName Function
File

DNS.c

C

static void DNSDiscardName();

Returns

None

Description

This function reads a name string from the DNS socket. Each string consists of a series of labels. Each label consists of a
length prefix byte, followed by the label bytes. At the end of the string, a zero length label is found as termination. If name
compression is used, this function will automatically detect the pointer and discard it.

Preconditions

UDP socket is obtained and ready for reading a DNS name

10.5 Dynamic DNS Client Microchip TCP/IP Stack Help

187

10.5 Dynamic DNS Client
The Dynamic DNS Client module provides a method for updating a dynamic IP address to a public DDNS service. These
services can be used to provide DNS hostname mapping to devices that behind routers, firewalls, and/or on networks that
dynamically assign IP addresses.

Note that this only solves one of the two problems for communicating to devices on local subnets from the Internet. While
Dynamic DNS can help to locate the device, the router or firewall it sits behind must still properly forward the incoming
connection request. This generally requires port forwarding to be configured for the router behind which the device is located.

The Dynamic DNS client supports the popular interface used by DynDNS.org, No-IP.com, and DNS-O-Matic.com.

IMPORTANT: The dynamic DNS services stipulate that updates should be made no more frequently than 10 minutes, and
only when the IP address has changed. Updates made more often than that are considered abusive, and may eventually
cause your account to be disabled. Production devices that get rebooted frequently may need to store the last known IP in
non-volatile memory. You also should not enable this module while testing the rest of your application.

10.5.1 Dynamic DNS Public Members

Enumerations

Name Description

DDNS_SERVICES (see
page 190)

Dynamic DNS Services. Must support the DynDNS (see page 188) API
(Auxlang) and correspond to ddnsServiceHosts (see page 195) and
ddnsServicePorts (see page 195) in DynDNS.c.

DDNS_STATUS (see page
190)

Status message for DynDNS (see page 188) client. GOOD and NOCHG are
ok, but ABUSE through 911 are fatal. UNCHANGED through INVALID are
locally defined.

Functions

Name Description

DDNSForceUpdate (see
page 191)

Forces an immediate DDNS update

DDNSGetLastIP (see page
192)

Returns the last known external IP address of the device.

DDNSGetLastStatus (see
page 192)

Returns the status of the most recent update.

DDNSSetService (see
page 192)

Selects a pre-configured Dynamic DNS service

Module

Dynamic DNS Client (see page 188)

Structures

Name Description

DDNS_POINTERS (see
page 189)

Configuration parameters for the Dynamic DNS Client

Variables

Name Description

DDNSClient (see page 191) Configuration parameters for the module

10.5 Dynamic DNS Client Microchip TCP/IP Stack Help Dynamic DNS Public Members

188

http://www.dyndns.org
http://www.no-ip.com
http://www.dns-o-matic.com

Description

These functions and variables are meant to be called by your stack application.

10.5.1.1 DDNS_POINTERS Structure
File

DynDNS.h

C

typedef struct {
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } CheckIPServer;
 WORD CheckIPPort;
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } UpdateServer;
 WORD UpdatePort;
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } Username;
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } Password;
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } Host;
 struct {
 unsigned char CheckIPServer : 1;
 unsigned char UpdateServer : 1;
 unsigned char Username : 1;
 unsigned char Password : 1;
 unsigned char Host : 1;
 } ROMPointers;
} DDNS_POINTERS;

Description

This structure of pointers configures the Dynamic DNS Client. Initially, all pointers will be null and the client will be disabled.
Set DDNSClient (see page 191).[field name].szRAM to use a string stored in RAM, or DDNSClient (
see page 191).[field name].szROM to use a string stored in ROM. (Where [field name] is one of the parameters
below.)

If a ROM string is specified, DDNSClient.ROMPointers.[field name] must also be set to 1 to indicate that this field
should be retrieved from ROM instead of RAM.

Parameters

Parameters Description

CheckIPServer The server used to determine the external IP address

CheckIPPort Port on the above server to connect (see page 166) to

UpdateServer The server where updates should be posted

UpdatePort Port on the above server to connect (see page 166) to

Username The user name for the dynamic DNS server

Password The password to supply when making updates

Host The host name you wish to update

ROMPointers Indicates which parameters to read from ROM instead of RAM.

10.5 Dynamic DNS Client Microchip TCP/IP Stack Help Dynamic DNS Public Members

189

10.5.1.2 DDNS_SERVICES Enumeration
File

DynDNS.h

C

typedef enum {
 DYNDNS_ORG = 0u,
 NO_IP_COM,
 DNSOMATIC_COM
} DDNS_SERVICES;

Members

Members Description

DYNDNS_ORG = 0u www.dyndns.org

NO_IP_COM www.no-ip.com

DNSOMATIC_COM www.dnsomatic.com

Description

Dynamic DNS Services. Must support the DynDNS (see page 188) API (Auxlang) and correspond to ddnsServiceHosts (
see page 195) and ddnsServicePorts (see page 195) in DynDNS.c.

10.5.1.3 DDNS_STATUS Enumeration
File

DynDNS.h

C

typedef enum {
 DDNS_STATUS_GOOD = 0u,
 DDNS_STATUS_NOCHG,
 DDNS_STATUS_ABUSE,
 DDNS_STATUS_BADSYS,
 DDNS_STATUS_BADAGENT,
 DDNS_STATUS_BADAUTH,
 DDNS_STATUS_NOT_DONATOR,
 DDNS_STATUS_NOT_FQDN,
 DDNS_STATUS_NOHOST,
 DDNS_STATUS_NOT_YOURS,
 DDNS_STATUS_NUMHOST,
 DDNS_STATUS_DNSERR,
 DDNS_STATUS_911,
 DDNS_STATUS_UPDATE_ERROR,
 DDNS_STATUS_UNCHANGED,
 DDNS_STATUS_CHECKIP_ERROR,
 DDNS_STATUS_INVALID,
 DDNS_STATUS_UNKNOWN
} DDNS_STATUS;

Members

Members Description

DDNS_STATUS_GOOD = 0u Update successful, hostname is now updated

DDNS_STATUS_NOCHG Update changed no setting and is considered abusive. Additional 'nochg'
updates will cause hostname to be blocked.

DDNS_STATUS_ABUSE The hostname specified is blocked for update abuse.

DDNS_STATUS_BADSYS System parameter not valid. Should be dyndns, statdns or custom.

DDNS_STATUS_BADAGENT The user agent was blocked or not sent.

10.5 Dynamic DNS Client Microchip TCP/IP Stack Help Dynamic DNS Public Members

190

DDNS_STATUS_BADAUTH The username and password pair do not match a real user.

DDNS_STATUS_NOT_DONATOR An option available only to credited users (such as offline URL) was specified,
but the user is not a credited user. If multiple hosts were specified, only a single
!donator will be returned.

DDNS_STATUS_NOT_FQDN The hostname specified is not a fully-qualified domain name (not in the form
hostname.dyndns.org or domain.com).

DDNS_STATUS_NOHOST The hostname specified does not exist in this user account (or is not in the
service specified in the system parameter).

DDNS_STATUS_NOT_YOURS The hostname specified does not belong to this user account.

DDNS_STATUS_NUMHOST Too many hosts specified in an update.

DDNS_STATUS_DNSERR Unspecified DNS error encountered by the DDNS service.

DDNS_STATUS_911 There is a problem or scheduled maintenance with the DDNS service.

DDNS_STATUS_UPDATE_ERROR Error communicating with Update service.

DDNS_STATUS_UNCHANGED The IP Check indicated that no update was necessary.

DDNS_STATUS_CHECKIP_ERROR Error communicating with CheckIP service.

DDNS_STATUS_INVALID DDNS Client data is not valid.

DDNS_STATUS_UNKNOWN DDNS client has not yet been executed with this configuration.

Description

Status message for DynDNS (see page 188) client. GOOD and NOCHG are ok, but ABUSE through 911 are fatal.
UNCHANGED through INVALID are locally defined.

10.5.1.4 DDNSClient Variable
File

DynDNS.c

C

DDNS_POINTERS DDNSClient;

Description

Configuration parameters for the module

10.5.1.5 DDNSForceUpdate Function
File

DynDNS.h

C

void DDNSForceUpdate();

Returns

None

Description

This function forces the DDNS Client to execute a full update immediately. Any error message is cleared, and the update will
be executed whether the IP address has changed or not. Call this function every time the DDNSClient (see page 191)
parameters have been modified.

Preconditions

DDNSInit (see page 193) must have been called.

10.5 Dynamic DNS Client Microchip TCP/IP Stack Help Dynamic DNS Public Members

191

10.5.1.6 DDNSGetLastIP Function
File

DynDNS.h

C

IP_ADDR DDNSGetLastIP();

Returns

The last known external IP address of the device.

Description

This function returns the last known external IP address of the device.

Preconditions

None

10.5.1.7 DDNSGetLastStatus Function
File

DynDNS.h

C

DDNS_STATUS DDNSGetLastStatus();

Returns

DDNS_STATUS (see page 190) indicating the status code for the most recent update.

Description

This function returns the status of the most recent update. See the DDNS_STATUS (see page 190) enumeration for
possible codes.

Preconditions

None

10.5.1.8 DDNSSetService Function
File

DynDNS.h

C

void DDNSSetService(
 DDNS_SERVICES svc
);

Returns

None

Description

This function selects a Dynamic DNS service based on parameters configured in ddnsServiceHosts (see page 195) and
ddnsServicePorts (see page 195). These arrays must match the DDNS_SERVICES (see page 190) enumeration.

Preconditions

None

10.5 Dynamic DNS Client Microchip TCP/IP Stack Help Dynamic DNS Public Members

192

Parameters

Parameters Description

svc one of the DDNS_SERVICES (see page 190) elements to indicate the
selected service

10.5.2 Dynamic DNS Stack Members

Functions

Name Description

DDNSInit (see page 193) Initializes the Dynamic DNS module.

DDNSTask (see page 193) Dynamic DNS client task/state machine.

Module

Dynamic DNS Client (see page 188)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.5.2.1 DDNSInit Function
File

DynDNS.h

C

void DDNSInit();

Returns

None

Description

This function initializes the Dynamic DNS client. It clears the DDNSClient (see page 191) pointers structure, and tells the
module to attempt the first update after 15 seconds have elapsed (so as to allow the DHCP configuration to stabalize).

Remarks

This function is called only one during lifetime of the application.

Preconditions

None

10.5.2.2 DDNSTask Function
File

DynDNS.h

C

void DDNSTask();

Returns

None

10.5 Dynamic DNS Client Microchip TCP/IP Stack Help Dynamic DNS Stack Members

193

Description

This function performs the background tasks of the Dynamic DNS Client. Once the DDNSPointers structure is configured,
this task attempt to update the Dynamic DNS hostname on a periodic schedule.

The task first accesses the CheckIP server to determine the device's current external IP address. If the IP address has
changed, it issues an update command to the dynamic DNS service to propagate the change. This sequence executes
whenever dwUpdateAt (see page 195) elapses, which by default is every 10 minutes, or when an update is forced.

Remarks

This function acts as a task (similar to one in an RTOS). It performs its task in a co-operative manner, and the main
application must call this function periodically to ensure that its tasks get executed in a timely fashion.

Preconditions

DDNSInit (see page 193)() has been called.

Section

Function Prototypes

10.5.3 Dynamic DNS Internal Members

Macros

Name Description

DDNS_CHECKIP_SERVER
(see page 196)

Default CheckIP server for determining current IP address

DDNS_DEFAULT_PORT (
see page 197)

Default port for CheckIP server

Module

Dynamic DNS Client (see page 188)

Variables

Name Description

bForceUpdate (see page
195)

Indicates that the update should be done regardless of whether or not the IP
changed. Use this flag when the user/pass/hostname have changed.

ddnsServiceHosts (see
page 195)

Host names for various Dynamic DNS services

ddnsServicePorts (see
page 195)

Port numbers for various Dynamic DNS services

dwUpdateAt (see page
195)

Indicates when the next CheckIP should be done

lastKnownIP (see page
195)

Last known IP address of this device

lastStatus (see page 196) Status response from last update

_checkIpSrvrResponse (
see page 196)

Delimiter to locate IP address from CheckIP server

_updateIpSrvrResponse (
see page 196)

Response codes from DynDNS (see page 188) Update Server

Description

The following functions and variables are designated as internal to the Dynamic DNS module.

10.5 Dynamic DNS Client Microchip TCP/IP Stack Help Dynamic DNS Internal Members

194

10.5.3.1 bForceUpdate Variable
File

DynDNS.c

C

BOOL bForceUpdate;

Description

Indicates that the update should be done regardless of whether or not the IP changed. Use this flag when the
user/pass/hostname have changed.

10.5.3.2 ddnsServiceHosts Variable
File

CustomHTTPApp.c

C

ROM char * ROM ddnsServiceHosts[];

Description

Host names for various Dynamic DNS services

10.5.3.3 ddnsServicePorts Variable
File

DynDNS.c

C

ROM WORD ddnsServicePorts[] = { 80, 80, 80, };

Description

Port numbers for various Dynamic DNS services

10.5.3.4 dwUpdateAt Variable
File

DynDNS.c

C

DWORD dwUpdateAt;

Description

Indicates when the next CheckIP should be done

10.5.3.5 lastKnownIP Variable
File

DynDNS.c

10.5 Dynamic DNS Client Microchip TCP/IP Stack Help Dynamic DNS Internal Members

195

C

IP_ADDR lastKnownIP;

Description

Last known IP address of this device

10.5.3.6 lastStatus Variable
File

DynDNS.c

C

DDNS_STATUS lastStatus;

Description

Status response from last update

10.5.3.7 _checkIpSrvrResponse Variable
File

DynDNS.c

C

ROM BYTE _checkIpSrvrResponse[] = "Address:";

Description

Delimiter to locate IP address from CheckIP server

10.5.3.8 _updateIpSrvrResponse Variable
File

DynDNS.c

C

ROM char* _updateIpSrvrResponse[] = { "good", "nochg", "abuse", "badsys", "badagent",
"badauth", "!donator", "notfqdn", "nohost", "!yours", "numhost", "dnserr", "911", };

Description

Response codes from DynDNS (see page 188) Update Server

10.5.3.9 DDNS_CHECKIP_SERVER Macro
File

DynDNS.h

C

#define DDNS_CHECKIP_SERVER (ROM BYTE*)"checkip.dyndns.com" // Default CheckIP
server for determining current IP address

Description

Default CheckIP server for determining current IP address

10.5 Dynamic DNS Client Microchip TCP/IP Stack Help Dynamic DNS Internal Members

196

10.5.3.10 DDNS_DEFAULT_PORT Macro
File

DynDNS.h

C

#define DDNS_DEFAULT_PORT (80u) // Default port for CheckIP
server

Description

Default port for CheckIP server

10.6 Hashes
The Hashes module calculates MD5 and/or SHA-1 hash sums of data. Hash sums are one-way digest functions, meaning
that the original message cannot be derived from the hash of the message. Collisions, while exceedingly rare, do exist.
However, they are extremely difficult to create.

Hash functions are generally used for message integrity and authentication purposes. They are used extensively by
encryption protocols such as SSL to verify that a message has not been tampered with during transit.

The following flow diagram demonstrates how to use this module.

To use the hash functions, first declare a HASH_SUM (see page 201) structure and pass a pointer to it to either
MD5Initialize (see page 200) or SHA1Initialize (see page 200). Then, call HashAddData (see page 198) or
HashAddROMData (see page 198) as many times as are necessary to provide all the data to the hash. Call MD5Calculate
(see page 199) or SHA1Calculate (see page 200) at any time to obtain the hash sum up to the current point. After
calculation, continue adding data and repeating this process as many times as necessary.

10.6.1 Hashes Public Members

Functions

Name Description

HashAddData (see page
198)

Adds data to the hash sum.

HashAddROMData (see
page 198)

Adds data to the hash sum.

10.6 Hashes Microchip TCP/IP Stack Help Hashes Public Members

197

MD5Calculate (see page
199)

Calculates an MD5 hash

MD5Initialize (see page
200)

Initializes a new MD5 hash.

SHA1Calculate (see page
200)

Calculates a SHA-1 hash

SHA1Initialize (see page
200)

Initializes a new SHA-1 hash.

Module

Hashes (see page 197)

Structures

Name Description

HASH_SUM (see page
201)

Context storage for a hash operation

Description

The following functions and variables are available to the stack application.

10.6.1.1 HashAddData Function
File

Hashes.h

C

void HashAddData(
 HASH_SUM* theSum,
 BYTE* data,
 WORD len
);

Returns

None

Description

Adds data to the hash sum.

Remarks

This function calls the appropriate hashing function based on the hash typed defined in theSum.

Preconditions

The hash sum has already been initialized

Parameters

Parameters Description

theSum hash context state

data the data to be added to the hash sum

len length of data

10.6.1.2 HashAddROMData Function
File

Hashes.h

10.6 Hashes Microchip TCP/IP Stack Help Hashes Public Members

198

C

void HashAddROMData(
 HASH_SUM* theSum,
 ROM BYTE* data,
 WORD len
);

Returns

None

Description

Adds data to the hash sum.

Remarks

This function calls the appropriate hashing function based on the hash typed defined in theSum.

This function is aliased to HashAddData (see page 198) on non-PIC18 platforms.

Preconditions

The hash sum has already been initialized

Parameters

Parameters Description

theSum hash context state

data the data to be added to the hash sum

len length of data

10.6.1.3 MD5Calculate Function
File

Hashes.h

C

void MD5Calculate(
 HASH_SUM* theSum,
 BYTE* result
);

Returns

None

Description

This function calculates the hash sum of all input data so far. It is non-destructive to the hash context, so more data may be
added after this function is called.

Preconditions

The hash context has been properly initialized.

Parameters

Parameters Description

theSum the current hash context

result 16 byte array in which to store the resulting hash

10.6 Hashes Microchip TCP/IP Stack Help Hashes Public Members

199

10.6.1.4 MD5Initialize Function
File

Hashes.h

C

void MD5Initialize(
 HASH_SUM* theSum
);

Returns

None

Description

Initializes a new MD5 hash.

Preconditions

None

Parameters

Parameters Description

theSum pointer to the allocated HASH_SUM (see page 201) object to initialize as MD5

10.6.1.5 SHA1Calculate Function
File

Hashes.h

C

void SHA1Calculate(
 HASH_SUM* theSum,
 BYTE* result
);

Returns

None

Description

This function calculates the hash sum of all input data so far. It is non-destructive to the hash context, so more data may be
added after this function is called.

Preconditions

The hash context has been properly initialized.

Parameters

Parameters Description

theSum the current hash context

result 20 byte array in which to store the resulting hash

10.6.1.6 SHA1Initialize Function
File

Hashes.h

10.6 Hashes Microchip TCP/IP Stack Help Hashes Public Members

200

C

void SHA1Initialize(
 HASH_SUM* theSum
);

Returns

None

Description

Initializes a new SHA-1 hash.

Preconditions

None

Parameters

Parameters Description

theSum pointer to the allocated HASH_SUM (see page 201) object to initialize as
SHA-1

Section

Function Prototypes

10.6.1.7 HASH_SUM Structure
File

Hashes.h

C

typedef struct {
 DWORD h0;
 DWORD h1;
 DWORD h2;
 DWORD h3;
 DWORD h4;
 DWORD bytesSoFar;
 BYTE partialBlock[64];
 HASH_TYPE hashType;
} HASH_SUM;

Members

Members Description

DWORD h0; Hash state h0

DWORD h1; Hash state h1

DWORD h2; Hash state h2

DWORD h3; Hash state h3

DWORD h4; Hash state h4

DWORD bytesSoFar; Total number of bytes hashed so far

BYTE partialBlock[64]; Beginning of next 64 byte block

HASH_TYPE hashType; Type of hash being calculated

Description

Context storage for a hash operation

10.6 Hashes Microchip TCP/IP Stack Help Hashes Stack Members

201

10.6.2 Hashes Stack Members

Functions

Name Description

MD5AddROMData (see
page 202)

Adds data to an MD5 hash calculation.

SHA1AddROMData (see
page 203)

Adds data to a SHA-1 hash calculation.

SHA1AddData (see page
203)

Adds data to a SHA-1 hash calculation.

MD5AddData (see page
204)

Adds data to an MD5 hash calculation.

Module

Hashes (see page 197)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.6.2.1 MD5AddROMData Function
File

Hashes.h

C

void MD5AddROMData(
 HASH_SUM* theSum,
 ROM BYTE* data,
 WORD len
);

Returns

None

Description

Adds data to an MD5 hash calculation.

Remarks

This function is aliased to MD5AddData (see page 204) on non-PIC18 platforms.

Preconditions

The hash context has already been initialized.

Parameters

Parameters Description

theSum a pointer to the hash context structure

data the data to add to the hash

len the length of the data to add

10.6 Hashes Microchip TCP/IP Stack Help Hashes Stack Members

202

10.6.2.2 SHA1AddROMData Function
File

Hashes.h

C

void SHA1AddROMData(
 HASH_SUM* theSum,
 ROM BYTE* data,
 WORD len
);

Returns

None

Description

Adds data to a SHA-1 hash calculation.

Remarks

This function is aliased to SHA1AddData (see page 203) on non-PIC18 platforms.

Preconditions

The hash context has already been initialized.

Parameters

Parameters Description

theSum a pointer to the hash context structure

data the data to add to the hash

len the length of the data to add

10.6.2.3 SHA1AddData Function
File

Hashes.h

C

void SHA1AddData(
 HASH_SUM* theSum,
 BYTE* data,
 WORD len
);

Returns

None

Description

Adds data to a SHA-1 hash calculation.

Preconditions

The hash context has already been initialized.

Parameters

Parameters Description

theSum a pointer to the hash context structure

data the data to add to the hash

10.6 Hashes Microchip TCP/IP Stack Help Hashes Stack Members

203

len the length of the data to add

10.6.2.4 MD5AddData Function
File

Hashes.h

C

void MD5AddData(
 HASH_SUM* theSum,
 BYTE* data,
 WORD len
);

Returns

None

Description

Adds data to an MD5 hash calculation.

Preconditions

The hash context has already been initialized.

Parameters

Parameters Description

theSum a pointer to the hash context structure

data the data to add to the hash

len the length of the data to add

10.6.3 Hashes Internal Members

Enumerations

Name Description

HASH_TYPE (see page
205)

Type of hash being calculated

Functions

Name Description

SHA1HashBlock (see page
206)

Calculates the SHA-1 hash sum of a block.

MD5HashBlock (see page
207)

Calculates the MD5 hash sum of a block.

Module

Hashes (see page 197)

Variables

Name Description

_MD5_k (see page 205) Array of pre-defined K values for MD5

_MD5_r (see page 205) Array of pre-defined R vales for MD5

lastBlock (see page 205) Stores a copy of the last block with the required padding

10.6 Hashes Microchip TCP/IP Stack Help Hashes Internal Members

204

Description

The following functions and variables are designated as internal to the Hashes (see page 197) module.

10.6.3.1 _MD5_k Variable
File

Hashes.c

C

ROM DWORD _MD5_k[64] = { 0xD76AA478, 0xE8C7B756, 0x242070DB, 0xC1BDCEEE, 0xF57C0FAF,
0x4787C62A, 0xA8304613, 0xFD469501, 0x698098D8, 0x8B44F7AF, 0xFFFF5BB1, 0x895CD7BE,
0x6B901122, 0xFD987193, 0xA679438E, 0x49B40821, 0xF61E2562, 0xC040B340, 0x265E5A51,
0xE9B6C7AA, 0xD62F105D, 0x02441453, 0xD8A1E681, 0xE7D3FBC8, 0x21E1CDE6, 0xC33707D6,
0xF4D50D87, 0x455A14ED, 0xA9E3E905, 0xFCEFA3F8, 0x676F02D9, 0x8D2A4C8A, 0xFFFA3942,
0x8771F681, 0x6D9D6122, 0xFDE5380C, 0xA4BEEA44, 0x4BDECFA9, 0xF6BB4B60, 0xBEBFBC70,
0x289B7EC6, 0xEAA127FA, 0xD4EF3085, 0x04881D05, 0xD9D4D039, 0xE6DB99E5, 0x1FA27CF8,
0xC4AC5665, 0xF4292244, 0x432AFF97, 0xAB9423A7, 0xFC93A039, 0x655B59C3, 0x8F0CCC92,
0xFFEFF47D, 0x85845DD1, 0x6FA87E4F, 0xFE2CE6E0, 0xA3014314, 0x4E0811A1, 0xF7537E82,
0xBD3AF235, 0x2AD7D2BB, 0xEB86D391 };

Description

Array of pre-defined K values for MD5

10.6.3.2 _MD5_r Variable
File

Hashes.c

C

ROM BYTE _MD5_r[64] = {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9,
14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16,
23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21};

Description

Array of pre-defined R vales for MD5

10.6.3.3 lastBlock Variable
File

Hashes.c

C

BYTE lastBlock[64];

Description

Stores a copy of the last block with the required padding

10.6.3.4 HASH_TYPE Enumeration
File

Hashes.h

10.6 Hashes Microchip TCP/IP Stack Help Hashes Internal Members

205

C

typedef enum {
 HASH_MD5 = 0u,
 HASH_SHA1
} HASH_TYPE;

Members

Members Description

HASH_MD5 = 0u MD5 is being calculated

HASH_SHA1 SHA-1 is being calculated

Description

Type of hash being calculated

10.6.3.5 SHA1HashBlock Function
File

Hashes.c

C

static void SHA1HashBlock(
 BYTE* data,
 DWORD* h0,
 DWORD* h1,
 DWORD* h2,
 DWORD* h3,
 DWORD* h4
);

Returns

None

Description

This function calculates the SHA-1 hash sum over a block and updates the values of h0-h3 with the next context.

Internal

TODO convert data to a DWORD* or read from the pointer using byte accesses only to avoid any accidental alignment errors

Preconditions

The data pointer must be WORD aligned on 16-bit parts and DWORD aligned on 32-bit PICs. If alignment is not correct, a
memory alignment exception will occur.

Parameters

Parameters Description

data The block of 64 bytes to hash

h0 the current hash context h0 value

h1 the current hash context h1 value

h2 the current hash context h2 value

h3 the current hash context h3 value

h4 the current hash context h4 value

Section

Functions and variables required for SHA-1

10.6 Hashes Microchip TCP/IP Stack Help Hashes Internal Members

206

10.6.3.6 MD5HashBlock Function
File

Hashes.c

C

static void MD5HashBlock(
 BYTE* data,
 DWORD* h0,
 DWORD* h1,
 DWORD* h2,
 DWORD* h3
);

Returns

None

Description

This function calculates the MD5 hash sum over a block and updates the values of h0-h3 with the next context.

Internal

TODO convert data to a DWORD* or read from the pointer using byte accesses only to avoid any accidental alignment errors

Preconditions

The data pointer must be WORD aligned on 16-bit parts and DWORD aligned on 32-bit PICs. If alignment is not correct, a
memory alignment exception will occur.

Parameters

Parameters Description

data The block of 64 bytes to hash

h0 the current hash context h0 value

h1 the current hash context h1 value

h2 the current hash context h2 value

h3 the current hash context h3 value

10.7 Helpers
Functions

Name Description

LFSRRand (see page 223) Returns a pseudo-random 16-bit unsigned integer in the range from 0 to 65535
(0x0000 to 0xFFFF).

LFSRSeedRand (see page
224)

Seeds the LFSR random number generator invoked by the LFSRRand (see
page 223)() function. The prior seed is returned.

Variables

Name Description

dwLFSRRandSeed (see
page 225)

Default Random Number Generator seed. 0x41FE9F9E corresponds to calling
LFSRSeedRand (see page 224)(1)

Description

This module contains several helper functions used throughout the TCP/IP Stack. Some of these duplicate functionality
already implemented in the compiler's default libraries. In those cases, the compiler's version is used and the stack's version

10.7 Helpers Microchip TCP/IP Stack Help

207

is omitted.

10.7.1 Helpers Public Members

Functions

Name Description

Base64Decode (see page
209)

Decodes a Base-64 array to its literal representation.

Base64Encode (see page
209)

Encodes a binary array to Base-64.

btohexa_high (see page
210)

Converts the upper nibble of a binary value to a hexadecimal ASCII byte.

btohexa_low (see page
210)

Converts the lower nibble of a binary value to a hexadecimal ASCII byte.

CalcIPBufferChecksum (
see page 211)

Calculates an IP checksum in the MAC buffer itself.

CalcIPChecksum (see
page 211)

Calculates an IP checksum value.

ExtractURLFields (see
page 212)

Extracts all parameters from an URL string (ex:
"http://admin:passwd@www.microchip.com:8080/myfile.gif" is split into
{PROTOCOL_HTTP, "admin", "passwd", "www.microchip.com", 8080,
"/myfile.gif"}.

FormatNetBIOSName (see
page 215)

Formats a string to a valid NetBIOS name.

GenerateRandomDWORD
(see page 215)

Generates a random DWORD.

hexatob (see page 216) Converts a hex string to a single byte.

leftRotateDWORD (see
page 216)

Left-rotates a DWORD.

Replace (see page 217) Replaces all instances of a particular substring with a new string

ROMStringToIPAddress (
see page 218)

Converts a string to an IP address

stricmppgm2ram (see
page 219)

Case-insensitive comparison of a string in RAM to a string in ROM.

StringToIPAddress (see
page 219)

Converts a string to an IP address

strupr (see page 220) Converts a string to uppercase.

strnchr (see page 220) Searches a string up to a specified number of characters for a specific
character.

swapl (see page 221) Swaps the endian-ness of a DWORD.

swaps (see page 221) Swaps the endian-ness of a WORD.

uitoa (see page 222) Converts an unsigned integer to a decimal string.

ultoa (see page 222) Converts an unsigned integer to a decimal string.

UnencodeURL (see page
223)

Decodes a URL-encoded string.

Macros

Name Description

leftRotateDWORD (see
page 217)

Rotations are more efficient in C30 and C32

ROMStringToIPAddress (
see page 219)

Non-ROM variant for C30 and C32

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

208

Module

Helpers (see page 207)

Description

The following functions and variables are available to the stack application.

10.7.1.1 Base64Decode Function
File

Helpers.h

C

WORD Base64Decode(
 BYTE* cSourceData,
 WORD wSourceLen,
 BYTE* cDestData,
 WORD wDestLen
);

Returns

Number of decoded bytes written to cDestData.

Description

Decodes a Base-64 array to its literal representation.

Remarks

This function is binary safe and will ignore invalid characters (CR, LF, etc). If cSourceData is equal to cDestData, the data
will be converted in-place. If cSourceData is not equal to cDestData, but the regions overlap, the behavior is undefined.

Decoded data is always at least 1/4 smaller than the source data.

Preconditions

None

Parameters

Parameters Description

cSourceData Pointer to a string of Base-64 encoded data

wSourceLen Length of the Base-64 source data Maximum length that can be written to
cDestData

cDestData Pointer to write the decoded data

10.7.1.2 Base64Encode Function
File

Helpers.h

C

WORD Base64Encode(
 BYTE* cSourceData,
 WORD wSourceLen,
 BYTE* cDestData,
 WORD wDestLen
);

Returns

Number of encoded bytes written to cDestData. This will always be a multiple of 4.

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

209

Description

Encodes a binary array to Base-64.

Remarks

Encoding cannot be performed in-place. If cSourceData overlaps with cDestData, the behavior is undefined.

Encoded data is always at least 1/3 larger than the source data. It may be 1 or 2 bytes larger than that.

Preconditions

None

Parameters

Parameters Description

cSourceData Pointer to a string of binary data

wSourceLen Length of the binary source data Maximum length that can be written to
cDestData

cDestData Pointer to write the Base-64 encoded data

10.7.1.3 btohexa_high Function
File

Helpers.h

C

BYTE btohexa_high(
 BYTE b
);

Returns

The upper hexadecimal ASCII byte '0'-'9' or 'A'-'F'.

Description

Converts the upper nibble of a binary value to a hexadecimal ASCII byte. For example, btohexa_high(0xAE) will return 'A'.

Preconditions

None

Parameters

Parameters Description

b the byte to convert

10.7.1.4 btohexa_low Function
File

Helpers.h

C

BYTE btohexa_low(
 BYTE b
);

Returns

The lower hexadecimal ASCII byte '0'-'9' or 'A'-'F'.

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

210

Description

Converts the lower nibble of a binary value to a hexadecimal ASCII byte. For example, btohexa_high (see page
210)(0xAE) will return 'E'.

Preconditions

None

Parameters

Parameters Description

b the byte to convert

10.7.1.5 CalcIPBufferChecksum Function
File

Helpers.h

C

WORD CalcIPBufferChecksum(
 WORD len
);

Returns

The calculated checksum.

Description

This function calculates an IP checksum over an array of input data existing in the MAC buffer. The checksum is the 16-bit
one's complement of one's complement sum of all words in the data (with zero-padding if an odd number of bytes are
summed). This checksum is defined in RFC 793.

Remarks

All Microchip MACs should perform this function in hardware.

Preconditions

TCP is initialized and the MAC buffer pointer is set to the start of the buffer.

Parameters

Parameters Description

len number of bytes to be checksummed

10.7.1.6 CalcIPChecksum Function
File

Helpers.h

C

WORD CalcIPChecksum(
 BYTE* buffer,
 WORD len
);

Returns

The calculated checksum.

Description

This function calculates an IP checksum over an array of input data. The checksum is the 16-bit one's complement of one's

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

211

complement sum of all words in the data (with zero-padding if an odd number of bytes are summed). This checksum is
defined in RFC 793.

Internal

This function could be improved to do 32-bit sums on PIC32 platforms.

Preconditions

buffer is WORD aligned (even memory address) on 16- and 32-bit PICs.

Parameters

Parameters Description

buffer pointer to the data to be checksummed

count number of bytes to be checksummed

10.7.1.7 ExtractURLFields Function
File

Helpers.h

C

BYTE ExtractURLFields(
 BYTE * vURL,
 PROTOCOLS * protocol,
 BYTE * vUsername,
 WORD * wUsernameLen,
 BYTE * vPassword,
 WORD * wPasswordLen,
 BYTE * vHostname,
 WORD * wHostnameLen,
 WORD * wPort,
 BYTE * vFilePath,
 WORD * wFilePathLen
);

Returns

Zero on success. Nonzero indicates an error code. If a nonzero error code is returned, none of the returned buffers or
pointer values should be treated as valid, but some of them may have been written to. The following are all possible return
values.

0 No error

1 Protocol unknown (additional code needs to be added to ExtractURLFields() and the PROTOCOLS enum needs to be
updated if you want to decode URLs of this protocol type.

2 URL malformed. Illegal or unknown URL format encountered.

3 Buffer too small. One of the input buffer sizes is too small to contain the URL parameter.

Description

Extracts all parameters from an URL string (ex: "http://admin:passwd@www.microchip.com:8080/myfile.gif" is split into
{PROTOCOL_HTTP, "admin", "passwd", "www.microchip.com", 8080, "/myfile.gif"}.

The URL string can be null terminated, or alternatively could be terminated by a carriage return or line feed.

If the protocol is unrecognized or the protocol is recognized but the URL is malformed, than an error is safely returned. For
more information on URL/URI interpretation see RFC 2396.

Preconditions

This function is commented out by default to save code space because it is not used by any current stack features.
However, if you want to use it, go ahead and uncomment it. It has been tested, so it (should) work correctly.

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

212

Parameters

Parameters Description

vURL Pointer to null terminated URL to decode and extract from. This parameter is
required and needs to have the minimum RFC 1738 components in it (protocol
and hostname).

protocol Optional pointer to a PROTOCOLS enum to retrieve the decoded protocol type.
If this parameter is unneeded, specify a NULL pointer. The protocol is a
required part of the URL, so it must always be present. The protocol also
determines what scheme all other parameters are decoded using, so the
function will fail if an unrecognized protocol is provided. The PROTOCOLS
enum members show all of the currently supported protocols for this function.

For the example URL provided in the function description, PROTOCOL_HTTP
would be returned for this field.

vUsername Optional pointer to a buffer to write the decoded username portion of the URL.
If the URL does not contain a username or a NULL pointer is supplied, then this
field is ignored.

For the example URL provided in the function description, "admin" would be
returned for this field.

wUsernameLen On call: Optional pointer to a WORD specifying the maximum length of the
vUsername buffer, including the null terminator character.

Upon return: If wUsernameLen and vUsername are non-NULL, the
*wUsernameLen WORD is updated with the actual number of characters
written to the vUsername buffer, including the null terminator character. If
vUsername is NULL but wUsernameLen is non-NULL, then no characters are
copied, but *wUsernameLen will return the number of characters required to fit
the full username string. If wUsernameLen is NULL, then the username field in
the URL, if present, is ignored and the vUsername pointer is not used.

If zero characters were written, this indicates that the URL did not contain a
username field. If one character was written, this indicates that a username field
was present, but was a zero character string (ex: "").

For the example URL provided in the function description, 6 (0x0006) would be
returned for this field.

vPassword Optional pointer to a buffer to write the decoded password portion of the URL. If
the URL does not contain a password or a NULL pointer is supplied, then this
field is ignored.

For the example URL provided in the function description, "passwd" would be
returned for this field.

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

213

wPasswordLen On call: Optional pointer to a WORD specifying the maximum length of the
vPassword buffer, including the null terminator character.

Upon return: If wPasswordLen and vPassword are non-NULL, the
*wPasswordLen WORD is updated with the actual number of characters written
to the vPassword buffer, including the null terminator character. If vPassword is
NULL but wPasswordLen is non-NULL, then no characters are copied, but
*wPasswordLen will return the number of characters required to fit the full
password string. If wPasswordLen is NULL, then the password field in the URL,
if present, is ignored and the vPassword pointer is not used.

If zero characters were written, this indicates that the URL did not contain a
password field. If one character was written, this indicates that a password field
was present, but was a zero character string (ex: "").

For the example URL provided in the function description, 7 (0x0007) would be
returned for this field.

vHostname Optional pointer to a buffer to write the decoded hostname portion of the URL.
All Internet URLs must contain a hostname or IP address, however, if a NULL
pointer is supplied, then this field is ignored.

For the example URL provided in the function description,
"www.microchip.com" would be returned for this field. If the URL was
"http://192.168.0.1", then this field would be returned as "192.168.0.1". The IP
address would not be decoded to a DWORD (use the StringToIPAddress (
see page 219)() helper function to do this).

wHostnameLen On call: Optional pointer to a WORD specifying the maximum length of the
vHostname buffer, including the null terminator character.

Upon return: If wHostnameLen and vHostname are non-NULL, the
*wHostnameLen WORD is updated with the actual number of characters written
to the vHostname buffer, including the null terminator character. If vHostname
is NULL but wHostnameLen is non-NULL, then no characters are copied, but
*wHostnameLen will return the number of characters required to fit the full
hostname string. If wHostnameLen is NULL, then the hostname field in the
URL, is ignored and the vHostname pointer is not used.

For the example URL provided in the function description, 18 (0x0012) would
be returned for this field. If the URL was "http://192.168.0.1", then this field
would be returned as 12 (0x000C).

wPort Optional pointer to a WORD specifying the TCP or UDP port that the server is
listening on. If the port field is absent from the URL, then this parameter will
specify the default port for the protocol. For example,
"http://www.microchip.com" would result in 80 being return as the specified port.

If the wPort pointer is NULL, then the port field in the URL is ignored, if present.

vFilePath Optional pointer to a buffer to write the decoded file path portion of the URL. If a
NULL pointer is supplied, then this field is ignored. If a file path is not present in
the URL, then "/" will be returned in this field.

For the example URL provided in the function description, "/myfile.gif" would be
returned for this field.

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

214

wFilePathLen On call: Optional pointer to a WORD specifying the maximum length of the
vFilePath buffer, including the null terminator character.

Upon return: If wFilePathLen and vFilePath are non-NULL, the *wFilePathLen
WORD is updated with the actual number of characters written to the vFilePath
buffer, including the null terminator character. If vFilePath is NULL but
wFilePathLen is non-NULL, then no characters are copied, but *wFilePathLen
will return the number of characters required to fit the full file path string. If
wFilePathLen is NULL, then the file path field in the URL, if present, is ignored
and the vFilePath pointer is not used.

This function always returns "/" if no file path is present, so *wFilePathLen will
also be at least 2 characters ('/' and null terminator) if the pointer is non-NULL.

For the example URL provided in the function description, 12 (0x000C) would
be returned for this field.

10.7.1.8 FormatNetBIOSName Function
File

Helpers.h

C

void FormatNetBIOSName(
 BYTE Name[16]
);

Returns

None

Description

This function formats a string to a valid NetBIOS name. Names will be exactly 16 characters, as defined by the NetBIOS
spec. The 16th character will be a 0x00 byte, while the other 15 will be the provided string, padded with spaces as necessary.

Preconditions

None

Parameters

Parameters Description

Name the string to format as a NetBIOS name. This parameter must have at least 16
bytes allocated.

10.7.1.9 GenerateRandomDWORD Function
File

Helpers.h

C

DWORD GenerateRandomDWORD();

Side Effects

This function uses the A/D converter (and so you must disable interrupts if you use the A/D converted in your ISR). The
LFSRRand (see page 223)() function will be reseeded, and Timer0 (PIC18) and Timer1 (PIC24, dsPIC, and PIC32) will be
used. TMR#H:TMR#L will have a new value. Note that this is the same timer used by the Tick module.

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

215

Returns

Random 32-bit number.

Description

This function generates a random 32-bit integer. It collects randomness by comparing the A/D converter's internal R/C
oscillator clock with our main system clock. By passing collected entropy to the LFSRSeedRand (see page
224)()/LFSRRand (see page 223)() functions, the output is normalized (deskewed) in the hopes of meeting statistical
randomness tests.

Remarks

This function times out after 1 second of attempting to generate the random DWORD. In such a case, the output may not be
truly random. Typically, this function executes in around 500,000 instruction cycles.

The intent of this function is to produce statistically random and cryptographically secure random number. Whether or not
this is true on all (or any) devices/voltages/temperatures is not tested.

Preconditions

None

10.7.1.10 hexatob Function
File

Helpers.h

C

BYTE hexatob(
 WORD_VAL AsciiChars
);

Returns

Resulting packed byte 0x00 - 0xFF.

Description

Converts a two-character ASCII hex string to a single packed byte.

Preconditions

None

Parameters

Parameters Description

AsciiChars WORD_VAL where .v[0] is the ASCII value for the lower nibble and .v[1] is the
ASCII value for the upper nibble. Each must range from '0'-'9', 'A'-'F', or 'a'-'f'.

10.7.1.11 leftRotateDWORD Function
File

Helpers.h

C

DWORD leftRotateDWORD(
 DWORD val,
 BYTE bits
);

Returns

Rotated DWORD value.

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

216

Description

This function rotates the bits in a 32-bit DWORD left by a specific number of bits.

Remarks

This function is only implemented on 8-bit platforms for now. The 8-bit compilers generate excessive code for this function,
while C30 and C32 already generate compact code. Those compilers are served by a macro defined in Helpers.h.

Preconditions

None

Parameters

Parameters Description

val the DWORD to be rotated

bits the number of bits by which to shift

10.7.1.12 leftRotateDWORD Macro
File

Helpers.h

C

#define leftRotateDWORD(x, n) (((x) << (n)) | ((x) >> (32-(n))))

Description

Rotations are more efficient in C30 and C32

10.7.1.13 Replace Function
File

Helpers.h

C

SHORT Replace(
 BYTE * vExpression,
 ROM BYTE * vFind,
 ROM BYTE * vReplacement,
 WORD wMaxLen,
 BOOL bSearchCaseInsensitive
);

Returns

If zero or greater, indicates the count of how many replacements were made. If less than zero (negative result), indicates
that wMaxLen was too small to make the necessary replacements. In this case, no replacements were made.

Description

Searches a string (vExpression) and replaces all instances of a particular substring (vFind) with a new string
(vReplacement). The start offset to being searching and a maximum number of replacements can be specified. The search
can be performed in a case sensitive or case insensitive manner.

Remarks

If the replacement string length is shorter than or equal to the search string length and the search string occurs in multiple
overlapping locations (ex: expression is "aaa", find is "aa", and replacement is "bb") then the first find match occuring when
searching from left to right will be replaced. (ex: output expression will be "bba").

However, if the replacement string length is longer than the search string length, the search will occur starting from the end

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

217

of the string and proceed to the beginning (right to left searching). In this case if the expression was "aaa", find was "aa", and
replacement was "bbb", then the final output expression will be "abbb".

Preconditions

This function is commented out by default to save code space because it is not used by any current stack features.
However, if you want to use it, go ahead and uncomment it. It has been tested, so it (should) work correctly.

Parameters

Parameters Description

vExpression Null terminated string to search and make replacements within.

vFind Null terminated string to search for.

vReplacement Null terminated string to replace all instances of vFind with.

wMaxLen Maximum length of the output vExpression string if string expansion is going to
occur (replacement length is longer than find length). If the replacements will
cause this maximum string length to be exceeded, then no replacements will be
made and a negative result will be returned, indicating failure. If the
replacement length is shorter or equal to the search length, then this parameter
is ignored.

bSearchCaseInsensitive Boolean indicating if the search should be performed in a case insensitive
manner. Specify TRUE for case insensitive searches (slower) or FALSE for
case sensitive searching (faster).

10.7.1.14 ROMStringToIPAddress Function
File

Helpers.h

C

BOOL ROMStringToIPAddress(
 ROM BYTE* str,
 IP_ADDR* IPAddress
);

Description

This function parses a dotted-quad decimal IP address string into an IP_ADDR struct. The output result is big-endian.

Remarks

This function is aliased to StringToIPAddress (see page 219) on non-PIC18 platforms.

Preconditions

None

Parameters

Parameters Description

str Pointer to a dotted-quad IP address string

IPAddress Pointer to IP_ADDR in which to store the result

Return Values

Return Values Description

TRUE an IP address was successfully decoded

FALSE no IP address could be found, or the format was incorrect

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

218

10.7.1.15 ROMStringToIPAddress Macro
File

Helpers.h

C

#define ROMStringToIPAddress(a,b) StringToIPAddress((BYTE*)a,b)

Description

Non-ROM variant for C30 and C32

10.7.1.16 stricmppgm2ram Function
File

Helpers.h

C

signed char stricmppgm2ram(
 BYTE* a,
 ROM BYTE* b
);

Description

Performs a case-insensitive comparison of a string in RAM to a string in ROM. This function performs identically to
strcmppgm2ram, except that the comparison is not case-sensitive.

Preconditions

None

Parameters

Parameters Description

a Pinter to tring in RAM

b Pointer to string in ROM

Return Values

Return Values Description

-1 a < b

0 a = b

1 a > b

10.7.1.17 StringToIPAddress Function
File

Helpers.h

C

BOOL StringToIPAddress(
 BYTE* str,
 IP_ADDR* IPAddress
);

Description

This function parses a dotted-quad decimal IP address string into an IP_ADDR struct. The output result is big-endian.

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

219

Preconditions

None

Parameters

Parameters Description

str Pointer to a dotted-quad IP address string

IPAddress Pointer to IP_ADDR in which to store the result

Return Values

Return Values Description

TRUE an IP address was successfully decoded

FALSE no IP address could be found, or the format was incorrect

10.7.1.18 strupr Function
File

Helpers.h

C

char * strupr(
 char* s
);

Returns

Pointer to the initial string.

Description

This function converts strings to uppercase on platforms that do not already have this function defined. All lower-case
characters are converted, an characters not included in 'a'-'z' are left as-is.

Preconditions

None

Parameters

Parameters Description

s the null-terminated string to be converted.

10.7.1.19 strnchr Function
File

Helpers.h

C

char * strnchr(
 const char * searchString,
 size_t count,
 char c
);

Returns

Pointer to the first occurance of the character c in the string searchString. If the character is not found or the maximum count
is reached, a NULL pointer is returned.

Description

Searches a string up to a specified number of characters for a specific character. The string is searched forward and the first

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

220

occurance location is returned. If the search character is not present in the string, or if the maximum character count is
reached first, then a NULL pointer is returned.

Preconditions

None

Parameters

Parameters Description

searchString Pointer to a null terminated string to search. If count is less than the string size,
then the string need not be null terminated.

count Maximum number of characters to search before aborting.

c Character to search for

10.7.1.20 swapl Function
File

Helpers.h

C

DWORD swapl(
 DWORD v
);

Returns

The swapped version of v.

Description

Swaps the endian-ness of a DWORD.

Preconditions

None

Parameters

Parameters Description

v the DWORD to swap

10.7.1.21 swaps Function
File

Helpers.h

C

WORD swaps(
 WORD v
);

Returns

The swapped version of v.

Description

Swaps the endian-ness of a WORD.

Preconditions

None

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

221

Parameters

Parameters Description

v the WORD to swap

10.7.1.22 uitoa Function
File

Helpers.h

C

void uitoa(
 WORD Value,
 BYTE* Buffer
);

Returns

None

Description

Converts a 16-bit unsigned integer to a null-terminated decimal string.

Preconditions

None

Parameters

Parameters Description

Value The number to be converted

Buffer Pointer in which to store the converted string

10.7.1.23 ultoa Function
File

Helpers.h

C

void ultoa(
 DWORD Value,
 BYTE* Buffer
);

Returns

None

**

HI-TECH PICC-18 PRO 9.63, C30 v3.25, and C32 v1.12 already have a ultoa() library function C18 already has a ultoa()
function that more-or-less matches this one C32 < 1.12 and C30 < v3.25 need this function

Description

C32 < 1.12 and C30 < v3.25 need this 2 parameter stack implemented function

Converts a 32-bit unsigned integer to a null-terminated decimal string.

Preconditions

None

10.7 Helpers Microchip TCP/IP Stack Help Helpers Public Members

222

Parameters

Parameters Description

Value The number to be converted

Buffer Pointer in which to store the converted string

10.7.1.24 UnencodeURL Function
File

Helpers.h

C

void UnencodeURL(
 BYTE* URL
);

Returns

None

Description

This function is deprecated except for use with HTTP Classic. It attempts to decode a URL encoded string, converting all hex
escape sequences into a literal byte. However, it is inefficient over long strings and does not handle URL-encoded data
strings ('&' and '=').

Preconditions

None

Parameters

Parameters Description

URL the null-terminated string to decode

10.7.2 Functions

Functions

Name Description

LFSRRand (see page 223) Returns a pseudo-random 16-bit unsigned integer in the range from 0 to 65535
(0x0000 to 0xFFFF).

LFSRSeedRand (see page
224)

Seeds the LFSR random number generator invoked by the LFSRRand (see
page 223)() function. The prior seed is returned.

Module

Helpers (see page 207)

10.7.2.1 LFSRRand Function
File

Helpers.h

C

WORD LFSRRand();

10.7 Helpers Microchip TCP/IP Stack Help Functions

223

Side Effects

The internal LFSR seed is updated so that the next call to LFSRRand() will return a different random number.

Returns

Random 16-bit unsigned integer.

Description

Returns a pseudo-random 16-bit unsigned integer in the range from 0 to 65535 (0x0000 to 0xFFFF). The random number is
generated using a Linear Feedback Shift Register (LFSR) type pseudo-random number generator algorithm. The LFSR can
be seeded by calling the LFSRSeedRand (see page 224)() function to generate the same sequence of random numbers
as a prior string of calls.

The internal LFSR will repeat after 2^32-1 iterations.

Remarks

None

Preconditions

None

10.7.2.2 LFSRSeedRand Function
File

Helpers.h

C

DWORD LFSRSeedRand(
 DWORD dwSeed
);

Side Effects

None

Returns

The last seed in use. This can be saved and restored by a subsequent call to LFSRSeedRand() if you wish to use
LFSRRand (see page 223)() in multiple contexts without disrupting the random number sequence from the alternative
context. For example, if App 1 needs a given sequence of random numbers to perform a test, if you save and restore the
seed in App 2, it is possible for App 2 to not disrupt the random number sequence provided to App 1, even if the number of
times App 2 calls LFSRRand (see page 223)() varies.

Description

Seeds the LFSR random number generator invoked by the LFSRRand (see page 223)() function. The prior seed is
returned.

Remarks

Upon initial power up, the internal seed is initialized to 0x1. Using a dwSeed value of 0x0 will return the same sequence of
random numbers as using the seed of 0x1.

Preconditions

None

Parameters

Parameters Description

wSeed The new 32-bit seed value to assign to the LFSR.

10.7 Helpers Microchip TCP/IP Stack Help Variables

224

10.7.3 Variables

Module

Helpers (see page 207)

Variables

Name Description

dwLFSRRandSeed (see
page 225)

Default Random Number Generator seed. 0x41FE9F9E corresponds to calling
LFSRSeedRand (see page 224)(1)

10.7.3.1 dwLFSRRandSeed Variable
File

Helpers.c

C

DWORD dwLFSRRandSeed = 0x41FE9F9E;

Description

Default Random Number Generator seed. 0x41FE9F9E corresponds to calling LFSRSeedRand (see page 224)(1)

10.8 HTTP2 Server
The HTTP2 web server module and its associated MPFS2 file system module allow the board to act as a web server. This
facilitates an easy method to view status information and control applications using any standard web browser.

Three main components are necessary to understand how the HTTP2 web server works: the web pages, the MPFS2 Utility,
and the source files CustomHTTPApp.c and HTTPPrint.h. An overview of the entire process is shown below.

Web Pages

This includes all the HTML and associated images, CSS stylesheets, and JavaScript files necessary to display the website.
A sample application including all these components is located in the WebPages2 folder.

MPFS2 Utility

This program, supplied by Microchip, packages the web pages into a format that can be efficiently stored in either external
non-volatile storage, or internal flash program memory. This program also indexes dynamic variables found in the web
pages and updates HTTPPrint.h with these indices.

If external storage is being used, the MPFS2 Utility outputs a BIN file and can upload that file directly to the board. If the data
is being stored in Flash program memory, the MPFS2 Utility will generate a C source file image to be included in the project.

10.8 HTTP2 Server Microchip TCP/IP Stack Help

225

When dynamic variables are added or removed from your application, the MPFS2 Utility will update HTTPPrint.h. When
this happens, the project must be recompiled in the MPLAB IDE to ensure that all the new variable indices get added into the
application.

CustomHTTPApp.c

This file implements the web application. It describes the output for dynamic variables (via HTTPPrint_varname (see page
241) callbacks), parses data submitted through forms (in HTTPExecuteGet (see page 237) and HTTPExecutePost (see
page 238)) and validates authorization credentials (in HTTPAuthenticate). The exact functionality of these callbacks is
described within the demo application's web pages, and is also documented within the CustomHTTPApp.c example that is
distributed with the stack.

HTTPPrint.h

This file is generated automatically by the MPFS2 Utility. It indexes all the dynamic variables and provides the "glue"
between the variables located in the web pages and their associated HTTPPrint_varname (see page 241) callback
functions defined in CustomHTTPApp.c. This file does not require modification by the programmer.

10.8.1 HTTP2 Features

Module

HTTP2 Server (see page 225)

Description

The HTTP2 web server module has many capabilities. The following topics will introduce these features and provide
examples.

10.8.1.1 HTTP2 Dynamic Variables
One of the most basic needs is to provide status information back to the user of your web application. The HTTP server
provides for this using dynamic variable substitution callbacks. These commands in your HTML code will alert the server to
execute a callback function at that point, which the developer creates to write data into the web page. Dynamic Variables
should be considered the output of your application.

Basic Use

To create a dynamic variable, simply enclose the name of the variable inside a pair of tilde (~) characters within the web
pages' HTML source code. (ex: ~myVariable~) When you run the MPFS2 Utility to generate the web pages, it will
automatically index these variables in HTTPPrint.h. This index will instruct your application to invoke the function
HTTPPrint_myVariable when this string is encountered.

Here is an example of using a dynamic variable to insert the build date of your application into the web pages:

<div class="examplebox code">~builddate~</div>

The associated callback will print the value into the web page:

void HTTPPrint_builddate(void)
{
 TCPPutROMString(sktHTTP,(ROM void*)__DATE__);
}

Passing Parameters

You can also pass parameters to dynamic variables by placing numeric values inside of parenthesis after the variable name.
For example, ~led(2)~ will print the value of the second LED. The numeric values are passed as WORD values to your
callback function. You can pass as many parameters as you wish to these functions, and if your C code has constants
defined, those will be parsed as well. (ex: ~pair(3,TRUE)~)

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Features

226

The following code inserts the value of the push buttons into the web page, all using the same callback function:

<div class="examplebox code">btn(3)~ btn(2)~ btn(1)~ btn(0)~</div>

This associated callback will print the value of the requested button to the web page:

void HTTPPrint_btn(WORD num)
{
 // Determine which button
 switch(num)
 {
 case 0:
 num = BUTTON0_IO;
 break;
 case 1:
 num = BUTTON1_IO;
 break;
 case 2:
 num = BUTTON2_IO;
 break;
 case 3:
 num = BUTTON3_IO;
 break;
 default:
 num = 0;
 }

 // Print the output
 if(num == 1)
 TCPPutROMString(sktHTTP, "up");
 else
 TCPPutROMString(sktHTTP, "down");
}

Longer Outputs

The HTTP protocol operates in a fixed memory buffer for transmission, so not all data can be sent at once. Care must be
taken inside of your callback function to avoid overrunning this buffer.

The HTTP2 web server verifies that at least 16 bytes are free in this buffer before invoking a callback. For short outputs (less
than 16 bytes), callbacks need only to call the appropriate TCPPut (see page 454) function and return. For longer outputs,
callback functions must check how much space is available, write up to that many bytes, then return. The callback will be
invoked again when more space is free.

To manage the output state, callbacks should make use of curHTTP.callbackPos. This DWORD value is set to zero
when a callback is first invoked. If a callback is only writing part of its output, it should set this field to a non-zero value to
indicate that it should be called again when more space is available. This value will be available to the callback during the
next call, which allows the function to resume output where it left off. A common use is to store the number of bytes written,
or remaining to be written, in this field. Once the callback is finished writing its output, it must set curHTTP.callbackPos
back to zero in order to indicate completion.

As an example, this code outputs the current value of the LCD display, which is 32 bytes on many Microchip development
boards:

<div class="examplebox code">~lcdtext~</div>

The following callback function handles the output, and manages its state for multiple calls:

void HTTPPrint_lcdtext(void)
{
 WORD len;

 // Determine how many bytes we can write
 len = TCPIsPutReady(sktHTTP);

 // If just starting, set callbackPos
 if(curHTTP.callbackPos == 0)
 curHTTP.callbackPos = 32;

 // Write a byte at a time while we still can

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Features

227

 // It may take up to 12 bytes to write a character
 // (spaces and newlines are longer)
 while(len > 12 && curHTTP.callbackPos)
 {
 // After 16 bytes write a newline
 if(curHTTP.callbackPos == 16)
 len -= TCPPutROMString(sktHTTP, (ROM BYTE*)"
");

 if(LCDText[32-curHTTP.callbackPos] == ' ' || LCDText[32-curHTTP.callbackPos] ==
'\0')
 len -= TCPPutROMString(sktHTTP, (ROM BYTE*)" ");
 else
 len -= TCPPut(sktHTTP, LCDText[32-curHTTP.callbackPos]);

 curHTTP.callbackPos--;
 }
}

The initial call to TCPIsPutReady (see page 451) determines how many bytes can be written to the buffer right now. The
TCPPut (see page 454) functions all return the number of bytes written, so we can subtract that value from len to track
how much buffer space is left. When buffer space is exhausted, the function exits and waits to be called again. For
subsequent calls, the value of curHTTP.callbackPos is exactly as we left it. The function resumes its output at that point.

Including Files

Often it is useful to include the entire contents of another file in your output. Most web pages have at least some portion that
does not change, such as the header, menu of links, and footer. These sections can be abstracted out into separate files
which makes them easier to manage and conserves storage space.

To include the entire contents of another file, use a dynamic variable that starts with "inc:", such as ~inc:header.inc~.
This sequence will cause the file header.inc to be read from the file system and inserted at this location.

The following example indicates how to include a standard menu bar section into every page:

<div id="menu">~inc:menu.inc~</div>

At this time, dynamic variables are not recursive, so any variables located inside files included in this manner are not parsed.

10.8.1.2 HTTP2 Form Processing
Many applications need to accept (see page 164) data from a user. A common solution is to present a form to the user in
a web page, then have the device process the values submitted via this form. Web forms are usually submitted using one of
two methods (GET and POST), and the HTTP2 web server supports both.

The GET Method

The GET method appends the data to the end of the URI. This data follows the question mark (?) in the browser's address
bar. (ex: http://mchpboard/form.htm?led1=0&led2=1&led3=0) Data sent via GET is automatically decoded and stored in the
curHTTP.data array. Since it is to be stored in memory, this data is limited to the size of curHTTP.data, which by default
is 100 bytes. However, it is generally easier to process data received in this manner.

The callback function HTTPExecuteGet (see page 237) is implemented by the application developer to process this data
and perform any necessary actions. The functions HTTPGetArg (see page 239) and HTTPGetROMArg (see page 240)
provide an easy method to retrieve submitted values for processing.

The following example demonstrates a form to control several LEDs.

<form method="get" action="leds.htm">
 LED 1: <input type="checkbox" name="led1" value="1" />

 LED 2: <input type="checkbox" name="led2" value="1" />

 LED 3: <input type="checkbox" name="led3" value="1" />

 <input type="submit" value="Set LEDs" />
</form>

Suppose a user selects the checkboxes for LED 1 and LED3. The following string will be submitted to the server:

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Features

228

GET /leds.htm?led1=1&led3=1 HTTP/1.1

The HTTP2 web server will parse this request and store the following string in curHTTP.data:

"led1\01\0led3\01\0\0"

It will then call HTTPExecuteGet (see page 237) to process this input. To process this data, that callback needs to do
several things. First, it should call MPFSGetFilename (see page 272) to verify which form was submitted. (This step may
be omitted if only one form is provided by the application.) Next, since a checkbox control was used a default state of
unchecked must be assumed. Finally, the callback should search for each argument it expects, compare the value, and set
the LED pins accordingly. The following example satisfies all these requirements:

HTTP_IO_RESULT HTTPExecuteGet(void)
{
 BYTE *ptr, filename[20];

 // Load the file name (filename[] must be large enough to hold
 // the longest file name expected)
 MPFSGetFilename(curHTTP.file, filename, 20);

 // Verify the file name
 if(!strcmppgm2ram(filename, (ROM char*)"leds.htm"))
 {
 // Assume a default state of off
 LED1_IO = 0;
 LED2_IO = 0;
 LED3_IO = 0;

 // Search for each LED parameter and process
 ptr = HTTPGetROMArg(curHTTP.data, (ROM BYTE*)"led1");
 if(ptr)
 LED1_IO = (*ptr == '1');

 ptr = HTTPGetROMArg(curHTTP.data, (ROM BYTE*)"led2");
 if(ptr)
 LED2_IO = (*ptr == '1');

 ptr = HTTPGetROMArg(curHTTP.data, (ROM BYTE*)"led3");
 if(ptr)
 LED3_IO = (*ptr == '1');
 }

 // Indicate completion
 return HTTP_IO_DONE;
}

The POST Method

The POST method transmits data after all the request headers have been sent. This data is not visible in the browser's
address bar, and can only be seen with a packet capture tool. It does however use the same URL encoding method.

The HTTP2 server does not perform any pre-parsing of this data. All POST data is left in the TCP buffer, so the custom
application will need to access the TCP buffer directly to retrieve and decode it. The functions HTTPReadPostName (see
page 242) and HTTPReadPostValue (see page 243) have been provided to assist with these requirements. However,
these functions can only be used when at least entire variables are expected to fit in the TCP buffer at once.

Most POST processing functions will be implemented as state machines in order to use these functions. The variable
curHTTP.smPost is available to store the current state. This state machine variable is reset to zero with each new request.
Functions should generally implement a state to read a variable name, and another to read an expected value. Additional
states may be helpful depending on the application.

The following example form accepts an e-mail address, a subject, and a message body. Since this data will likely total over
100 bytes, it should be submitted via POST.

<form method="post" action="/email.htm">
 To: <input type="text" name="to" maxlength="50" />

 Subject: <input type="text" name="subject" maxlength="50" />

 Message:

 <textarea name="msg" rows="6"></textarea>

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Features

229

 <input type="submit" value="Send Message" /></div>
</form>

Suppose a user enters the following data into this form:

To: joe@picsaregood.com
Subject: Sent by a PIC
Message: I sent this message using my development board!

The HTTPExecutePost (see page 238) function will be called with the following data still in the TCP buffer:

to=joe%40picsaregood.com&subject=Sent+by+a+PIC
&msg=I+sent+this+message+using+my+development+board%21

To use the e-mail module, the application needs to read in the address and the subject, store those in RAM, then send the
message. However, since the message is not guaranteed to fit in RAM all at once, it must be read as space is available and
passed to the e-mail module. A state machine, coupled with the HTTPReadPostName (see page 242) and
HTTPReadPostValue (see page 243) functions can simplify this greatly.

The following example callback function will properly parse this input. For this example, it is assumed that this is the only
form the board accepts, so file name checking is not performed. The address will be stored at curHTTP.data[0:49], and the
subject will be stored at curHTTP.data[50:99]. This is not the most optimal solution, but serves as a simple example.

HTTP_IO_RESULT HTTPExecutePost(void)
{
 BYTE *dest, temp[16];

 // Define state machine values
 #define SM_READ_NAME (0u)
 #define SM_READ_VALUE (1u)
 #define SM_START_MESSAGE (2u)
 #define SM_SEND_MESSAGE (3u)

 switch(curHTTP.smPost)
 {
 case SM_READ_NAME:
 // Read the next variable name. If a complete name is
 // not found, request more data. This function will
 // automatically truncate invalid data to prevent
 // buffer overflows.
 if(HTTPReadPostName(temp,16) == HTTP_READ_INCOMPLETE)
 return HTTP_IO_NEED_DATA;

 // Save "to" values to curHTTP.data[0:49]
 if(!strcmppgm2ram((char*)temp, (ROM char*)"to"))
 dest = curHTTP.data;

 // Save "subject" values to curHTTP.data[50:99]
 else if(!strcmppgm2ram((char*)temp, (ROM char*)"subject"))
 dest = curHTTP.data + 50;

 // When a "msg" is encountered, start sending
 else if(!strcmppgm2ram((char*)temp, (ROM char*)"msg"))
 {
 curHTTP.smPost = SM_START_MESSAGE;
 break;
 }

 // Ignore unexpected values
 else
 dest = NULL;

 // Move to the next state, but do not break yet
 curHTTP.smPost = SM_READ_VALUE;

 case SM_READ_VALUE:
 // Read the next value. If a complete value is
 // not found, request more data. This function will
 // automatically truncate invalid data to prevent
 // buffer overflows.
 if(HTTPReadPostValue(dest,50) == HTTP_READ_INCOMPLETE)
 return HTTP_IO_NEED_DATA;

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Features

230

 // Return to read a new name
 curHTTP.smPost = SM_READ_NAME;
 break;

 case SM_START_MESSAGE:
 // TODO: Perform necessary tasks to start sending the message.

 // Move on to sending the message body
 curHTTP.smPost = SM_SEND_MESSAGE;
 break;

 case SM_SEND_MESSAGE:
 // The message may be longer than the TCP buffer can hold
 // at once. To avoid errors, read the data piece by
 // piece and send it to the e-mail module. This requires
 // using TCP functions directly.

 // Send all remaining data
 while(curHTTP.byteCount > 0)
 {
 // First check if data is ready
 if(TCPIsGetReady(sktHTTP) == 0)
 return HTTP_IO_NEED_DATA;

 // TODO: Read data with TCPGetArray and send
 // it to the e-mail module.
 }

 // Process is complete
 return HTTP_IO_DONE;
 }

 // Assume return for state machine convenience.
 // Do not return HTTP_IO_NEED_DATA here by default, because
 // doing so when more data will not arrive is cause for
 // the HTTP2 server to return an error to the user.
 return HTTP_IO_WAITING;
}

The previous example uses the HTTPReadPostName (see page 242) and HTTPReadPostValue (see page 243)
functions, and also demonstrates using the need to use TCPIsGetReady (see page 451), TCPGet (see page 447), and
TCPGetArray (see page 448) when longer values are expected. For applications that will receive and react to parameters
immediately and have no need for a state machine, a simple while loop can be written around HTTPReadPostPair (see
page 243) to accomplish the callback. The HTTPPostLCD (see page 90) function in the TCPIP Demo App provides a
simple example of this.

For more examples, refer to CustomHTTPApp.c in the TCPIP Demo App project.

10.8.1.3 HTTP2 Authentication
The HTTP protocol provides a method for servers to request a user name and password from a client before granting access
to a page. The HTTP2 server supports this authentication mechanism, allowing developers to require valid credentials for
access to some or all pages.

Authentication (see page 85) functionality is supported by two user-provided callback functions. The first, HTTPNeedsAuth
(see page 240), determines if the requested page requires valid credentials to proceed. The second, HTTPCheckAuth (
see page 236), checks the user name and password against an accepted list and determines whether to grant or deny
access. This split between two callback functions is necessitated by the nature of the HTTP protocol and the low-memory
architecture of the HTTP2 server. In cases where different credentials or sets of credentials may be accepted for different
pages, the two functions communicate with each other through a single byte stored in curHTTP.isAuthorized.

Requiring Authentication

When a request is first made, the function HTTPNeedsAuth (see page 240) is called to determine if that page needs

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Features

231

password protection. This function returns a value to instruct the HTTP2 server how to proceed. The most significant bit
indicates whether or not access is granted. That is, values 0x80 and higher allow access unconditionally, while values 0x79
and lower will require a user name and password at a later point. The value returned is stored as curHTTP.isAuthorized
so that it can be accessed by future callback functions.

The following example is the simplest case, in which all files require a password for access:

BYTE HTTPNeedsAuth(BYTE* cFile)
{
 return 0x00;
}

In some cases, only certain files will need to be protected. The second example requires a password for any file located in
the /treasure folder:

BYTE HTTPNeedsAuth(BYTE* cFile)
{
 // Compare to "/treasure" folder. Don't use strcmp here, because
 // cFile has additional path info such as "/treasure/gold.htm"
 if(!memcmppgm2ram((void*)cFile, (ROM void*)"treasure", 8))
 return 0x00;

 return 0x80;
}

More complex uses could require an administrative user to access the /admin folder, while any authenticated user can
access the rest of the site. The third example requires a different set of user name and password combinations for the
/admin folder versus the rest of the site:

#define HTTP_AUTH_ADMIN (0x00)
#define HTTP_AUTH_OTHER (0x01)

BYTE HTTPNeedsAuth(BYTE* cFile)
{
 // Return a specific code for admin users
 if(!memcmppgm2ram((void*)cFile, (ROM void*)"admin", 5))
 return HTTP_AUTH_ADMIN;

 return HTTP_AUTH_OTHER;
}

Validating Credentials

The HTTPCheckAuth (see page 236) function determines if the supplied user name and password are valid to access this
resource. Again, the most significant bit indicates whether or not access is granted. The value returned is also stored as
curHTTP.isAuthorized so that it can be accessed by future callback functions.

The following example is the simplest case, in which one user/password pair is accepted for all pages:

BYTE HTTPCheckAuth(BYTE* cUser, BYTE* cPass)
{
 if(!strcmppgm2ram((char*)cUser, (ROM char*)"AliBaba") &&
 !strcmppgm2ram((char*)cPass, (ROM char*)"Open Sesame!"))
 return 0x80;

 return 0x00;
}

In some cases, you may have multiple users with various levels of access. The following example satisfies the needs used in
the third example of HTTPNeedsAuth (see page 240) above:

BYTE HTTPCheckAuth(BYTE* cUser, BYTE* cPass)
{
 // Check for admin users first
 if(curHTTP.isAuthorized == HTTP_AUTH_ADMIN &&
 !strcmppgm2ram((char*)cUser, (ROM char*)"admin") &&
 !strcmppgm2ram((char*)cPass, (ROM char*)"s3cREt"))
 return 0x80;

 if(!strcmppgm2ram((char*)cUser, (ROM char*)"kate") &&
 !strcmppgm2ram((char*)cPass, (ROM char*)"puppies!"))

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Features

232

 return 0x80;

 return 0x00;
}

More complex uses are certainly feasible. Many applications may choose to store the user names and passwords in
EEPROM or other non-volatile storage so that they may be updated by the end-user. Some applications may wish to return
various values above 0x80 in HTTPCheckAuth (see page 236) so that later callback functions can determine which user
logged in. The flexibility of these functions provides for many more possibilities that are not documented here but can be
developed in just a few hours.

10.8.1.4 HTTP2 Cookies
By design, HTTP is a session-less and state-less protocol; every connection is an independent session with no relation to
another. Cookies (see page 87) were added to the protocol description to solve this problem. This feature allows a web
server to store small bits of text in a user's browser. These values will be returned to the server with every request, allowing
the server to associate session variables with a request. Cookies (see page 87) are typically used for more advanced
authentication systems.

Best practice is generally to store the bulk of the data on the server, and store only a unique identifier with the browser. This
cuts down on data overhead and ensures that the user cannot modify the values stored with the session. However, logic
must be implemented in the server to expire old sessions and allocate memory for new ones. If sensitive data is being
stored, it is also important that the identifier be random enough so as to prevent stealing or spoofing another user's cookies.

Retrieving Cookies

In the HTTP2 server, cookies are retrieved automatically. They are stored in curHTTP.data, just as any other GET form
argument or URL parameter would be. The proper place to parse these values is therefore in the HTTPExecuteGet (see
page 237) callback using the HTTPGetArg (see page 239) or HTTPGetROMArg (see page 240) functions to locate the
values.

This model consumes some of the limited space available for URL parameters. Ensure that cookies do not consume more
space than is available (as defined by HTTP_MAX_DATA_LEN (see page 249)) and that they will fit after any data that
may be submitted via a GET form. If enough space is not available, the cookies will be truncated.

Setting Cookies

Cookies (see page 87) can be set in HTTPExecuteGet (see page 237) or HTTPExecutePost (see page 238). To set a
cookie, store the name/value pairs in curHTTP.data as a series of null-terminated strings. Then set, curHTTP.hasArgs
equal to the number of name/value pairs to be set. For example, the following code sets a cookie indicating a user's
preference for a type of cookie:

void HTTPExecuteGet(void)
{
 ...

 // Set a cookie
 strcpypgm2ram((char*)curHTTP.data, (ROM char*)"flavor\0oatmeal raisin");
 curHTTP.hasArgs = 1;

 ...
}

After this, all future requests from this browser will include the parameter "flavor" in curHTTP.data, along with the
associated value of "oatmeal raisin".

10.8.1.5 HTTP2 Compression
All modern web browsers can receive files encoded with GZIP compression. For static files (those without dynamic
variables), this can decrease the amount of data transmitted by as much as 60%.

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Features

233

The MPFS2 Utility will automatically determine which files can benefit from GZIP compression, and will store the
compressed file in the MPFS2 image when possible. This generally includes all JavaScript and CSS files. (Images are
typically already compressed, so the MPFS2 Utility will generally decide it is better to store them uncompressed.) This HTTP
server will then seamlessly return this compressed file to the browser. Less non-volatile storage space will be required for
the MPFS2 image, and faster transfers back to the client will result. No special configuration is required for this feature.

To prevent certain extensions from being compressed, use the Advanced Settings dialog in the MPFS2 Utility.

10.8.2 HTTP2 Public Members

Enumerations

Name Description

HTTP_IO_RESULT (see
page 236)

Result states for execution callbacks

HTTP_READ_STATUS (
see page 236)

Result states for HTTPPostReadName and HTTPPostReadValue

Functions

Name Description

HTTPCheckAuth (see
page 236)

Performs validation on a specific user name and password.

HTTPExecuteGet (see
page 237)

Processes GET form field variables and cookies.

HTTPExecutePost (see
page 238)

Processes POST form variables and data.

HTTPGetArg (see page
239)

Locates a form field value in a given data array.

HTTPGetROMArg (see
page 240)

Locates a form field value in a given data array.

HTTPNeedsAuth (see
page 240)

Determines if a given file name requires authentication

HTTPPrint_varname (see
page 241)

Inserts dynamic content into a web page

HTTPReadPostName (see
page 242)

Reads a name from a URL encoded string in the TCP buffer.

HTTPReadPostValue (see
page 243)

Reads a value from a URL encoded string in the TCP buffer.

HTTPURLDecode (see
page 244)

Parses a string from URL encoding to plain-text.

Macros

Name Description

HTTPReadPostPair (see
page 243)

Reads a name and value pair from a URL encoded string in the TCP buffer.

sktHTTP (see page 245) Access the current socket

Module

HTTP2 Server (see page 225)

Structures

Name Description

HTTP_CONN (see page
235)

Stores extended state data for each connection

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Public Members

234

Variables

Name Description

curHTTP (see page 235) Current HTTP connection state

Description

The following functions and variables are accessible or implemented by the stack application.

10.8.2.1 curHTTP Variable
File

HTTP2.c

C

HTTP_CONN curHTTP;

Description

Current HTTP connection state

10.8.2.2 HTTP_CONN Structure
File

HTTP2.h

C

typedef struct {
 DWORD byteCount;
 DWORD nextCallback;
 DWORD callbackID;
 DWORD callbackPos;
 BYTE * ptrData;
 BYTE * ptrRead;
 MPFS_HANDLE file;
 MPFS_HANDLE offsets;
 BYTE hasArgs;
 BYTE isAuthorized;
 HTTP_STATUS httpStatus;
 HTTP_FILE_TYPE fileType;
 BYTE data[HTTP_MAX_DATA_LEN];
 BYTE smPost;
} HTTP_CONN;

Members

Members Description

DWORD byteCount; How many bytes have been read so far

DWORD nextCallback; Byte index of the next callback

DWORD callbackID; Callback ID to execute, also used as watchdog timer

DWORD callbackPos; Callback position indicator

BYTE * ptrData; Points to first free byte in data

BYTE * ptrRead; Points to current read location

MPFS_HANDLE file; File pointer for the file being served

MPFS_HANDLE offsets; File pointer for any offset info being used

BYTE hasArgs; True if there were get or cookie arguments

BYTE isAuthorized; 0x00-0x79 on fail, 0x80-0xff on pass

HTTP_STATUS httpStatus; Request method/status

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Public Members

235

HTTP_FILE_TYPE fileType; File type to return with Content-Type

BYTE data[HTTP_MAX_DATA_LEN]; General purpose data buffer

BYTE smPost; POST state machine variable

Description

Stores extended state data for each connection

10.8.2.3 HTTP_IO_RESULT Enumeration
File

HTTP2.h

C

typedef enum {
 HTTP_IO_DONE = 0u,
 HTTP_IO_NEED_DATA,
 HTTP_IO_WAITING
} HTTP_IO_RESULT;

Members

Members Description

HTTP_IO_DONE = 0u Finished with procedure

HTTP_IO_NEED_DATA More data needed to continue, call again later

HTTP_IO_WAITING Waiting for asynchronous process to complete, call again later

Description

Result states for execution callbacks

10.8.2.4 HTTP_READ_STATUS Enumeration
File

HTTP2.h

C

typedef enum {
 HTTP_READ_OK = 0u,
 HTTP_READ_TRUNCATED,
 HTTP_READ_INCOMPLETE
} HTTP_READ_STATUS;

Members

Members Description

HTTP_READ_OK = 0u Read was successful

HTTP_READ_TRUNCATED Buffer overflow prevented by truncating value

HTTP_READ_INCOMPLETE Entire object is not yet in the buffer. Try again later.

Description

Result states for HTTPPostReadName and HTTPPostReadValue

10.8.2.5 HTTPCheckAuth Function
File

HTTP2.h

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Public Members

236

C

BYTE HTTPCheckAuth(
 BYTE* cUser,
 BYTE* cPass
);

Description

This function is implemented by the application developer in CustomHTTPApp.c. Its function is to determine if the user name
and password supplied by the client are acceptable for this resource.

The value of curHTTP.isAuthorized will be set to the previous return value of HTTPRequiresAuthorization. This callback
function can check this value to determine if only specific user names or passwords will be accepted for this resource.

Return values 0x80 - 0xff indicate that the credentials were accepted, while values from 0x00 to 0x79 indicate that
authorization failed. While most applications will only use a single value to grant access, flexibility is provided to store
multiple values in order to indicate which user (or user's group) logged in.

The return value of this function is saved as curHTTP.isAuthorized, and will be available to future callbacks, including any of
the HTTPExecuteGet (see page 237), HTTPExecutePost (see page 238), or HTTPPrint_varname (see page 241)
callbacks.

Remarks

This function is only called when an Authorization header is encountered.

This function may NOT write to the TCP buffer.

Internal

See documentation in the TCP/IP Stack API or HTTP2.h for details.

Preconditions

None

Parameters

Parameters Description

cUser the user name supplied by the client

cPass the password supplied by the client

Return Values

Return Values Description

<= 0x79 the credentials were rejected

>= 0x80 access is granted for this connection

10.8.2.6 HTTPExecuteGet Function
File

HTTP2.h

C

HTTP_IO_RESULT HTTPExecuteGet();

Description

This function is implemented by the application developer in CustomHTTPApp.c. Its purpose is to parse the data received
from URL parameters (GET method forms) and cookies and perform any application-specific tasks in response to these
inputs. Any required authentication has already been validated.

When this function is called, curHTTP.data contains sequential name/value pairs of strings representing the data received. In
this format, HTTPGetArg (see page 239) and HTTPGetROMArg (see page 240) can be used to search for specific
variables in the input. If data buffer space associated with this connection is required, curHTTP.data may be overwritten here

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Public Members

237

once the application is done with the values. Any data placed there will be available to future callbacks for this connection,
including HTTPExecutePost (see page 238) and any HTTPPrint_varname (see page 241) dynamic substitutions.

This function may also issue redirections by setting curHTTP.data to the destination file name or URL, and
curHTTP.httpStatus to HTTP_REDIRECT.

Finally, this function may set cookies. Set curHTTP.data to a series of name/value string pairs (in the same format in which
parameters arrive) and then set curHTTP.hasArgs equal to the number of cookie name/value pairs. The cookies will be
transmitted to the browser, and any future requests will have those values available in curHTTP.data.

Remarks

This function is only called if variables are received via URL parameters or Cookie arguments. This function may NOT write
to the TCP buffer.

This function may service multiple HTTP requests simultaneously. Exercise caution when using global or static variables
inside this routine. Use curHTTP.callbackPos or curHTTP.data for storage associated with individual requests.

Internal

See documentation in the TCP/IP Stack API or HTTP2.h for details.

Preconditions

None

Return Values

Return Values Description

HTTP_IO_DONE application is done processing

HTTP_IO_NEED_DATA this value may not be returned because more data will not become available

HTTP_IO_WAITING the application is waiting for an asynchronous process to complete, and this
function should be called again later

10.8.2.7 HTTPExecutePost Function
File

HTTP2.h

C

HTTP_IO_RESULT HTTPExecutePost();

Description

This function is implemented by the application developer in CustomHTTPApp.c. Its purpose is to parse the data received
from POST forms and perform any application-specific tasks in response to these inputs. Any required authentication has
already been validated before this function is called.

When this function is called, POST data will be waiting in the TCP buffer. curHTTP.byteCount will indicate the number of
bytes remaining to be received before the browser request is complete.

Since data is still in the TCP buffer, the application must call TCPGet (see page 447) or TCPGetArray (see page 448) in
order to retrieve bytes. When this is done, curHTTP.byteCount MUST be updated to reflect how many bytes now remain.
The functions TCPFind (see page 443), TCPFindString, TCPFindROMString, TCPFindArray (see page 444), and
TCPFindROMArray (see page 446) may be helpful to locate data in the TCP buffer.

In general, data submitted from web forms via POST is URL encoded. The HTTPURLDecode (see page 244) function can
be used to decode this information back to a standard string if required. If data buffer space associated with this connection
is required, curHTTP.data may be overwritten here once the application is done with the values. Any data placed there will
be available to future callbacks for this connection, including HTTPExecutePost and any HTTPPrint_varname (see page
241) dynamic substitutions.

Whenever a POST form is processed it is recommended to issue a redirect back to the browser, either to a status page or to
the same form page that was posted. This prevents accidental duplicate submissions (by clicking refresh or back/forward)

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Public Members

238

and avoids browser warnings about "resubmitting form data". Redirects may be issued to the browser by setting
curHTTP.data to the destination file or URL, and curHTTP.httpStatus to HTTP_REDIRECT.

Finally, this function may set cookies. Set curHTTP.data to a series of name/value string pairs (in the same format in which
parameters arrive) and then set curHTTP.hasArgs equal to the number of cookie name/value pairs. The cookies will be
transmitted to the browser, and any future requests will have those values available in curHTTP.data.

Remarks

This function is only called when the request method is POST, and is only used when HTTP_USE_POST is defined. This
method may NOT write to the TCP buffer.

This function may service multiple HTTP requests simultaneously. Exercise caution when using global or static variables
inside this routine. Use curHTTP.callbackPos or curHTTP.data for storage associated with individual requests.

Internal

See documentation in the TCP/IP Stack API or HTTP2.h for details.

Preconditions

None

Return Values

Return Values Description

HTTP_IO_DONE application is done processing

HTTP_IO_NEED_DATA more data is needed to continue, and this function should be called again later

HTTP_IO_WAITING the application is waiting for an asynchronous process to complete, and this
function should be called again later

10.8.2.8 HTTPGetArg Function
File

HTTP2.h

C

BYTE* HTTPGetArg(
 BYTE* cData,
 BYTE* cArg
);

Returns

A pointer to the argument value, or NULL if not found.

Description

Searches through a data array to find the value associated with a given argument. It can be used to find form field values in
data received over GET or POST.

The end of data is assumed to be reached when a null name parameter is encountered. This requires the string to have an
even number of null-terminated strings, followed by an additional null terminator.

Preconditions

The data array has a valid series of null terminated name/value pairs.

Parameters

Parameters Description

data the buffer to search

arg the name of the argument to find

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Public Members

239

10.8.2.9 HTTPGetROMArg Function
File

HTTP2.h

C

BYTE* HTTPGetROMArg(
 BYTE* cData,
 ROM BYTE* cArg
);

Returns

A pointer to the argument value, or NULL if not found.

Description

Searches through a data array to find the value associated with a given argument. It can be used to find form field values in
data received over GET or POST.

The end of data is assumed to be reached when a null name parameter is encountered. This requires the string to have an
even number of null-terminated strings, followed by an additional null terminator.

Remarks

This function is aliased to HTTPGetArg (see page 239) on non-PIC18 platforms.

Preconditions

The data array has a valid series of null terminated name/value pairs.

Parameters

Parameters Description

data the buffer to search

arg the name of the argument to find

10.8.2.10 HTTPNeedsAuth Function
File

HTTP2.h

C

BYTE HTTPNeedsAuth(
 BYTE* cFile
);

Description

This function is implemented by the application developer in CustomHTTPApp.c. Its function is to determine if a file being
requested requires authentication to view. The user name and password, if supplied, will arrive later with the request
headers, and will be processed at that time.

Return values 0x80 - 0xff indicate that authentication is not required, while values from 0x00 to 0x79 indicate that a user
name and password are required before proceeding. While most applications will only use a single value to grant access and
another to require authorization, the range allows multiple "realms" or sets of pages to be protected, with different credential
requirements for each.

The return value of this function is saved as curHTTP.isAuthorized, and will be available to future callbacks, including
HTTPCheckAuth (see page 236) and any of the HTTPExecuteGet (see page 237), HTTPExecutePost (see page
238), or HTTPPrint_varname (see page 241) callbacks.

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Public Members

240

Remarks

This function may NOT write to the TCP buffer.

Internal

See documentation in the TCP/IP Stack API or HTTP2.h for details.

Preconditions

None

Parameters

Parameters Description

cFile the name of the file being requested

Return Values

Return Values Description

<= 0x79 valid authentication is required

>= 0x80 access is granted for this connection

10.8.2.11 HTTPPrint_varname Function
File

HTTP2.h

C

void HTTPPrint_varname(
 WORD wParam1,
 WORD wParam2,
 ...
);

Returns

None

Description

Functions in this style are implemented by the application developer in CustomHTTPApp.c. These functions generate
dynamic content to be inserted into web pages and other files returned by the HTTP2 server.

Functions of this type are called when a dynamic variable is located in a web page. (ie, ~varname~) The name between the
tilde '~' characters is appended to the base function name. In this example, the callback would be named
HTTPPrint_varname.

The function prototype is located in your project's HTTPPrint.h, which is automatically generated by the MPFS2 Utility. The
prototype will have WORD parameters included for each parameter passed in the dynamic variable. For example, the
variable "~myArray(2,6)~" will generate the prototype "void HTTPPrint_varname(WORD, WORD);".

When called, this function should write its output directly to the TCP socket using any combination of TCPIsPutReady (see
page 451), TCPPut (see page 454), TCPPutArray (see page 455), TCPPutString (see page 457), TCPPutROMArray
(see page 455), and TCPPutROMString (see page 456).

Before calling, the HTTP2 server guarantees that at least HTTP_MIN_CALLBACK_FREE (see page 249) bytes (defaults
to 16 bytes) are free in the output buffer. If the function is writing less than this amount, it should simply write the data to the
socket and return.

In situations where a function needs to write more this amount, it must manage its output state using curHTTP.callbackPos.
This value will be set to zero before the function is called. If the function is managing its output state, it must set this to a
non-zero value before returning. Typically this is used to track how many bytes have been written, or how many remain to be
written. If curHTTP.callbackPos is non-zero, the function will be called again when more buffer space is available. Once the
callback completes, set this value back to zero to resume normal servicing of the request.

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Public Members

241

Remarks

This function may service multiple HTTP requests simultaneously, especially when managing its output state. Exercise
caution when using global or static variables inside this routine. Use curHTTP.callbackPos or curHTTP.data for storage
associated with individual requests.

Preconditions

None

Parameters

Parameters Description

wParam1 first parameter passed in the dynamic variable (if any)

wParam2 second parameter passed in the dynamic variable (if any)

... additional parameters as necessary

10.8.2.12 HTTPReadPostName Function
File

HTTP2.h

C

HTTP_READ_STATUS HTTPReadPostName(
 BYTE* cData,
 WORD wLen
);

Description

Reads a name from a URL encoded string in the TCP buffer. This function is meant to be called from an HTTPExecutePost
(see page 238) callback to facilitate easier parsing of incoming data. This function also prevents buffer overflows by
forcing the programmer to indicate how many bytes are expected. At least 2 extra bytes are needed in cData over the
maximum length of data expected to be read.

This function will read until the next '=' character, which indicates the end of a name parameter. It assumes that the front of
the buffer is the beginning of the name paramter to be read.

This function properly updates curHTTP.byteCount by decrementing it by the number of bytes read. It also removes the
delimiting '=' from the buffer.

Preconditions

Front of TCP buffer is the beginning of a name parameter, and the rest of the TCP buffer contains a URL-encoded string
with a name parameter terminated by a '=' character.

Parameters

Parameters Description

cData where to store the name once it is read

wLen how many bytes can be written to cData

Return Values

Return Values Description

HTTP_READ_OK name was successfully read

HTTP_READ_TRUNCTATED entire name could not fit in the buffer, so the value was truncated and data has
been lost

HTTP_READ_INCOMPLETE entire name was not yet in the buffer, so call this function again later to retrieve

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Public Members

242

10.8.2.13 HTTPReadPostPair Macro
File

HTTP2.h

C

#define HTTPReadPostPair(cData, wLen) HTTPReadPostValue(cData, wLen)

Description

Reads a name and value pair from a URL encoded string in the TCP buffer. This function is meant to be called from an
HTTPExecutePost (see page 238) callback to facilitate easier parsing of incoming data. This function also prevents buffer
overflows by forcing the programmer to indicate how many bytes are expected. At least 2 extra bytes are needed in cData
over the maximum length of data expected to be read.

This function will read until the next '&' character, which indicates the end of a value parameter. It assumes that the front of
the buffer is the beginning of the name paramter to be read.

This function properly updates curHTTP.byteCount by decrementing it by the number of bytes read. It also removes the
delimiting '&' from the buffer.

Once complete, two strings will exist in the cData buffer. The first is the parameter name that was read, while the second is
the associated value.

Remarks

This function is aliased to HTTPReadPostValue (see page 243), since they effectively perform the same task. The name is
provided only for completeness.

Preconditions

Front of TCP buffer is the beginning of a name parameter, and the rest of the TCP buffer contains a URL-encoded string
with a name parameter terminated by a '=' character and a value parameter terminated by a '&'.

Parameters

Parameters Description

cData where to store the name and value strings once they are read

wLen how many bytes can be written to cData

Return Values

Return Values Description

HTTP_READ_OK name and value were successfully read

HTTP_READ_TRUNCTATED entire name and value could not fit in the buffer, so input was truncated and
data has been lost

HTTP_READ_INCOMPLETE entire name and value was not yet in the buffer, so call this function again later
to retrieve

10.8.2.14 HTTPReadPostValue Function
File

HTTP2.h

C

HTTP_READ_STATUS HTTPReadPostValue(
 BYTE* cData,
 WORD wLen
);

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Public Members

243

Description

Reads a value from a URL encoded string in the TCP buffer. This function is meant to be called from an HTTPExecutePost
(see page 238) callback to facilitate easier parsing of incoming data. This function also prevents buffer overflows by
forcing the programmer to indicate how many bytes are expected. At least 2 extra bytes are needed in cData above the
maximum length of data expected to be read.

This function will read until the next '&' character, which indicates the end of a value parameter. It assumes that the front of
the buffer is the beginning of the value paramter to be read. If curHTTP.byteCount indicates that all expected bytes are in the
buffer, it assumes that all remaining data is the value and acts accordingly.

This function properly updates curHTTP.byteCount by decrementing it by the number of bytes read. The terminating '&'
character is also removed from the buffer.

Preconditions

Front of TCP buffer is the beginning of a name parameter, and the rest of the TCP buffer contains a URL-encoded string
with a name parameter terminated by a '=' character.

Parameters

Parameters Description

cData where to store the value once it is read

wLen how many bytes can be written to cData

Return Values

Return Values Description

HTTP_READ_OK value was successfully read

HTTP_READ_TRUNCTATED entire value could not fit in the buffer, so the value was truncated and data has
been lost

HTTP_READ_INCOMPLETE entire value was not yet in the buffer, so call this function again later to retrieve

10.8.2.15 HTTPURLDecode Function
File

HTTP2.h

C

BYTE* HTTPURLDecode(
 BYTE* cData
);

Returns

A pointer to the last null terminator in data, which is also the first free byte for new data.

Description

Parses a string from URL encoding to plain-text. The following conversions are made: ‘=’ to ‘0’, ‘&’ to ‘0’, ‘+’ to ‘ ‘, and “%xx”
to a single hex byte.

After completion, the data has been decoded and a null terminator signifies the end of a name or value. A second null
terminator (or a null name parameter) indicates the end of all the data.

Remarks

This function is called by the stack to parse GET arguments and cookie data. User applications can use this function to
decode POST data, but first need to verify that the string is null-terminated.

Preconditions

The data parameter is null terminated and has at least one extra byte free.

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Public Members

244

Parameters

Parameters Description

cData The string which is to be decoded in place.

10.8.2.16 sktHTTP Macro
File

HTTP2.h

C

#define sktHTTP httpStubs[curHTTPID].socket // Access the current socket

Description

Access the current socket

10.8.3 HTTP2 Stack Members

Functions

Name Description

HTTPInit (see page 245) Initializes the HTTP server module.

HTTPServer (see page
246)

Performs periodic tasks for the HTTP2 module.

Module

HTTP2 Server (see page 225)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.8.3.1 HTTPInit Function
File

HTTP2.h

C

void HTTPInit();

Returns

None

Description

Sets all HTTP sockets to the listening state, and initializes the state machine and file handles for each connection. If SSL is
enabled, opens a socket on that port as well.

Remarks

This function is called only one during lifetime of the application.

Preconditions

TCP must already be initialized.

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Stack Members

245

Section

Function Prototypes

10.8.3.2 HTTPServer Function
File

HTTP2.h

C

void HTTPServer();

Returns

None

Description

Browses through each open connection and attempts to process any pending operations.

Remarks

This function acts as a task (similar to one in an RTOS). It performs its task in a co-operative manner, and the main
application must call this function repeatedly to ensure that all open or new connections are served in a timely fashion.

Preconditions

HTTPInit (see page 245)() must already be called.

10.8.4 HTTP2 Internal Members

Enumerations

Name Description

HTTP_FILE_TYPE (see
page 248)

File type definitions

HTTP_STATUS (see page
249)

Supported Commands and Server Response Codes

SM_HTTP2 (see page 257) Basic HTTP Connection State Machine

Functions

Name Description

HTTPHeaderParseAuthorization
(see page 251)

Parses the "Authorization:" header for a request and verifies the credentials.

HTTPHeaderParseContentLength
(see page 252)

Parses the "Content-Length:" header for a request.

HTTPHeaderParseCookie (see
page 252)

Parses the "Cookie:" headers for a request and stores them as GET
variables.

HTTPHeaderParseLookup (see
page 253)

Calls the appropriate header parser based on the index of the header that
was read from the request.

HTTPIncFile (see page 253) Writes a file byte-for-byte to the currently loaded TCP socket.

HTTPLoadConn (see page 254) Switches the currently loaded connection for the HTTP2 module.

HTTPMPFSUpload (see page
254)

Saves a file uploaded via POST as the new MPFS image in EEPROM or
external Flash.

HTTPProcess (see page 255) Performs any pending operations for the currently loaded HTTP connection.

HTTPReadTo (see page 255) Reads to a buffer until a specified delimiter character.

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Internal Members

246

HTTPSendFile (see page 257) Serves up the next chunk of curHTTP (see page 235)'s file, up to a)
available TX FIFO space or b) the next callback index, whichever comes
first.

Macros

Name Description

HTTP_CACHE_LEN (see
page 248)

Max lifetime (sec) of static responses as string

HTTP_MAX_DATA_LEN (
see page 249)

Define the maximum data length for reading cookie and GET/POST
arguments (bytes)

HTTP_MAX_HEADER_LEN (
see page 249)

Set to length of longest string above

HTTP_MIN_CALLBACK_FREE
(see page 249)

Define the minimum number of bytes free in the TX FIFO before executing
callbacks

HTTP_PORT (see page 249) Define the listening port for the HTTP server

HTTP_TIMEOUT (see page
251)

Max time (sec) to await more data before timing out and disconnecting the
socket

HTTPS_PORT (see page
256)

Define the listening port for the HTTPS server (if
STACK_USE_SSL_SERVER is enabled)

smHTTP (see page 258) Access the current state machine

RESERVED_HTTP_MEMORY
(see page 258)

Macro indicating how much RAM to allocate on an ethernet controller to store
HTTP state data.

Module

HTTP2 Server (see page 225)

Structures

Name Description

HTTP_STUB (see page
250)

HTTP Connection Struct Stores partial state data for each connection Meant for
storage in fast access RAM

Variables

Name Description

curHTTPID (see page 247) ID of the currently loaded HTTP_CONN (see page 235)

httpContentTypes (see
page 251)

Content-type strings corresponding to HTTP_FILE_TYPE (see page 248)

httpFileExtensions (see
page 251)

HTTPRequestHeaders (
see page 256)

Header strings for which we'd like to parse

HTTPResponseHeaders (
see page 256)

Initial response strings (Corresponding to HTTP_STATUS (see page 249))

httpStubs (see page 257) HTTP stubs with state machine and socket

Description

The following functions and variables are designated as internal to the HTTP2 module.

10.8.4.1 curHTTPID Variable
File

HTTP2.c

C

BYTE curHTTPID;

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Internal Members

247

Description

ID of the currently loaded HTTP_CONN (see page 235)

10.8.4.2 HTTP_CACHE_LEN Macro
File

HTTP2.h

C

#define HTTP_CACHE_LEN ("600") // Max lifetime (sec) of static responses as string

Description

Max lifetime (sec) of static responses as string

10.8.4.3 HTTP_FILE_TYPE Enumeration
File

HTTP2.h

C

typedef enum {
 HTTP_TXT = 0u,
 HTTP_HTM,
 HTTP_HTML,
 HTTP_CGI,
 HTTP_XML,
 HTTP_CSS,
 HTTP_GIF,
 HTTP_PNG,
 HTTP_JPG,
 HTTP_JAVA,
 HTTP_WAV,
 HTTP_UNKNOWN
} HTTP_FILE_TYPE;

Members

Members Description

HTTP_TXT = 0u File is a text document

HTTP_HTM File is HTML (extension .htm)

HTTP_HTML File is HTML (extension .html)

HTTP_CGI File is HTML (extension .cgi)

HTTP_XML File is XML (extension .xml)

HTTP_CSS File is stylesheet (extension .css)

HTTP_GIF File is GIF image (extension .gif)

HTTP_PNG File is PNG image (extension .png)

HTTP_JPG File is JPG image (extension .jpg)

HTTP_JAVA File is java (extension .java)

HTTP_WAV File is audio (extension .wav)

HTTP_UNKNOWN File type is unknown

Description

File type definitions

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Internal Members

248

10.8.4.4 HTTP_MAX_DATA_LEN Macro
File

TCPIP MRF24WB.h

C

#define HTTP_MAX_DATA_LEN (100u)

Description

Define the maximum data length for reading cookie and GET/POST arguments (bytes)

10.8.4.5 HTTP_MAX_HEADER_LEN Macro
File

HTTP2.c

C

#define HTTP_MAX_HEADER_LEN (15u)

Description

Set to length of longest string above

10.8.4.6 HTTP_MIN_CALLBACK_FREE Macro
File

TCPIP MRF24WB.h

C

#define HTTP_MIN_CALLBACK_FREE (16u)

Description

Define the minimum number of bytes free in the TX FIFO before executing callbacks

10.8.4.7 HTTP_PORT Macro
File

TCPIP MRF24WB.h

C

#define HTTP_PORT (80u)

Description

Define the listening port for the HTTP server

10.8.4.8 HTTP_STATUS Enumeration
File

HTTP2.h

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Internal Members

249

C

typedef enum {
 HTTP_GET = 0u,
 HTTP_POST,
 HTTP_BAD_REQUEST,
 HTTP_UNAUTHORIZED,
 HTTP_NOT_FOUND,
 HTTP_OVERFLOW,
 HTTP_INTERNAL_SERVER_ERROR,
 HTTP_NOT_IMPLEMENTED,
 HTTP_MPFS_FORM,
 HTTP_MPFS_UP,
 HTTP_MPFS_OK,
 HTTP_MPFS_ERROR,
 HTTP_REDIRECT,
 HTTP_SSL_REQUIRED
} HTTP_STATUS;

Members

Members Description

HTTP_GET = 0u GET command is being processed

HTTP_POST POST command is being processed

HTTP_BAD_REQUEST 400 Bad Request will be returned

HTTP_UNAUTHORIZED 401 Unauthorized will be returned

HTTP_NOT_FOUND 404 Not Found will be returned

HTTP_OVERFLOW 414 Request-URI Too Long will be returned

HTTP_INTERNAL_SERVER_ERROR 500 Internal Server Error will be returned

HTTP_NOT_IMPLEMENTED 501 Not Implemented (not a GET or POST command)

HTTP_MPFS_FORM Show the MPFS Upload form

HTTP_MPFS_UP An MPFS Upload is being processed

HTTP_MPFS_OK An MPFS Upload was successful

HTTP_MPFS_ERROR An MPFS Upload was not a valid image

HTTP_REDIRECT 302 Redirect will be returned

HTTP_SSL_REQUIRED 403 Forbidden is returned, indicating SSL is required

Description

Supported Commands and Server Response Codes

10.8.4.9 HTTP_STUB Structure
File

HTTP2.h

C

typedef struct {
 SM_HTTP2 sm;
 TCP_SOCKET socket;
} HTTP_STUB;

Members

Members Description

SM_HTTP2 sm; Current connection state

TCP_SOCKET socket; Socket being served

Description

HTTP Connection Struct Stores partial state data for each connection Meant for storage in fast access RAM

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Internal Members

250

10.8.4.10 HTTP_TIMEOUT Macro
File

HTTP2.h

C

#define HTTP_TIMEOUT (45u) // Max time (sec) to await more data before timing out and
disconnecting the socket

Description

Max time (sec) to await more data before timing out and disconnecting the socket

10.8.4.11 httpContentTypes Variable
File

HTTP2.c

C

ROM char * ROM httpContentTypes[HTTP_UNKNOWN+1] = { "text/plain", "text/html", "text/html",
"text/html", "text/xml", "text/css", "image/gif", "image/png", "image/jpeg",
"application/java-vm", "audio/x-wave", "" };

Description

Content-type strings corresponding to HTTP_FILE_TYPE (see page 248)

10.8.4.12 httpFileExtensions Variable
File

HTTP2.c

C

ROM char * ROM httpFileExtensions[HTTP_UNKNOWN+1] = { "txt", "htm", "html", "cgi", "xml",
"css", "gif", "png", "jpg", "cla", "wav", "\0\0\0" };

Section

File and Content Type Settings

**

File type extensions corresponding to HTTP_FILE_TYPE

10.8.4.13 HTTPHeaderParseAuthorization Function
File

HTTP2.c

C

static void HTTPHeaderParseAuthorization();

Returns

None

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Internal Members

251

Description

Parses the "Authorization:" header for a request. For example, "BASIC YWRtaW46cGFzc3dvcmQ=" is decoded to a user
name of "admin" and a password of "password". Once read, HTTPCheckAuth (see page 236) is called from
CustomHTTPApp.c to determine if the credentials are acceptable.

The return value of HTTPCheckAuth (see page 236) is saved in curHTTP.isAuthorized for later use by the application.

Remarks

This function is ony available when HTTP_USE_AUTHENTICATION is defined.

Preconditions

None

10.8.4.14 HTTPHeaderParseContentLength Function
File

HTTP2.c

C

static void HTTPHeaderParseContentLength();

Returns

None

Description

Parses the "Content-Length:" header to determine how many bytes of POST data to expect after the request. This value is
stored in curHTTP.byteCount.

Remarks

This function is ony available when HTTP_USE_POST is defined.

Preconditions

None

10.8.4.15 HTTPHeaderParseCookie Function
File

HTTP2.c

C

static void HTTPHeaderParseCookie();

Returns

None

Description

Parses the "Cookie:" headers for a request. For example, "Cookie: name=Wile+E.+Coyote; order=ROCKET_LAUNCHER" is
decoded to "name=Wile+E.+Coyote&order=ROCKET_LAUNCHER&" and stored as any other GET variable in
curHTTP.data.

The user application can easily access these values later using the HTTPGetArg (see page 239)() and HTTPGetROMArg
(see page 240)() functions.

Remarks

This function is ony available when HTTP_USE_COOKIES is defined.

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Internal Members

252

Preconditions

None

10.8.4.16 HTTPHeaderParseLookup Function
File

HTTP2.c

C

static void HTTPHeaderParseLookup(
 BYTE i
);

Description

Calls the appropriate header parser based on the index of the header that was read from the request.

Preconditions

None

Parameters

Parameters Description

i the index of the string found in HTTPRequestHeaders (see page 256)

Return Values

Return Values Description

TRUE the end of the file was reached and reading is done

FALSE more data remains to be read

Section

Function Prototypes

10.8.4.17 HTTPIncFile Function
File

HTTP2.h

C

void HTTPIncFile(
 ROM BYTE* cFile
);

Returns

None

Description

Allows an entire file to be included as a dynamic variable, providing a basic templating system for HTML web pages. This
reduces unneeded duplication of visual elements such as headers, menus, etc.

When curHTTP.callbackPos is 0, the file is opened and as many bytes as possible are written. The current position is then
saved to curHTTP.callbackPos and the file is closed. On subsequent calls, reading begins at the saved location and
continues. Once the end of the input file is reached, curHTTP.callbackPos is set back to 0 to indicate completion.

Remarks

Users should not call this function directly, but should instead add dynamic variables in the form of ~inc:filename.ext~ in their
HTML code to include (for example) the file "filename.ext" at that specified location. The MPFS2 Generator utility will handle

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Internal Members

253

the rest.

Preconditions

None

Parameters

Parameters Description

cFile the name of the file to be sent

10.8.4.18 HTTPLoadConn Function
File

HTTP2.c

C

static void HTTPLoadConn(
 BYTE hHTTP
);

Returns

None

Description

Saves the currently loaded HTTP connection back to Ethernet buffer RAM, then loads the selected connection into curHTTP
(see page 235) in local RAM for processing.

Preconditions

None

Parameters

Parameters Description

hHTTP the connection ID to load

10.8.4.19 HTTPMPFSUpload Function
File

HTTP2.c

C

static HTTP_IO_RESULT HTTPMPFSUpload();

Description

Allows the MPFS image in EEPROM or external Flash to be updated via a web page by accepting a file upload and storing it
to the external memory.

Remarks

This function is only available when MPFS uploads are enabled and the MPFS image is stored in EEPROM.

Internal

After the headers, the first line from the form will be the MIME separator. Following that is more headers about the file, which
are discarded. After another CRLFCRLF pair the file data begins, which is read 16 bytes at a time and written to external
memory.

Preconditions

MPFSFormat (see page 269)() has been called.

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Internal Members

254

Return Values

Return Values Description

HTTP_IO_DONE on success

HTTP_IO_NEED_DATA if more data is still expected

10.8.4.20 HTTPProcess Function
File

HTTP2.c

C

static void HTTPProcess();

Returns

None

Description

Performs any pending operations for the currently loaded HTTP connection.

Preconditions

HTTPInit (see page 245)() and HTTPLoadConn (see page 254)() have been called.

10.8.4.21 HTTPReadTo Function
File

HTTP2.c

C

static HTTP_READ_STATUS HTTPReadTo(
 BYTE delim,
 BYTE* buf,
 WORD len
);

Description

Reads from the TCP buffer to cData until either cDelim is reached, or until wLen - 2 bytes have been read. The value read is
saved to cData and null terminated. (wLen - 2 is used so that the value can be passed to HTTPURLDecode (see page
244) later, which requires a null terminator plus one extra free byte.)

The delimiter character is removed from the buffer, but not saved to cData. If all data cannot fit into cData, it will still be
removed from the buffer but will not be saved anywhere.

This function properly updates curHTTP.byteCount by decrementing it by the number of bytes read.

Preconditions

None

Parameters

Parameters Description

cDelim the character at which to stop reading, or NULL to read to the end of the buffer

cData where to store the data being read

wLen how many bytes can be written to cData

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Internal Members

255

Return Values

Return Values Description

HTTP_READ_OK data was successfully read

HTTP_READ_TRUNCTATED entire data could not fit in the buffer, so the data was truncated and data has
been lost

HTTP_READ_INCOMPLETE delimiter character was not found

10.8.4.22 HTTPRequestHeaders Variable
File

HTTP2.c

C

ROM char * ROM HTTPRequestHeaders[] = { "Cookie:", "Authorization:", "Content-Length:" };

Description

Header strings for which we'd like to parse

10.8.4.23 HTTPResponseHeaders Variable
File

HTTP2.c

C

ROM char * ROM HTTPResponseHeaders[] = { "HTTP/1.1 200 OK\r\nConnection: close\r\n",
"HTTP/1.1 200 OK\r\nConnection: close\r\n", "HTTP/1.1 400 Bad Request\r\nConnection:
close\r\n\r\n400 Bad Request: can't handle Content-Length\r\n", "HTTP/1.1 401
Unauthorized\r\nWWW-Authenticate: Basic realm=\"Protected\"\r\nConnection: close\r\n\r\n401
Unauthorized: Password required\r\n", "HTTP/1.1 404 Not found\r\nConnection:
close\r\nContent-Type: text/html\r\n\r\n404: File not found
Use <a href=\"/"
HTTP_MPFS_UPLOAD "\">MPFS Upload to program web pages\r\n", "HTTP/1.1 404 Not
found\r\nConnection: close\r\n\r\n404: File not found\r\n", "HTTP/1.1 414 Request-URI Too
Long\r\nConnection: close\r\n\r\n414 Request-URI Too Long: Buffer overflow detected\r\n",
"HTTP/1.1 500 Internal Server Error\r\nConnection: close\r\n\r\n500 Internal Server Error:
Expected data not present\r\n", "HTTP/1.1 501 Not Implemented\r\nConnection:
close\r\n\r\n501 Not Implemented: Only GET and POST supported\r\n", "HTTP/1.1 200
OK\r\nConnection: close\r\nContent-Type: text/html\r\n\r\n<html><body
style=\"margin:100px\"><form method=post action=\"/" HTTP_MPFS_UPLOAD "\"
enctype=\"multipart/form-data\">MPFS Image Upload<p><input type=file name=i size=40>
 <input type=submit value=\"Upload\"></form></body></html>", "", "HTTP/1.1 200
OK\r\nConnection: close\r\nContent-Type: text/html\r\n\r\n<html><body
style=\"margin:100px\">MPFS Update Successful<p>Site main
page</body></html>", "HTTP/1.1 500 Internal Server Error\r\nConnection:
close\r\nContent-Type: text/html\r\n\r\n<html><body style=\"margin:100px\">MPFS Image
Corrupt or Wrong Version<p>Try
again?</body></html>", "HTTP/1.1 302 Found\r\nConnection: close\r\nLocation: ",
"HTTP/1.1 403 Forbidden\r\nConnection: close\r\n\r\n403 Forbidden: SSL Required - use
HTTPS\r\n" };

Description

Initial response strings (Corresponding to HTTP_STATUS (see page 249))

10.8.4.24 HTTPS_PORT Macro
File

TCPIP MRF24WB.h

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Internal Members

256

C

#define HTTPS_PORT (443u)

Description

Define the listening port for the HTTPS server (if STACK_USE_SSL_SERVER is enabled)

10.8.4.25 HTTPSendFile Function
File

HTTP2.c

C

static BOOL HTTPSendFile();

Description

Serves up the next chunk of curHTTP (see page 235)'s file, up to a) available TX FIFO space or b) the next callback
index, whichever comes first.

Preconditions

curHTTP.file and curHTTP.offsets have both been opened for reading.

Return Values

Return Values Description

TRUE the end of the file was reached and reading is done

FALSE more data remains to be read

10.8.4.26 httpStubs Variable
File

HTTP2.c

C

HTTP_STUB httpStubs[MAX_HTTP_CONNECTIONS];

Description

HTTP stubs with state machine and socket

10.8.4.27 SM_HTTP2 Enumeration
File

HTTP2.h

C

typedef enum {
 SM_HTTP_IDLE = 0u,
 SM_HTTP_PARSE_REQUEST,
 SM_HTTP_PARSE_HEADERS,
 SM_HTTP_AUTHENTICATE,
 SM_HTTP_PROCESS_GET,
 SM_HTTP_PROCESS_POST,
 SM_HTTP_PROCESS_REQUEST,
 SM_HTTP_SERVE_HEADERS,
 SM_HTTP_SERVE_COOKIES,
 SM_HTTP_SERVE_BODY,
 SM_HTTP_SEND_FROM_CALLBACK,

10.8 HTTP2 Server Microchip TCP/IP Stack Help HTTP2 Internal Members

257

 SM_HTTP_DISCONNECT
} SM_HTTP2;

Members

Members Description

SM_HTTP_IDLE = 0u Socket is idle

SM_HTTP_PARSE_REQUEST Parses the first line for a file name and GET args

SM_HTTP_PARSE_HEADERS Reads and parses headers one at a time

SM_HTTP_AUTHENTICATE Validates the current authorization state

SM_HTTP_PROCESS_GET Invokes user callback for GET args or cookies

SM_HTTP_PROCESS_POST Invokes user callback for POSTed data

SM_HTTP_PROCESS_REQUEST Begins the process of returning data

SM_HTTP_SERVE_HEADERS Sends any required headers for the response

SM_HTTP_SERVE_COOKIES Adds any cookies to the response

SM_HTTP_SERVE_BODY Serves the actual content

SM_HTTP_SEND_FROM_CALLBACK Invokes a dynamic variable callback

SM_HTTP_DISCONNECT Disconnects the server and closes all files

Description

Basic HTTP Connection State Machine

10.8.4.28 smHTTP Macro
File

HTTP2.c

C

#define smHTTP httpStubs[curHTTPID].sm // Access the current state machine

Description

Access the current state machine

10.8.4.29 RESERVED_HTTP_MEMORY Macro
File

HTTP2.h

C

#define RESERVED_HTTP_MEMORY ((DWORD)MAX_HTTP_CONNECTIONS * (DWORD)sizeof(HTTP_CONN))

Description

Macro indicating how much RAM to allocate on an ethernet controller to store HTTP state data.

10.9 ICMP
The Internet Control Message Protocol is used to send error and status messages and requests. The ICMP module
implements the Echo Reply message type (commonly referred to as a ping) which can be used to determine if a specified
host is reachable across an IP network from a device running the TCP/IP stack. An ICMP server is also supported to
respond to pings from other devices.

10.9 ICMP Microchip TCP/IP Stack Help

258

10.9.1 ICMP Public Members

Functions

Name Description

ICMPBeginUsage (see
page 259)

Claims ownership of the ICMP module.

ICMPSendPing (see page
260)

None

ICMPSendPingToHost (
see page 260)

None

ICMPSendPingToHostROM
(see page 261)

Begins the process of transmitting an ICMP echo request. This normally
involves an ARP resolution procedure first.

ICMPGetReply (see page
261)

None

ICMPEndUsage (see page
262)

Gives up ownership of the ICMP module.

Macros

Name Description

ICMPSendPingToHostROM
(see page 262)

This is macro ICMPSendPingToHostROM.

Module

ICMP (see page 258)

Description

The following functions and variables are accessible or implemented by the stack application.

10.9.1.1 ICMPBeginUsage Function
File

ICMP.h

C

BOOL ICMPBeginUsage();

Side Effects

None

Returns

TRUE: You have successfully gained ownership of the ICMP client module and can now use the ICMPSendPing (see
page 260)() and ICMPGetReply (see page 261)() functions. FALSE: Some other application is using the ICMP client
module. Calling ICMPSendPing (see page 260)() will corrupt the other application's ping result.

10.9 ICMP Microchip TCP/IP Stack Help ICMP Public Members

259

Description

Claims ownership of the ICMP module.

Remarks

None

Preconditions

None

10.9.1.2 ICMPSendPing Function
File

ICMP.h

C

void ICMPSendPing(
 DWORD dwRemoteIP
);

Side Effects

None

Returns

Begins the process of transmitting an ICMP echo request. This normally involves an ARP resolution procedure first.

Description

None

Remarks

None

Preconditions

ICMPBeginUsage (see page 259)() returned TRUE

Parameters

Parameters Description

dwRemoteIP IP Address (see page 142) to ping. Must be stored big endian. Ex.
192.168.0.1 should be passed as 0x0100A8C0.

10.9.1.3 ICMPSendPingToHost Function
File

ICMP.h

C

void ICMPSendPingToHost(
 BYTE * szRemoteHost
);

Side Effects

None

Returns

Begins the process of transmitting an ICMP echo request. This normally involves an ARP resolution procedure first.

10.9 ICMP Microchip TCP/IP Stack Help ICMP Public Members

260

Description

None

Remarks

None

Preconditions

ICMPBeginUsage (see page 259)() returned TRUE

Parameters

Parameters Description

szRemoteHost Host name to ping. Must be stored in RAM if being called by PIC18. Ex.
www.microchip.com

10.9.1.4 ICMPSendPingToHostROM Function
File

ICMP.h

C

void ICMPSendPingToHostROM(
 ROM BYTE * szRemoteHost
);

Side Effects

None

Returns

None

Description

Begins the process of transmitting an ICMP echo request. This normally involves an ARP resolution procedure first.

Remarks

None

Preconditions

ICMPBeginUsage (see page 259)() returned TRUE

Parameters

Parameters Description

szRemoteHost Host name to ping. Must be stored in ROM. Should only be called by PIC18.
Ex. www.microchip.com

10.9.1.5 ICMPGetReply Function
File

ICMP.h

C

LONG ICMPGetReply();

Side Effects

None

10.9 ICMP Microchip TCP/IP Stack Help ICMP Public Members

261

Returns

-3: Could not resolve hostname (DNS timeout or hostname invalid) -2: No response received yet -1: Operation timed out
(longer than ICMP_TIMEOUT (see page 265)) has elapsed. >=0: Number of TICKs that elapsed between initial ICMP
transmission and reception of a valid echo.

Description

None

Remarks

None

Preconditions

ICMPBeginUsage (see page 259)() returned TRUE and ICMPSendPing (see page 260)() was called

10.9.1.6 ICMPEndUsage Function
File

ICMP.h

C

void ICMPEndUsage();

Side Effects

None

Returns

Your ownership of the ICMP module is released. You can no longer use ICMPSendPing (see page 260)().

Description

Gives up ownership of the ICMP module.

Remarks

None

Preconditions

ICMPBeginUsage (see page 259)() was called by you and it returned TRUE.

10.9.1.7 ICMPSendPingToHostROM Macro
File

ICMP.h

C

#define ICMPSendPingToHostROM(a) ICMPSendPingToHost((BYTE*)(a))

Description

This is macro ICMPSendPingToHostROM.

10.9 ICMP Microchip TCP/IP Stack Help ICMP Internal Members

262

10.9.2 ICMP Internal Members

Functions

Name Description

ICMPProcess (see page
263)

None

Macros

Name Description

ICMP_TIMEOUT (see
page 265)

ICMP Timeout Value

Module

ICMP (see page 258)

Structures

Name Description

ICMP_PACKET (see page
264)

ICMP Packet Structure

Variables

Name Description

ICMPFlags (see page 264) ICMP Flag structure

ICMPState (see page 264) ICMP State Machine Enumeration

ICMPTimer (see page 265) ICMP tick timer variable

StaticVars (see page 265) ICMP Static Variables

wICMPSequenceNumber (
see page 266)

ICMP Sequence Number

Description

The following functions and variables are designated as internal to the ICMP module.

10.9.2.1 ICMPProcess Function
File

ICMP.h

C

void ICMPProcess(
 NODE_INFO * remote,
 WORD len
);

Side Effects

None

Returns

Generates an echo reply, if requested Validates and sets ICMPFlags.bReplyValid if a correct ping response to one of ours is
received.

Description

None

10.9 ICMP Microchip TCP/IP Stack Help ICMP Internal Members

263

Remarks

None

Preconditions

MAC buffer contains ICMP type packet.

Parameters

Parameters Description

*remote Pointer to a NODE_INFO structure of the ping requester

len Count of how many bytes the ping header and payload are in this IP packet

10.9.2.2 ICMPFlags Variable
File

ICMP.c

C

struct {
 unsigned char bICMPInUse : 1;
 unsigned char bReplyValid : 1;
 unsigned char bRemoteHostIsROM : 1;
} ICMPFlags;

Members

Members Description

unsigned char bICMPInUse : 1; Indicates that the ICMP Client is in use

unsigned char bReplyValid : 1; Indicates that a correct Ping response to one of our pings was received

unsigned char bRemoteHostIsROM : 1; Indicates that a remote host name was passed as a ROM pointer argument

Description

ICMP Flag structure

10.9.2.3 ICMP_PACKET Structure
File

ICMP.c

C

typedef struct {
 BYTE vType;
 BYTE vCode;
 WORD wChecksum;
 WORD wIdentifier;
 WORD wSequenceNumber;
 WORD wData;
} ICMP_PACKET;

Description

ICMP Packet Structure

10.9.2.4 ICMPState Variable
File

ICMP.c

10.9 ICMP Microchip TCP/IP Stack Help ICMP Internal Members

264

C

enum {
 SM_IDLE = 0,
 SM_DNS_SEND_QUERY,
 SM_DNS_GET_RESPONSE,
 SM_ARP_SEND_QUERY,
 SM_ARP_GET_RESPONSE,
 SM_ICMP_SEND_ECHO_REQUEST,
 SM_ICMP_GET_ECHO_RESPONSE
} ICMPState;

Description

ICMP State Machine Enumeration

10.9.2.5 ICMP_TIMEOUT Macro
File

ICMP.c

C

#define ICMP_TIMEOUT (4ul*TICK_SECOND)

Description

ICMP Timeout Value

10.9.2.6 ICMPTimer Variable
File

ICMP.c

C

DWORD ICMPTimer;

Description

ICMP tick timer variable

10.9.2.7 StaticVars Variable
File

ICMP.c

C

union {
 union {
 ROM BYTE * szROM;
 BYTE * szRAM;
 } RemoteHost;
 NODE_INFO ICMPRemote;
} StaticVars;

Description

ICMP Static Variables

10.9 ICMP Microchip TCP/IP Stack Help ICMP Internal Members

265

10.9.2.8 wICMPSequenceNumber Variable
File

ICMP.c

C

WORD wICMPSequenceNumber;

Description

ICMP Sequence Number

10.10 MPFS2
The MPFS2 file system module provides a light-weight read-only file system that can be stored in external EEPROM,
external serial Flash, or internal Flash program memory. This file system serves as the basis for the HTTP2 web server
module, but is also used by the SNMP module and is available to other applications that require basic read-only storage
capabilities.

The MPFS2 module includes an MPFS2 Utility that runs on your PC. This program builds MPFS2 images in various formats
for use in the supported storage mediums. More information is available in the MPFS2 Utility (see page 58) section.

Using External Storage

For external storage, the MPFS2 file system supports Microchip 25LCxxx EEPROM parts for densities up to 1Mbit. SST
25VFxxxB serial Flash parts are also supported for densities up to 32Mbit.

To use external EEPROM storage, ensure that the configuration macro MPFS_USE_EEPROM is defined in
TCPIPConfig.h. If you are using a 1Mbit part (25LC1024), also be sure to define USE_EEPROM_25LC1024 to enable the
24-bit device addressing used by that part. For external serial Flash, define MFPS_USE_SPI_FLASH instead of the
EEPROM macros.

Images stored externally are uploaded via HTTP. This can be accomplished using the MPFS2 Utility, or can be accessed
directly from a browser. Uploading files directly (see page 59) is described in the MPFS2 Utility documentation. Uploading
images via HTTP can be accomplished as described in the Getting Started (see page 73) section.

When storing images externally, space can be reserved for separate application use. The configuration macro
MPFS_RESERVE_BLOCK controls the size of this space. The specified number of bytes will be reserved at the beginning
address of the storage device (0x000000). When using serial Flash, this address must be a multiple of the flash sector size
(4096 bytes).

Using Internal Flash Storage

When storing images in internal Flash program memory, new images cannot be uploaded at run time. Instead, the image is
compiled in as part of your project in the MPLAB IDE. To select this storage option comment out the configuration macro
MPFS_USE_EEPROM in TCPIPConfig.h, then ensure that the image file generated by the MPFS2 Utility is included in
the MPLAB project.

Other Considerations

MPFS2 defines a fixed number of files that can be opened simultaneously. The configuration parameter
MAX_MPFS_HANDLES controls how many files can be opened at once. If this resource is depleted, no new files can be
opened until MPFSClose (see page 269) is called for an existing handle. The HTTP2 web server expects to be able to use
at least two handles for each connection, plus one extra. Additional handles should be allocated if other modules will be
accessing the file system as well.

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Public Members

266

10.10.1 MPFS2 Public Members

Enumerations

Name Description

MPFS_SEEK_MODE (see
page 268)

Indicates the method for MPFSSeek (see page 278)

Functions

Name Description

MPFSClose (see page 269) Closes a file.

MPFSFormat (see page
269)

Prepares the MPFS image for writing.

MPFSGet (see page 270) Reads a byte from a file.

MPFSGetArray (see page
270)

Reads a series of bytes from a file.

MPFSGetBytesRem (see
page 271)

Determines how many bytes remain to be read.

MPFSGetEndAddr (see
page 271)

Determines the ending address of a file.

MPFSGetFilename (see
page 272)

Reads the file name of a file that is already open.

MPFSGetFlags (see page
272)

Reads a file's flags.

MPFSGetID (see page 273) Determines the ID in the FAT for a file.

MPFSGetLong (see page
273)

Reads a DWORD or Long value from the MPFS.

MPFSGetMicrotime (see
page 274)

Reads the microtime portion of a file's timestamp.

MPFSGetPosition (see
page 274)

Determines the current position in the file

MPFSGetSize (see page
274)

Reads the size of a file.

MPFSGetStartAddr (see
page 275)

Reads the starting address of a file.

MPFSGetTimestamp (see
page 275)

Reads the timestamp for the specified file.

MPFSOpen (see page 276) Opens a file in the MPFS2 file system.

MPFSOpenID (see page
276)

Quickly re-opens a file.

MPFSOpenROM (see
page 277)

Opens a file in the MPFS2 file system.

MPFSPutArray (see page
277)

Writes an array of data to the MPFS image.

MPFSSeek (see page 278) Moves the current read pointer to a new location.

MPFSPutEnd (see page
278)

Finalizes an MPFS writing operation.

Macros

Name Description

MPFS_INVALID (see page
268)

Indicates a position pointer is invalid

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Public Members

267

MPFS_INVALID_HANDLE
(see page 268)

Indicates that a handle is not valid

Module

MPFS2 (see page 266)

Types

Name Description

MPFS_HANDLE (see page
268)

MPFS Handles are currently stored as BYTEs

Description

The following functions and variables are accessible by the stack application.

10.10.1.1 MPFS_HANDLE Type
File

MPFS2.h

C

typedef BYTE MPFS_HANDLE;

Description

MPFS Handles are currently stored as BYTEs

10.10.1.2 MPFS_INVALID Macro
File

MPFS2.h

C

#define MPFS_INVALID (0xffffffffu) // Indicates a position pointer is invalid

Description

Indicates a position pointer is invalid

10.10.1.3 MPFS_INVALID_HANDLE Macro
File

MPFS2.h

C

#define MPFS_INVALID_HANDLE (0xffu) // Indicates that a handle is not valid

Description

Indicates that a handle is not valid

10.10.1.4 MPFS_SEEK_MODE Enumeration
File

MPFS2.h

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Public Members

268

C

typedef enum {
 MPFS_SEEK_START = 0u,
 MPFS_SEEK_END,
 MPFS_SEEK_FORWARD,
 MPFS_SEEK_REWIND
} MPFS_SEEK_MODE;

Members

Members Description

MPFS_SEEK_START = 0u Seek forwards from the front of the file

MPFS_SEEK_END Seek backwards from the end of the file

MPFS_SEEK_FORWARD Seek forward from the current position

MPFS_SEEK_REWIND See backwards from the current position

Description

Indicates the method for MPFSSeek (see page 278)

10.10.1.5 MPFSClose Function
File

MPFS2.h

C

void MPFSClose(
 MPFS_HANDLE hMPFS
);

Returns

None

Description

Closes a file and releases its stub back to the pool of available handles.

Preconditions

None

Parameters

Parameters Description

hMPFS (see page 336) the file handle to be closed

10.10.1.6 MPFSFormat Function
File

MPFS2.h

C

MPFS_HANDLE MPFSFormat();

Returns

An MPFS handle that can be used for MPFSPut commands, or MPFS_INVALID_HANDLE (see page 268) when the
EEPROM failed to initialize for writing.

Description

Prepares the MPFS image for writing and locks the image so that other processes may not access it.

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Public Members

269

Remarks

In order to prevent misreads, the MPFS will be inaccessible until MPFSClose (see page 269) is called. This function is not
available when the MPFS is stored in internal Flash program memory.

Preconditions

None

10.10.1.7 MPFSGet Function
File

MPFS2.h

C

BOOL MPFSGet(
 MPFS_HANDLE hMPFS,
 BYTE* c
);

Description

Reads a byte from a file.

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle from which to read

c Where to store the byte that was read

Return Values

Return Values Description

TRUE The byte was successfully read

FALSE No byte was read because either the handle was invalid or the end of the file
has been reached.

10.10.1.8 MPFSGetArray Function
File

MPFS2.h

C

WORD MPFSGetArray(
 MPFS_HANDLE hMPFS,
 BYTE* cData,
 WORD wLen
);

Returns

The number of bytes successfully read. If this is less than wLen, an EOF occurred while attempting to read.

Description

Reads a series of bytes from a file.

Preconditions

The file handle referenced by hMPFS is already open.

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Public Members

270

Parameters

Parameters Description

hMPFS (see page 336) the file handle from which to read

cData where to store the bytes that were read

wLen how many bytes to read

10.10.1.9 MPFSGetBytesRem Function
File

MPFS2.h

C

DWORD MPFSGetBytesRem(
 MPFS_HANDLE hMPFS
);

Returns

The number of bytes remaining in the file as a DWORD

Description

Determines how many bytes remain to be read.

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle from which to read the metadata

10.10.1.10 MPFSGetEndAddr Function
File

MPFS2.h

C

MPFS_PTR MPFSGetEndAddr(
 MPFS_HANDLE hMPFS
);

Returns

The address just after the file ends (start address of next file)

Description

Determines the ending address of a file.

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle from which to read the metadata

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Public Members

271

10.10.1.11 MPFSGetFilename Function
File

MPFS2.h

C

BOOL MPFSGetFilename(
 MPFS_HANDLE hMPFS,
 BYTE* cName,
 WORD wLen
);

Description

Reads the file name of a file that is already open.

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle from which to determine the file name

cName where to store the name of the file

wLen the maximum length of data to store in cName

Return Values

Return Values Description

TRUE the file name was successfully located

FALSE the file handle provided is not currently open

10.10.1.12 MPFSGetFlags Function
File

MPFS2.h

C

WORD MPFSGetFlags(
 MPFS_HANDLE hMPFS
);

Returns

The flags that were associated with the file

Description

Reads a file's flags.

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle from which to read the metadata

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Public Members

272

10.10.1.13 MPFSGetID Function
File

MPFS2.h

C

WORD MPFSGetID(
 MPFS_HANDLE hMPFS
);

Returns

The ID in the FAT for this file

Description

Determines the ID in the FAT for a file.

Remarks

Use this function in association with MPFSOpenID (see page 276) to quickly access file without permanently reserving a
file handle.

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle from which to read the metadata

10.10.1.14 MPFSGetLong Function
File

MPFS2.h

C

BOOL MPFSGetLong(
 MPFS_HANDLE hMPFS,
 DWORD* ul
);

Returns

TRUE - The byte was successfully read FALSE - No byte was read because either the handle was invalid or the end of the
file has been reached.

Description

Reads a DWORD or Long value from the MPFS.

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle from which to read

ul where to store the DWORD or long value that was read

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Public Members

273

10.10.1.15 MPFSGetMicrotime Function
File

MPFS2.h

C

DWORD MPFSGetMicrotime(
 MPFS_HANDLE hMPFS
);

Returns

The microtime that was read as a DWORD

Description

Reads the microtime portion of a file's timestamp.

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle from which to read the metadata

10.10.1.16 MPFSGetPosition Function
File

MPFS2.h

C

DWORD MPFSGetPosition(
 MPFS_HANDLE hMPFS
);

Returns

The position in the file as a DWORD (or MPFS_PTR (see page 281))

Description

Determines the current position in the file

Remarks

Calling MPFSSeek (see page 278)(hMPFS, pos, MPFS_SEEK_START) will return the pointer to this position at a later
time. (Where pos is the value returned by this function.)

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle for which to determine position

10.10.1.17 MPFSGetSize Function
File

MPFS2.h

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Public Members

274

C

DWORD MPFSGetSize(
 MPFS_HANDLE hMPFS
);

Returns

The size that was read as a DWORD

Description

Reads the size of a file.

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle from which to read the metadata

10.10.1.18 MPFSGetStartAddr Function
File

MPFS2.h

C

MPFS_PTR MPFSGetStartAddr(
 MPFS_HANDLE hMPFS
);

Returns

The starting address of the file in the MPFS image

Description

Reads the starting address of a file.

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle from which to read the metadata

10.10.1.19 MPFSGetTimestamp Function
File

MPFS2.h

C

DWORD MPFSGetTimestamp(
 MPFS_HANDLE hMPFS
);

Returns

The timestamp that was read as a DWORD

Description

Reads the timestamp for the specified file.

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Public Members

275

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle from which to read the metadata

10.10.1.20 MPFSOpen Function
File

MPFS2.h

C

MPFS_HANDLE MPFSOpen(
 BYTE* cFile
);

Returns

An MPFS_HANDLE (see page 268) to the opened file if found, or MPFS_INVALID_HANDLE (see page 268) if the file
could not be found or no free handles exist.

Description

Opens a file in the MPFS2 file system.

Preconditions

None

Parameters

Parameters Description

cFile a null terminated file name to open

10.10.1.21 MPFSOpenID Function
File

MPFS2.h

C

MPFS_HANDLE MPFSOpenID(
 WORD hFatID
);

Returns

An MPFS_HANDLE (see page 268) to the opened file if found, or MPFS_INVALID_HANDLE (see page 268) if the file
could not be found or no free handles exist.

Description

Quickly re-opens a file in the MPFS2 file system. Use this function along with MPFSGetID (see page 273)() to quickly
re-open a file without tying up a permanent MPFSStub.

Preconditions

None

Parameters

Parameters Description

hFatID the ID of a previous opened file in the FAT

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Public Members

276

10.10.1.22 MPFSOpenROM Function
File

MPFS2.h

C

MPFS_HANDLE MPFSOpenROM(
 ROM BYTE* cFile
);

Returns

An MPFS_HANDLE (see page 268) to the opened file if found, or MPFS_INVALID_HANDLE (see page 268) if the file
could not be found or no free handles exist.

Description

Opens a file in the MPFS2 file system.

Remarks

This function is aliased to MPFSOpen (see page 276) on non-PIC18 platforms.

Preconditions

None

Parameters

Parameters Description

cFile a null terminated file name to open

10.10.1.23 MPFSPutArray Function
File

MPFS2.h

C

WORD MPFSPutArray(
 MPFS_HANDLE hMPFS,
 BYTE* cData,
 WORD wLen
);

Returns

The number of bytes successfully written.

Description

Writes an array of data to the MPFS image.

Remarks

For EEPROM, the actual write may not initialize until the internal write page is full. To ensure that previously written data
gets stored, MPFSPutEnd (see page 278) must be called after the last call to MPFSPutArray.

Preconditions

MPFSFormat (see page 269) was sucessfully called.

Parameters

Parameters Description

hMPFS (see page 336) the file handle for writing

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Public Members

277

cData the array of bytes to write

wLen how many bytes to write

10.10.1.24 MPFSSeek Function
File

MPFS2.h

C

BOOL MPFSSeek(
 MPFS_HANDLE hMPFS,
 DWORD dwOffset,
 MPFS_SEEK_MODE tMode
);

Returns

TRUE - the seek was successful FALSE - either the new location or the handle itself was invalid

Description

Moves the current read pointer to a new location.

Preconditions

The file handle referenced by hMPFS is already open.

Parameters

Parameters Description

hMPFS (see page 336) the file handle to seek with

dwOffset offset from the specified position in the specified direction

tMode one of the MPFS_SEEK_MODE (see page 268) constants

10.10.1.25 MPFSPutEnd Function
File

MPFS2.h

C

void MPFSPutEnd(
 BOOL final
);

Returns

None

Description

Finalizes an MPFS writing operation.

Preconditions

MPFSFormat (see page 269) and MPFSPutArray (see page 277) were sucessfully called.

Parameters

Parameters Description

final TRUE if the application is done writing, FALSE if MPFS2 called this function
locally.

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Stack Members

278

10.10.2 MPFS2 Stack Members

Functions

Name Description

MPFSInit (see page 279) Initializes the MPFS module.

Module

MPFS2 (see page 266)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.10.2.1 MPFSInit Function
File

MPFS2.h

C

void MPFSInit();

Returns

None

Description

Sets all MPFS handles to closed, and initializes access to the EEPROM if necessary.

Remarks

This function is called only one during lifetime of the application.

Preconditions

None

Section

Function Definitions

10.10.3 MPFS2 Internal Members

Functions

Name Description

ReadProgramMemory (see
page 283)

Assembly function to read all three bytes of program memory for 16-bit parts

_LoadFATRecord (see
page 283)

Loads the FAT record for a specified handle.

_Validate (see page 284) Validates the MPFS Image

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Internal Members

279

Macros

Name Description

MAX_FILE_NAME_LEN (
see page 281)

Supports long file names to 64 characters

MPFS_WRITE_PAGE_SIZE
(see page 282)

Defines the size of a page in EEPROM

MPFS2_FLAG_HASINDEX
(see page 282)

Indicates a file has an associated index of dynamic variables

MPFS2_FLAG_ISZIPPED (
see page 282)

Indicates a file is compressed with GZIP compression

MPFSTell (see page 283) Alias of MPFSGetPosition (see page 274)

MPFS_INVALID_FAT (see
page 285)

Indicates an invalid FAT cache

Module

MPFS2 (see page 266)

Structures

Name Description

MPFS_STUB (see page
281)

Stores each file handle's information Handles are free when addr =
MPFS_INVALID (see page 268)

MPFS_FAT_RECORD (
see page 284)

Stores the data for an MPFS2 FAT record

Types

Name Description

MPFS_PTR (see page 281) MPFS Pointers are currently DWORDs

Variables

Name Description

isMPFSLocked (see page
280)

Allows the MPFS to be locked, preventing access during updates

lastRead (see page 281) Track the last read address to prevent unnecessary data overhead to switch
locations.

MPFSStubs (see page 282) Track the MPFS File Handles MPFSStubs[0] is reserved for internal use (FAT
access)

fatCache (see page 284) FAT record cache

fatCacheID (see page 285) ID of currently loaded fatCache (see page 284)

numFiles (see page 285) Number of files in this MPFS image

Description

The following functions and variables are designated as internal to the MPFS2 module.

10.10.3.1 isMPFSLocked Variable
File

MPFS2.c

C

BOOL isMPFSLocked;

Description

Allows the MPFS to be locked, preventing access during updates

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Internal Members

280

10.10.3.2 lastRead Variable
File

MPFS2.c

C

MPFS_PTR lastRead;

Description

Track the last read address to prevent unnecessary data overhead to switch locations.

10.10.3.3 MAX_FILE_NAME_LEN Macro
File

MPFS2.c

C

#define MAX_FILE_NAME_LEN (64u)

Description

Supports long file names to 64 characters

10.10.3.4 MPFS_PTR Type
File

MPFS2.h

C

typedef DWORD MPFS_PTR;

Description

MPFS Pointers are currently DWORDs

10.10.3.5 MPFS_STUB Structure
File

MPFS2.h

C

typedef struct {
 MPFS_PTR addr;
 DWORD bytesRem;
 WORD fatID;
} MPFS_STUB;

Members

Members Description

MPFS_PTR addr; Current address in the file system

DWORD bytesRem; How many bytes remain in this file

WORD fatID; ID of which file in the FAT was accessed

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Internal Members

281

Description

Stores each file handle's information Handles are free when addr = MPFS_INVALID (see page 268)

10.10.3.6 MPFS_WRITE_PAGE_SIZE Macro
File

MPFS2.h

C

#define MPFS_WRITE_PAGE_SIZE (64u) // Defines the size of a page in EEPROM

Description

Defines the size of a page in EEPROM

10.10.3.7 MPFS2_FLAG_HASINDEX Macro
File

MPFS2.h

C

#define MPFS2_FLAG_HASINDEX ((WORD)0x0002) // Indicates a file has an associated index
of dynamic variables

Description

Indicates a file has an associated index of dynamic variables

10.10.3.8 MPFS2_FLAG_ISZIPPED Macro
File

MPFS2.h

C

#define MPFS2_FLAG_ISZIPPED ((WORD)0x0001) // Indicates a file is compressed with GZIP
compression

Description

Indicates a file is compressed with GZIP compression

10.10.3.9 MPFSStubs Variable
File

MPFS2.c

C

MPFS_STUB MPFSStubs[MAX_MPFS_HANDLES+1];

Description

Track the MPFS File Handles MPFSStubs[0] is reserved for internal use (FAT access)

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Internal Members

282

10.10.3.10 MPFSTell Macro
File

MPFS2.h

C

#define MPFSTell(a) MPFSGetPosition(a)

Description

Alias of MPFSGetPosition (see page 274)

10.10.3.11 ReadProgramMemory Function
File

MPFS2.h

C

DWORD ReadProgramMemory(
 DWORD address
);

Description

Assembly function to read all three bytes of program memory for 16-bit parts

10.10.3.12 _LoadFATRecord Function
File

MPFS2.c

C

static void _LoadFATRecord(
 WORD fatID
);

Returns

None

Description

Loads the FAT record for a specified handle.

Remarks

The FAT record will be stored in fatCache (see page 284).

Preconditions

None

Parameters

Parameters Description

fatID the ID of the file whose FAT is to be loaded

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Internal Members

283

10.10.3.13 _Validate Function
File

MPFS2.c

C

static void _Validate();

Returns

None

Description

Verifies that the MPFS image is valid, and reads the number of available files from the image header. This function is called
on boot, and again after any image is written.

Preconditions

None

10.10.3.14 MPFS_FAT_RECORD Structure
File

MPFS2.h

C

typedef struct {
 DWORD string;
 DWORD data;
 DWORD len;
 DWORD timestamp;
 DWORD microtime;
 WORD flags;
} MPFS_FAT_RECORD;

Members

Members Description

DWORD string; Pointer to the file name

DWORD data; Address (see page 142) of the file data

DWORD len; Length of file data

DWORD timestamp; Timestamp of file

DWORD microtime; Microtime stamp of file

WORD flags; Flags for this file

Description

Stores the data for an MPFS2 FAT record

10.10.3.15 fatCache Variable
File

MPFS2.c

C

MPFS_FAT_RECORD fatCache;

10.10 MPFS2 Microchip TCP/IP Stack Help MPFS2 Internal Members

284

Description

FAT record cache

10.10.3.16 fatCacheID Variable
File

MPFS2.c

C

WORD fatCacheID;

Description

ID of currently loaded fatCache (see page 284)

10.10.3.17 numFiles Variable
File

MPFS2.c

C

WORD numFiles;

Description

Number of files in this MPFS image

10.10.3.18 MPFS_INVALID_FAT Macro
File

MPFS2.h

C

#define MPFS_INVALID_FAT (0xffffu) // Indicates an invalid FAT cache

Description

Indicates an invalid FAT cache

10.11 NBNS
The NetBIOS Name Service protocol associates host names with IP addresses, similarly to DNS, but on the same IP subnet.
Practically, this allows the assignment of human-name hostnames to access boards on the same subnet. For example. in
the "TCPIP Demo App" demonstration project, the demo board is programmed with the human name 'mchpboard' so it can
be accessed directly instead of with its IP address.

10.11 NBNS Microchip TCP/IP Stack Help NBNS Stack Members

285

10.11.1 NBNS Stack Members

Functions

Name Description

NBNSGetName (see page
286)

Reads the NetBIOS name from a UDP socket and copies it into a
user-specified buffer.

NBNSPutName (see page
287)

Transmits the NetBIOS name across an open UDP socket.

NBNSTask (see page 287) Sends responses to NetBIOS name requests

Macros

Name Description

NBNS_PORT (see page
288)

NetBIOS Name Service port

Module

NBNS (see page 285)

Structures

Name Description

NBNS_HEADER (see
page 288)

NBNS Header structure

_NBNS_HEADER (see
page 288)

NBNS Header structure

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.11.1.1 NBNSGetName Function
File

NBNS.c

C

static void NBNSGetName(
 BYTE * String
);

Side Effects

None

Returns

None

Description

Reads the NetBIOS name from a UDP socket and copies it into a user-specified buffer.

Remarks

None

Preconditions

None

10.11 NBNS Microchip TCP/IP Stack Help NBNS Stack Members

286

Parameters

Parameters Description

String Pointer to an array into which a received NetBIOS name should be copied.

10.11.1.2 NBNSPutName Function
File

NBNS.c

C

static void NBNSPutName(
 BYTE * String
);

Side Effects

None

Returns

None

Description

Transmits the NetBIOS name across an open UDP socket.

Remarks

None

Preconditions

None

Parameters

Parameters Description

String The name to transmit

10.11.1.3 NBNSTask Function
File

NBNS.h

C

void NBNSTask();

Side Effects

None

Returns

None

Description

Sends responses to NetBIOS name requests

Remarks

None

Preconditions

None

10.11 NBNS Microchip TCP/IP Stack Help NBNS Stack Members

287

10.11.1.4 NBNS_HEADER Structure
File

NBNS.c

C

typedef struct _NBNS_HEADER {
 WORD_VAL TransactionID;
 WORD_VAL Flags;
 WORD_VAL Questions;
 WORD_VAL Answers;
 WORD_VAL AuthoritativeRecords;
 WORD_VAL AdditionalRecords;
} NBNS_HEADER;

Description

NBNS Header structure

10.11.1.5 NBNS_PORT Macro
File

NBNS.c

C

#define NBNS_PORT (137u)

Description

NetBIOS Name Service port

10.12 Performance Tests
The TCP and UDP Performance Test modules provide a method for obtaining metrics about the stack's performance. They
can be used to benchmark the stack on various hardware platforms, and are also useful to determine how your custom
application has affected stack performance.

The stack automatically calls these modules when they are included, so you never need to call any functions directly.
Instructions for use of the modules can be found in the documentation for UDPPerformanceTask (see page 289),
TCPTXPerformanceTask (see page 291), and TCPRXPerformanceTask (see page 290).

10.12.1 Performance Test Stack Members

Functions

Name Description

TCPPerformanceTask (see
page 289)

Tests the performance of the TCP module.

UDPPerformanceTask (
see page 289)

Tests the transmit performance of the UDP module.

10.12 Performance Tests Microchip TCP/IP Stack Help Performance Test Stack Members

288

Module

Performance Tests (see page 288)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.12.1.1 TCPPerformanceTask Function
File

TCPPerformanceTest.h

C

void TCPPerformanceTask();

Returns

None

Description

This function calls both TCPTXPerformanceTask (see page 291) and TCPRXPerformanceTask (see page 290) to
perform the performance task functions. Refer to the documentation for each of those functions for details.

Preconditions

TCP is initialized.

10.12.1.2 UDPPerformanceTask Function
File

UDPPerformanceTest.h

C

void UDPPerformanceTask();

Returns

None

Description

This function tests the transmit performance of the UDP module. At boot, this module will transmit 1024 large UDP broadcast
packets of 1024 bytes each. Using a packet sniffer, one can determine how long this process takes and calculate the
transmit rate of the stack. This function tests true UDP performance in that it will open a socket, transmit one packet, and
close the socket for each loop. After this initial transmission, the module can be re-enabled by holding button 3.

This function is particularly useful after development to determine the impact of your application code on the stack's
performance. A before and after comparison will indicate if your application is unacceptably blocking the processor or taking
too long to execute.

Preconditions

UDP is initialized.

10.12 Performance Tests Microchip TCP/IP Stack Help Performance Test Internal Members

289

10.12.2 Performance Test Internal Members

Functions

Name Description

TCPRXPerformanceTask (
see page 290)

Tests the receive performance of the TCP module.

TCPTXPerformanceTask (
see page 291)

Tests the transmit performance of the TCP module.

Macros

Name Description

PERFORMANCE_PORT (
see page 291)

Which UDP port to broadcast from for the UDP tests

RX_PERFORMANCE_PORT
(see page 291)

The TCP port to listen (see page 170) on for TCP receive tests

TX_PERFORMANCE_PORT
(see page 292)

The TCP port to listen (see page 170) on for TCP transmit tests

Module

Performance Tests (see page 288)

Description

The following functions and variables are designated as internal to the module.

10.12.2.1 TCPRXPerformanceTask Function
File

TCPPerformanceTest.c

C

void TCPRXPerformanceTask();

Returns

None

Description

This function tests the receive performance of the TCP module. To use, open a telnet connection to the device on
RX_PERFORMANCE_PORT (see page 291) (9763 by default). Then use your telnet utility to upload a large file to the
device. Each second the board will report back how many bytes were received in the previous second.

TCP performance is affected by many factors, including round-trip time and the TCP buffer size. For faster results, increase
the size of the RX buffer size for the TCP_PURPOSE_TCP_PERFORMANCE_RX socket in TCPIPConfig.h. Round-trip time
is affected by the distance to the device, so across the desk will be orders of magnitude faster than across the Internet.

This function is particularly useful after development to determine the impact of your application code on the stack's
performance. A before and after comparison will indicate if your application is unacceptably blocking the processor or taking
too long to execute.

Preconditions

TCP is initialized.

10.12 Performance Tests Microchip TCP/IP Stack Help Performance Test Internal Members

290

10.12.2.2 TCPTXPerformanceTask Function
File

TCPPerformanceTest.c

C

void TCPTXPerformanceTask();

Returns

None

Description

This function tests the transmit performance of the TCP module. To use, open a telnet connection to the device on
TX_PERFORMANCE_PORT (see page 292) (9762 by default). The board will rapidly transmit data and report its
performance to the telnet client.

TCP performance is affected by many factors, including round-trip time and the TCP buffer size. For faster results, increase
the size of the TX buffer size for the TCP_PURPOSE_TCP_PERFORMANCE_TX socket in TCPIPConfig.h. Round-trip time
is affected by the distance to the device, so across the desk will be orders of magnitude faster than across the Internet.

This function is particularly useful after development to determine the impact of your application code on the stack's
performance. A before and after comparison will indicate if your application is unacceptably blocking the processor or taking
too long to execute.

Preconditions

TCP is initialized.

10.12.2.3 PERFORMANCE_PORT Macro
File

UDPPerformanceTest.c

C

#define PERFORMANCE_PORT 9

Description

Which UDP port to broadcast from for the UDP tests

10.12.2.4 RX_PERFORMANCE_PORT Macro
File

TCPPerformanceTest.c

C

#define RX_PERFORMANCE_PORT 9763

Description

The TCP port to listen (see page 170) on for TCP receive tests

10.12 Performance Tests Microchip TCP/IP Stack Help Performance Test Internal Members

291

10.12.2.5 TX_PERFORMANCE_PORT Macro
File

TCPPerformanceTest.c

C

#define TX_PERFORMANCE_PORT 9762

Description

The TCP port to listen (see page 170) on for TCP transmit tests

10.13 SMTP Client
The SMTP client module in the TCP/IP Stack lets applications send e-mails to any recipient worldwide. These message
could include status information or important alerts. Using the e-mail to SMS gateways provided by most cell phone carriers,
these messages can also be delivered directly to cell phone handsets.

Using the SMTP client requires access to a local mail server (such as mail.yourdomain.com) for reliable operation. Your ISP
or network administrator can provide the correct address, but end-user applications will need an interface to provide this data.

10.13.1 SMTP Client Examples

Module

SMTP Client (see page 292)

Description

The following two examples demonstrate the use of the SMTP client in different scenarios. The first, and simpler example,
sends a short message whose contents are all located in RAM at once.

The second example is more involved and demonstrates generating a message on the fly in the case where the entire
message cannot fit into RAM at once. In this case, the message is started by the stack, but the delivery of the contents
happens in pieces and is handled by the application.

10.13.1.1 SMTP Client Short Message Example
The SMTP client API is simplified when messages can be buffered entirely in RAM. The SMTPDemo (see page 93)

example provided in MainDemo.c sends a brief e-mail message indicating the current status of the board's buttons. This
document will walk through that example.

Make sure STACK_USE_SMTP_CLIENT is uncommented in TCPIPConfig.h before continuing.

The diagram below provides an overview of the process:

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Examples

292

First, call SMTPBeginUsage (see page 298) to verify that the SMTP client is available and to begin a new message. If
FALSE is returned, the SMTP client is busy and the application must return to the main loop to allow StackTask to execute
again.

Next, set the local relay server to use as SMTPClient.Server. If the local relay server requires a user name and
password, set SMTPClient.Username and SMTPClient.Password to the appropriate credentials.

If server parameters are not set, the stack will attempt to deliver the message directly to its destination host. This will likely
fail due to spam prevention measures put in place by most ISPs and network administrators.

Continue on to set the header strings as necessary for the message. This includes the subject line, from address, and any
recipients you need to add. Finally, set SMTPClient.Body to the message to be sent.

At this point, verify that SMTPClient.ROMPointers is correctly configured for any strings that are stored in program
memory. Once the message is ready to send, call SMTPSendMail (see page 304) to instruct the SMTP client to begin
transmission.

The application must now call SMTPIsBusy (see page 300) until it returns FALSE. Each time TRUE is returned, return to
the main loop and wait for StackTask to execute again. This allows the SMTP server to continue its work in a cooperative
multitasking manner. Once FALSE is returned, call SMTPEndUsage (see page 299) to release the SMTP client. Check the
return value of this function to determine if the message was successfully sent.

The example in MainDemo.c needs minor modifications to use your e-mail address. The Server and To fields must be set
in SMTPDemo (see page 93) in order for the message to be properly delivered. Once this is done, holding down
BUTTON2 and BUTTON3 simultaneously (the left-most two buttons) will begin sending the message. LED1 will light as the
message is being processed, and will extinguish when the SMTP state machine completes. If the transmission was
successful LED2 will light, otherwise it will remain dark.

10.13.1.2 SMTP Client Long Message Example
The SMTP client API is capable of sending messages that do not fit entirely in RAM. To do so, the application must manage
its output state and only write as many bytes as are available in the buffer at a time. The second SMTPDemo (see page

93) example provided in MainDemo.c sends a message that is a dump of all contents of the PIC's RAM. This example is
currently commented out. Comment out the previous Short Message Example and uncomment the Long Message Example.
This document will walk through sending a longer message.

Make sure STACK_USE_SMTP_CLIENT is uncommented in TCPIPConfig.h before continuing.

Sending longer messages is divided into three stages. The first stage configures the SMTP client to send the message. The
second stage sends the message in small chunks as buffer space is available. The final stage finishes the transmission and
determines whether or not the message was successful.

The diagram below illustrates the first stage:

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Examples

293

The first stage is largely similar to the first few steps in sending a short message. First, call SMTPBeginUsage (see page
298) to verify that the SMTP client is available and to begin a new message. If FALSE is returned, the SMTP client is busy
and the application must return to the main loop to allow StackTask to execute again.

Next, set the local relay server to use as SMTPClient.Server. If the local relay server requires a user name and
password, set SMTPClient.Username and SMTPClient.Password to the appropriate credentials.

If server parameters are not set, the stack will attempt to deliver the message directly to its destination host. This will likely
fail due to spam prevention measures put in place by most ISPs and network administrators.

Continue on to set the header strings as necessary for the message. This includes the subject line, from address, and any
recipients you need to add.

The next portion of the process differs. Ensure that SMTPClient.Body remains set to its default (NULL). At this point, call
SMTPSendMail (see page 304) to open a connection to the remote server and transmit the headers. The application is
now ready to proceed to the second stage and send the message body.

The following diagram provides an overview of stage two and three:

Upon entering stage two, the application should call SMTPIsBusy (see page 300) to verify that the connection to the
remote server is active and has not been lost. If the call succeeds, call SMTPIsPutReady (see page 300) to determine
how many bytes are available in the TX buffer. If no bytes are available, return to the main loop so that StackTask can
transmit the data to the remote node and free up the buffer.

If space is available, any combination of the SMTPPut (see page 301), SMTPPutArray (see page 301),
SMTPPutROMArray (see page 302), SMTPPutString (see page 303), and SMTPPutROMString (see page 303)
functions may be called to transmit the message. These functions return the number of bytes successfully written. Use this
value, along with the value originally returned from SMTPIsPutReady (see page 300) to track how much free space

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Examples

294

remains in the TX buffer. Once the buffer is depleted, call SMTPFlush (see page 299) to force the data written to be sent.

The SMTP client module can accept (see page 164) as much data as the TCP TX FIFO can hold. This is determined by
the socket initializer for TCP_PURPOSE_DEFAULT type sockets in TCPIPConfig.h, which defaults to 200 bytes.

If the TX buffer is exhausted before the message is complete, return to the main loop so that StackTask may transmit the
data to the remote node and free up the buffer. Upon return, go to the beginning of the second stage to transmit the next
portion of the message.

Once the message is complete, the application will move to the third stage. Call SMTPPutDone (see page 302) to inform
the SMTP client that no more data remains. Then call SMTPIsBusy (see page 300) repeatedly. Each time TRUE is
returned, return to the main loop and wait for StackTask to execute again. Once FALSE is returned, the message
transmission has completed and the application must call SMTPEndUsage (see page 299) to release the SMTP client.
Check the return value of this function to determine if the message was successfully sent.

The example in MainDemo.c needs minor modifications to use your e-mail address. Set the Server and To fields in
SMTPDemo (see page 93), and ensure that these fields are being properly assigned to SMTPClient (see page 299)
struct. The demo works exactly the same way as the previous one, with BUTTON2 and BUTTON3 held down simultaneously
(the left-most two buttons) kicking off the state machine. LED1 will light as the message is being processed, and will
extinguish when the SMTP state machine completes. If the transmission was successful LED2 will light, otherwise it will
remain dark.

10.13.2 SMTP Client Public Members

Functions

Name Description

SMTPBeginUsage (see
page 298)

Requests control of the SMTP client module.

SMTPEndUsage (see
page 299)

Releases control of the SMTP client module.

SMTPFlush (see page 299) Flushes the SMTP socket and forces all data to be sent.

SMTPIsBusy (see page
300)

Determines if the SMTP client is busy.

SMTPIsPutReady (see
page 300)

Determines how much data can be written to the SMTP client.

SMTPPut (see page 301) Writes a single byte to the SMTP client.

SMTPPutArray (see page
301)

Writes a series of bytes to the SMTP client.

SMTPPutDone (see page
302)

Indicates that the on-the-fly message is complete.

SMTPPutROMArray (see
page 302)

Writes a series of bytes from ROM to the SMTP client.

SMTPPutROMString (see
page 303)

Writes a string from ROM to the SMTP client.

SMTPPutString (see page
303)

Writes a string to the SMTP client.

SMTPSendMail (see page
304)

Initializes the message sending process.

Macros

Name Description

SMTP_CONNECT_ERROR
(see page 296)

Connection to SMTP server failed

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Public Members

295

SMTP_RESOLVE_ERROR
(see page 298)

DNS lookup for SMTP server failed

SMTP_SUCCESS (see
page 298)

Message was successfully sent

Module

SMTP Client (see page 292)

Structures

Name Description

SMTP_POINTERS (see
page 296)

Configures the SMTP client to send a message

Variables

Name Description

SMTPClient (see page 299)

Description

The following functions and variables are available to the stack application.

10.13.2.1 SMTP_CONNECT_ERROR Macro
File

SMTP.h

C

#define SMTP_CONNECT_ERROR (0x8001u) // Connection to SMTP server failed

Description

Connection to SMTP server failed

10.13.2.2 SMTP_POINTERS Structure
File

SMTP.h

C

typedef struct {
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } Server;
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } Username;
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } Password;
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } To;
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } CC;

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Public Members

296

 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } BCC;
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } From;
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } Subject;
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } OtherHeaders;
 union {
 BYTE * szRAM;
 ROM BYTE * szROM;
 } Body;
 struct {
 unsigned char Server : 1;
 unsigned char Username : 1;
 unsigned char Password : 1;
 unsigned char To : 1;
 unsigned char CC : 1;
 unsigned char BCC : 1;
 unsigned char From : 1;
 unsigned char Subject : 1;
 unsigned char OtherHeaders : 1;
 unsigned char Body : 1;
 } ROMPointers;
 BOOL UseSSL;
 WORD ServerPort;
} SMTP_POINTERS;

Description

This structure of pointers configures the SMTP Client to send an e-mail message. Initially, all pointers will be null. Set
SMTPClient (see page 299).[field name].szRAM to use a string stored in RAM, or SMTPClient (see

page 299).[field name].szROM to use a string stored in ROM. (Where [field name] is one of the parameters
below.)

If a ROM string is specified, SMTPClient.ROMPointers.[field name] must also be set to 1 to indicate that this field
should be retrieved from ROM instead of RAM.

Remarks

When formatting an e-mail address, the SMTP standard format for associating a printable name may be used. This format
places the printable name in quotation marks, with the address following in pointed brackets, such as "John Smith"
<john.smith@domain.com>

Parameters

Parameters Description

Server the SMTP server to relay the message through

Username the user name to use when logging into the SMTP server, if any is required

Password the password to supply when logging in, if any is required

To the destination address for this message. May be a comma-separated list of
addresss, and/or formatted.

CC The CC addresses for this message, if any. May be a comma-separated list of
addresss, and/or formatted.

BCC The BCC addresses for this message, if any. May be a comma-separated list of
addresss, and/or formatted.

From The From address for this message. May be formatted.

Subject The Subject header for this message.

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Public Members

297

OtherHeaders Any additional headers for this message. Each additional header, including the
last one, must be terminated with a CRLF pair.

Body When sending a message from memory, the location of the body of this
message in memory. Leave as NULL to build a message on-the-fly.

ROMPointers Indicates which parameters to read from ROM instead of RAM.

UseSSL When STACK_USE_SSL_CLIENT is enabled, this flag causes the SMTP client
to make an SSL connection to the server.

ServerPort (see page 95) (WORD value) Indicates the port on which to connect (see page 166) to the
remote SMTP server.

10.13.2.3 SMTP_RESOLVE_ERROR Macro
File

SMTP.h

C

#define SMTP_RESOLVE_ERROR (0x8000u) // DNS lookup for SMTP server failed

Description

DNS lookup for SMTP server failed

10.13.2.4 SMTP_SUCCESS Macro
File

SMTP.h

C

#define SMTP_SUCCESS (0x0000u) // Message was successfully sent

Description

Message was successfully sent

10.13.2.5 SMTPBeginUsage Function
File

SMTP.h

C

BOOL SMTPBeginUsage();

Description

Call this function before calling any other SMTP Client APIs. This function obtains a lock on the SMTP Client, which can only
be used by one stack application at a time. Once the application is finished with the SMTP client, it must call
SMTPEndUsage (see page 299) to release control of the module to any other waiting applications.

This function initializes all the SMTP state machines and variables back to their default state.

Preconditions

None

Return Values

Return Values Description

TRUE The application has successfully obtained control of the module

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Public Members

298

FALSE The SMTP module is in use by another application. Call SMTPBeginUsage
again later, after returning to the main program loop

Section

SMTP Function Prototypes

10.13.2.6 SMTPClient Variable
File

SMTP.c

C

SMTP_POINTERS SMTPClient;

Section

SMTP Client Public Variables

**

The global set of SMTP_POINTERS.

Set these parameters after calling SMTPBeginUsage successfully.

10.13.2.7 SMTPEndUsage Function
File

SMTP.h

C

WORD SMTPEndUsage();

Description

Call this function to release control of the SMTP client module once an application is finished using it. This function releases
the lock obtained by SMTPBeginUsage (see page 298), and frees the SMTP client to be used by another application.

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call.

Return Values

Return Values Description

SMTP_SUCCESS (see page 298) A message was successfully sent

SMTP_RESOLVE_ERROR (see page
298)

The SMTP server could not be resolved

SMTP_CONNECT_ERROR (see page
296)

The connection to the SMTP server failed or was prematurely terminated

1-199 and 300-399 The last SMTP server response code

10.13.2.8 SMTPFlush Function
File

SMTP.h

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Public Members

299

C

void SMTPFlush();

Returns

None

Description

Flushes the SMTP socket and forces all data to be sent.

Remarks

This function should only be called externally when the SMTP client is generating an on-the-fly message. (That is,
SMTPSendMail (see page 304) was called with SMTPClient.Body set to NULL.)

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call.

10.13.2.9 SMTPIsBusy Function
File

SMTP.h

C

BOOL SMTPIsBusy();

Description

Call this function to determine if the SMTP client is busy performing background tasks. This function should be called after
any call to SMTPSendMail (see page 304), SMTPPutDone (see page 302) to determine if the stack has finished
performing its internal tasks. It should also be called prior to any call to SMTPIsPutReady (see page 300) to verify that the
SMTP client has not prematurely disconnected. When this function returns FALSE, the next call should be to
SMTPEndUsage (see page 299) to release the module and obtain the status code for the operation.

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call.

Return Values

Return Values Description

TRUE The SMTP Client is busy with internal tasks or sending an on-the-fly message.

FALSE The SMTP Client is terminated and is ready to be released.

10.13.2.10 SMTPIsPutReady Function
File

SMTP.h

C

WORD SMTPIsPutReady();

Returns

The number of free bytes the SMTP TX FIFO.

Description

Use this function to determine how much data can be written to the SMTP client when generating an on-the-fly message.

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Public Members

300

Remarks

This function should only be called externally when the SMTP client is generating an on-the-fly message. (That is,
SMTPSendMail (see page 304) was called with SMTPClient.Body set to NULL.)

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call, and an on-the-fly message is being generated. This
requires that SMTPSendMail (see page 304) was called with SMTPClient.Body set to NULL.

10.13.2.11 SMTPPut Function
File

SMTP.h

C

BOOL SMTPPut(
 BYTE c
);

Description

Writes a single byte to the SMTP client.

Remarks

This function should only be called externally when the SMTP client is generating an on-the-fly message. (That is,
SMTPSendMail (see page 304) was called with SMTPClient.Body set to NULL.)

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call.

Parameters

Parameters Description

c The byte to be written

Return Values

Return Values Description

TRUE The byte was successfully written

FALSE The byte was not written, most likely because the buffer was full

10.13.2.12 SMTPPutArray Function
File

SMTP.h

C

WORD SMTPPutArray(
 BYTE* Data,
 WORD Len
);

Returns

The number of bytes written. If less than Len, then the TX FIFO became full before all bytes could be written.

Description

Writes a series of bytes to the SMTP client.

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Public Members

301

Remarks

This function should only be called externally when the SMTP client is generating an on-the-fly message. (That is,
SMTPSendMail (see page 304) was called with SMTPClient.Body set to NULL.)

Internal

SMTPPut (see page 301) must be used instead of TCPPutArray (see page 455) because "rn." must be transparently
replaced by "rn..".

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call.

Parameters

Parameters Description

Data The data to be written

Len How many bytes should be written

10.13.2.13 SMTPPutDone Function
File

SMTP.h

C

void SMTPPutDone();

Returns

None

Description

Indicates that the on-the-fly message is complete.

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call, and the SMTP client is generated an on-the-fly
message. (That is, SMTPSendMail (see page 304) was called with SMTPClient.Body set to NULL.)

10.13.2.14 SMTPPutROMArray Function
File

SMTP.h

C

WORD SMTPPutROMArray(
 ROM BYTE* Data,
 WORD Len
);

Returns

The number of bytes written. If less than Len, then the TX FIFO became full before all bytes could be written.

Description

Writes a series of bytes from ROM to the SMTP client.

Remarks

This function should only be called externally when the SMTP client is generating an on-the-fly message. (That is,
SMTPSendMail (see page 304) was called with SMTPClient.Body set to NULL.)

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Public Members

302

This function is aliased to SMTPPutArray (see page 301) on non-PIC18 platforms.

Internal

SMTPPut (see page 301) must be used instead of TCPPutArray (see page 455) because "rn." must be transparently
replaced by "rn..".

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call.

Parameters

Parameters Description

Data The data to be written

Len How many bytes should be written

10.13.2.15 SMTPPutROMString Function
File

SMTP.h

C

WORD SMTPPutROMString(
 ROM BYTE* Data
);

Returns

The number of bytes written. If less than the length of Data, then the TX FIFO became full before all bytes could be written.

Description

Writes a string from ROM to the SMTP client.

Remarks

This function should only be called externally when the SMTP client is generating an on-the-fly message. (That is,
SMTPSendMail (see page 304) was called with SMTPClient.Body set to NULL.)

This function is aliased to SMTPPutString (see page 303) on non-PIC18 platforms.

Internal

SMTPPut (see page 301) must be used instead of TCPPutString (see page 457) because "rn." must be transparently
replaced by "rn..".

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call.

Parameters

Parameters Description

Data The data to be written

10.13.2.16 SMTPPutString Function
File

SMTP.h

C

WORD SMTPPutString(
 BYTE* Data
);

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Public Members

303

Returns

The number of bytes written. If less than the length of Data, then the TX FIFO became full before all bytes could be written.

Description

Writes a string to the SMTP client.

Remarks

This function should only be called externally when the SMTP client is generating an on-the-fly message. (That is,
SMTPSendMail (see page 304) was called with SMTPClient.Body set to NULL.)

Internal

SMTPPut (see page 301) must be used instead of TCPPutString (see page 457) because "rn." must be transparently
replaced by "rn..".

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call.

Parameters

Parameters Description

Data The data to be written

10.13.2.17 SMTPSendMail Function
File

SMTP.h

C

void SMTPSendMail();

Returns

None

Description

This function starts the state machine that performs the actual transmission of the message. Call this function after all the
fields in SMTPClient (see page 299) have been set.

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call.

10.13.3 SMTP Client Stack Members

Functions

Name Description

SMTPTask (see page 305) Performs any pending SMTP client tasks

Module

SMTP Client (see page 292)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Stack Members

304

10.13.3.1 SMTPTask Function
File

SMTP.h

C

void SMTPTask();

Returns

None

Description

This function handles periodic tasks associated with the SMTP client, such as processing initial connections and command
sequences.

Remarks

This function acts as a task (similar to one in an RTOS). It performs its task in a co-operative manner, and the main
application must call this function repeatedly to ensure that all open or new connections are served in a timely fashion.

Preconditions

None

10.13.4 SMTP Client Internal Members

Functions

Name Description

FindEmailAddress (see
page 306)

Searches a string for an e-mail address.

FindROMEmailAddress (
see page 307)

Searches a ROM string for an e-mail address.

Macros

Name Description

SMTP_PORT (see page 309) Default port to use when unspecified

SMTP_SERVER_REPLY_TIMEOUT
(see page 309)

How long to wait before assuming the connection has been dropped
(default 8 seconds)

Module

SMTP Client (see page 292)

Variables

Name Description

CRPeriod (see page 306) State machine for the CR LF Period replacement Used by SMTPPut (see
page 301) to transparently replace "rn." with "rn.."

MySocket (see page 307) Socket currently in use by the SMTP client

PutHeadersState (see
page 307)

State machine for writing the SMTP message headers

ResponseCode (see page
308)

Response code from server when an error exists

RXParserState (see page
308)

State machine for parsing incoming responses

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Internal Members

305

SMTPFlags (see page 309) Internal flags used by the SMTP Client

SMTPServer (see page
309)

IP address of the remote SMTP server

SMTPState (see page 310) Message state machine for the SMTP Client

TransportState (see page
311)

State of the transport for the SMTP Client

Description

The following functions and variables are designated for internal use by the SMTP Client module.

10.13.4.1 CRPeriod Variable
File

SMTP.c

C

union {
 BYTE * Pos;
 enum {
 CR_PERIOD_SEEK_CR = 0,
 CR_PERIOD_SEEK_LF,
 CR_PERIOD_SEEK_PERIOD,
 CR_PERIOD_NEED_INSERTION
 } State;
} CRPeriod;

Members

Members Description

CR_PERIOD_SEEK_CR = 0 Idle state, waiting for 'r

CR_PERIOD_SEEK_LF r" has been written, so check next byte for 'n

CR_PERIOD_SEEK_PERIOD rn" has been written, so check next byte for '.

CR_PERIOD_NEED_INSERTION "rn." has been written, so an additional '.' must be written before the next byte.

Description

State machine for the CR LF Period replacement Used by SMTPPut (see page 301) to transparently replace "rn." with
"rn.."

10.13.4.2 FindEmailAddress Function
File

SMTP.c

C

static BYTE * FindEmailAddress(
 BYTE * str,
 WORD * wLen
);

Returns

A pointer to the e-mail address

Description

This function locates an e-mail address in a string. It is used internally by the SMTP client to parse out the actual address
from the From and To strings so that the MAIL FROM and RCPT TO commands can be sent to the SMTP server.

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Internal Members

306

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call.

Parameters

Parameters Description

str The string in which to search for an e-mail address

wLen the length of str

Section

SMTP Client Internal Function Prototypes

10.13.4.3 FindROMEmailAddress Function
File

SMTP.c

C

static ROM BYTE * FindROMEmailAddress(
 ROM BYTE * str,
 WORD * wLen
);

Returns

A pointer to the e-mail address

Description

This function locates an e-mail address in a string. It is used internally by the SMTP client to parse out the actual address
from the From and To strings so that the MAIL FROM and RCPT TO commands can be sent to the SMTP server.

Preconditions

SMTPBeginUsage (see page 298) returned TRUE on a previous call.

Parameters

Parameters Description

str The ROM string in which to search for an e-mail address

wLen the length of str

10.13.4.4 MySocket Variable
File

SMTP.c

C

TCP_SOCKET MySocket = INVALID_SOCKET;

Description

Socket currently in use by the SMTP client

10.13.4.5 PutHeadersState Variable
File

SMTP.c

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Internal Members

307

C

enum {
 PUTHEADERS_FROM_INIT = 0,
 PUTHEADERS_FROM,
 PUTHEADERS_TO_INIT,
 PUTHEADERS_TO,
 PUTHEADERS_CC_INIT,
 PUTHEADERS_CC,
 PUTHEADERS_SUBJECT_INIT,
 PUTHEADERS_SUBJECT,
 PUTHEADERS_OTHER_INIT,
 PUTHEADERS_OTHER,
 PUTHEADERS_DONE
} PutHeadersState;

Members

Members Description

PUTHEADERS_FROM_INIT = 0 Preparing to send From header

PUTHEADERS_FROM Sending From header

PUTHEADERS_TO_INIT Preparing to send To header

PUTHEADERS_TO Sending To header

PUTHEADERS_CC_INIT Preparing to send CC header

PUTHEADERS_CC Sending CC header

PUTHEADERS_SUBJECT_INIT Preparing to send Subject header

PUTHEADERS_SUBJECT Sending Subject header

PUTHEADERS_OTHER_INIT Preparing to send additional headers

PUTHEADERS_OTHER Sending additional headers

PUTHEADERS_DONE Done writing all headers

Description

State machine for writing the SMTP message headers

10.13.4.6 ResponseCode Variable
File

SMTP.c

C

WORD ResponseCode;

Description

Response code from server when an error exists

10.13.4.7 RXParserState Variable
File

SMTP.c

C

enum {
 RX_BYTE_0 = 0,
 RX_BYTE_1,
 RX_BYTE_2,
 RX_BYTE_3,
 RX_SEEK_CR,
 RX_SEEK_LF

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Internal Members

308

} RXParserState;

Description

State machine for parsing incoming responses

10.13.4.8 SMTP_PORT Macro
File

SMTP.c

C

#define SMTP_PORT 25 // Default port to use when unspecified

Description

Default port to use when unspecified

10.13.4.9 SMTP_SERVER_REPLY_TIMEOUT Macro
File

SMTP.c

C

#define SMTP_SERVER_REPLY_TIMEOUT (TICK_SECOND*8) // How long to wait before
assuming the connection has been dropped (default 8 seconds)

Description

How long to wait before assuming the connection has been dropped (default 8 seconds)

10.13.4.10 SMTPFlags Variable
File

SMTP.c

C

union {
 BYTE Val;
 struct {
 unsigned char RXSkipResponse : 1;
 unsigned char SMTPInUse : 1;
 unsigned char SentSuccessfully : 1;
 unsigned char ReadyToStart : 1;
 unsigned char ReadyToFinish : 1;
 unsigned char ConnectedOnce : 1;
 unsigned char filler : 2;
 } bits;
} SMTPFlags;

Description

Internal flags used by the SMTP Client

10.13.4.11 SMTPServer Variable
File

SMTP.c

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Internal Members

309

C

IP_ADDR SMTPServer;

Description

IP address of the remote SMTP server

10.13.4.12 SMTPState Variable
File

SMTP.c

C

enum {
 SMTP_HOME = 0,
 SMTP_HELO,
 SMTP_HELO_ACK,
 SMTP_AUTH_LOGIN,
 SMTP_AUTH_LOGIN_ACK,
 SMTP_AUTH_USERNAME,
 SMTP_AUTH_USERNAME_ACK,
 SMTP_AUTH_PASSWORD,
 SMTP_AUTH_PASSWORD_ACK,
 SMTP_MAILFROM,
 SMTP_MAILFROM_ACK,
 SMTP_RCPTTO_INIT,
 SMTP_RCPTTO,
 SMTP_RCPTTO_ACK,
 SMTP_RCPTTO_ISDONE,
 SMTP_RCPTTOCC_INIT,
 SMTP_RCPTTOCC,
 SMTP_RCPTTOCC_ACK,
 SMTP_RCPTTOCC_ISDONE,
 SMTP_RCPTTOBCC_INIT,
 SMTP_RCPTTOBCC,
 SMTP_RCPTTOBCC_ACK,
 SMTP_RCPTTOBCC_ISDONE,
 SMTP_DATA,
 SMTP_DATA_ACK,
 SMTP_DATA_HEADER,
 SMTP_DATA_BODY_INIT,
 SMTP_DATA_BODY,
 SMTP_DATA_BODY_ACK,
 SMTP_QUIT_INIT,
 SMTP_QUIT
} SMTPState;

Members

Members Description

SMTP_HOME = 0 Idle start state for SMTP client (application is preparing message)

SMTP_HELO HELO is being sent to server

SMTP_HELO_ACK Received an ACK for the HELO

SMTP_AUTH_LOGIN Requesting to log in

SMTP_AUTH_LOGIN_ACK Log in request accepted

SMTP_AUTH_USERNAME Sending user name

SMTP_AUTH_USERNAME_ACK User name accepted

SMTP_AUTH_PASSWORD Sending password

SMTP_AUTH_PASSWORD_ACK Password was accepted

SMTP_MAILFROM Sending inital MAIL FROM command

SMTP_MAILFROM_ACK MAIL FROM was accepted

SMTP_RCPTTO_INIT Preparing to send RCPT TO

10.13 SMTP Client Microchip TCP/IP Stack Help SMTP Client Internal Members

310

SMTP_RCPTTO Sending RCPT TO command

SMTP_RCPTTO_ACK RCPT TO was accepted

SMTP_RCPTTO_ISDONE Done sending RCPT TO commands

SMTP_RCPTTOCC_INIT Preparing to send RCPT TO CC commands

SMTP_RCPTTOCC Sending RCPT TO CC commands

SMTP_RCPTTOCC_ACK RCPT TO CC was accepted

SMTP_RCPTTOCC_ISDONE Done sending RCPT TO CC

SMTP_RCPTTOBCC_INIT Preparing to send RCPT TO BCC commands

SMTP_RCPTTOBCC Sending RCPT TO BCC commands

SMTP_RCPTTOBCC_ACK RCPT TO BCC was accepted

SMTP_RCPTTOBCC_ISDONE Done sending RCPT TO BCC

SMTP_DATA Sending DATA command

SMTP_DATA_ACK DATA command accpted

SMTP_DATA_HEADER Sending message headers

SMTP_DATA_BODY_INIT Preparing for message body

SMTP_DATA_BODY Sending message body

SMTP_DATA_BODY_ACK Message body accepted

SMTP_QUIT_INIT Sending QUIT command

SMTP_QUIT QUIT accepted, connection closing

Description

Message state machine for the SMTP Client

10.13.4.13 TransportState Variable
File

SMTP.c

C

enum {
 TRANSPORT_HOME = 0,
 TRANSPORT_BEGIN,
 TRANSPORT_NAME_RESOLVE,
 TRANSPORT_OBTAIN_SOCKET,
 TRANSPORT_SECURING_SOCKET,
 TRANSPORT_SOCKET_OBTAINED,
 TRANSPORT_CLOSE
} TransportState;

Members

Members Description

TRANSPORT_HOME = 0 Idle state

TRANSPORT_BEGIN Preparing to make connection

TRANSPORT_NAME_RESOLVE Resolving the SMTP server address

TRANSPORT_OBTAIN_SOCKET Obtaining a socket for the SMTP connection

TRANSPORT_SECURING_SOCKET Securing the socket for the SMTP over SSL connection

TRANSPORT_SOCKET_OBTAINED SMTP connection successful

TRANSPORT_CLOSE STMP socket is closed

Description

State of the transport for the SMTP Client

10.14 Reboot Microchip TCP/IP Stack Help

311

10.14 Reboot
The Reboot module will allow a user to remotely reboot the PIC microcontroller that is running the TCP/IP stack. This feature
is primarily used for bootloader applications, which must reset the microcontroller to enter the bootloader code section. This
module will execute a task that listens on a specified UDP port for a packet, and then reboots if it receives one. The port can
be configured in Reboot.c with the following macro:

#define REBOOT_PORT 69

For improved security, you can limit reboot capabilities to users on the same subnet by specifying the following macro in
Reboot.c:

#define REBOOT_SAME_SUBNET_ONLY

10.14.1 Reboot Stack Members

Functions

Name Description

RebootTask (see page 312) Checks for incomming traffic on port 69. Resets the PIC if a 'R' is received.

Macros

Name Description

REBOOT_PORT (see page 313) UDP TFTP port

REBOOT_SAME_SUBNET_ONLY
(see page 313)

For improved security, you might want to limit reboot capabilities to only
users on the same IP subnet. Define REBOOT_SAME_SUBNET_ONLY
to enable this access restriction.

Module

Reboot (see page 312)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.14.1.1 RebootTask Function
File

Reboot.h

C

void RebootTask();

Side Effects

None

Returns

None

Description

Checks for incomming traffic on port 69. Resets the PIC if a 'R' is received.

10.14 Reboot Microchip TCP/IP Stack Help Reboot Stack Members

312

Remarks

This module is primarily for use with the Ethernet bootloader. By resetting, the Ethernet bootloader can take control for a
second and let a firmware upgrade take place.

Preconditions

Stack is initialized()

10.14.1.2 REBOOT_PORT Macro
File

Reboot.c

C

#define REBOOT_PORT 69 // UDP TFTP port

Description

UDP TFTP port

10.14.1.3 REBOOT_SAME_SUBNET_ONLY Macro
File

Reboot.c

C

#define REBOOT_SAME_SUBNET_ONLY

Description

For improved security, you might want to limit reboot capabilities to only users on the same IP subnet. Define
REBOOT_SAME_SUBNET_ONLY to enable this access restriction.

10.15 SNMP
Functions

Name Description

getSnmpV2GenTrapOid (see page 357) Resolves generic trap code to generic trap OID.

ProcessGetBulkVar (see page 357) This is function ProcessGetBulkVar.

ProcessGetNextVar (see page 358) This is function ProcessGetNextVar.

ProcessGetVar (see page 358) This is function ProcessGetVar.

ProcessSnmpv3MsgData (see page
358)

This is function ProcessSnmpv3MsgData.

SNMPGetExactIndex (see page 358) To search for exact index node in case of a Sequence variable.

SNMPIdRecrdValidation (see page 359) Used to Restrict the access dynamic and non dynamic OID string
for A perticular SNMP Version.

10.15 SNMP Microchip TCP/IP Stack Help

313

SNMPIsValidSetLen (see page 360) Validates the set variable data length to data type.

Snmpv3AESDecryptRxedScopedPdu (
see page 360)

This is function Snmpv3AESDecryptRxedScopedPdu.

Snmpv3BufferPut (see page 360) This is function Snmpv3BufferPut.

Snmpv3FormulateEngineID (see page
361)

This is function Snmpv3FormulateEngineID.

Snmpv3GetAuthEngineTime (see page
361)

This is function Snmpv3GetAuthEngineTime.

Snmpv3GetBufferData (see page 361) This is function Snmpv3GetBufferData.

Snmpv3InitializeUserDataBase (see
page 361)

This is function Snmpv3InitializeUserDataBase.

Snmpv3MsgProcessingModelProcessPDU
(see page 362)

This is function Snmpv3MsgProcessingModelProcessPDU.

Snmpv3Notify (see page 362) This is function Snmpv3Notify.

Snmpv3ScopedPduProcessing (see
page 362)

This is function Snmpv3ScopedPduProcessing.

Snmpv3TrapScopedpdu (see page 362) This is function Snmpv3TrapScopedpdu.

Snmpv3UserSecurityModelProcessPDU
(see page 363)

This is function Snmpv3UserSecurityModelProcessPDU.

Snmpv3UsmAesEncryptDecryptInitVector
(see page 363)

This is function Snmpv3UsmAesEncryptDecryptInitVector.

Snmpv3UsmOutMsgAuthenticationParam
(see page 363)

This is function Snmpv3UsmOutMsgAuthenticationParam.

Snmpv3ValidateEngineId (see page
363)

This is function Snmpv3ValidateEngineId.

Snmpv3ValidateSecNameAndSecLvl (
see page 364)

This is function Snmpv3ValidateSecNameAndSecLvl.

Snmpv3ValidateSecurityName (see
page 364)

This is function Snmpv3ValidateSecurityName.

Macros

Name Description

IS_SNMPV3_AUTH_STRUCTURE
(see page 367)

This is macro IS_SNMPV3_AUTH_STRUCTURE.

REPORT_RESPONSE (see
page 367)

This is macro REPORT_RESPONSE.

SNMP_MAX_MSG_SIZE (see
page 368)

SNMP MIN and MAX message 484 bytes in size As per RFC 3411
snmpEngineMaxMessageSize and RFC 1157 (section 4- protocol
specification) and implementation supports more than 484 whenever
feasible.

SNMP_V3 (see page 368) This is macro SNMP_V3.

Types

Name Description

INOUT_SNMP_PDU (see
page 364)

This is type INOUT_SNMP_PDU.

SNMPNONMIBRECDINFO
(see page 365)

This is type SNMPNONMIBRECDINFO.

SNMPV3MSGDATA (see
page 365)

SNMPv3

10.15 SNMP Microchip TCP/IP Stack Help

314

Variables

Name Description

getZeroInstance (see page 366) This variable is used for gext next request for zero instance

gSNMPv3ScopedPduDataPos (
see page 366)

This is variable gSNMPv3ScopedPduDataPos.

gSNMPv3ScopedPduRequestBuf
(see page 366)

This is variable gSNMPv3ScopedPduRequestBuf.

gSNMPv3ScopedPduResponseBuf
(see page 366)

This is variable gSNMPv3ScopedPduResponseBuf.

msgSecrtyParamLenOffset (see
page 367)

This is variable msgSecrtyParamLenOffset.

Description

Simple Network Management Protocol V2c (community) agent implementation of RFC 3416.

10.15.1 SNMP Public Members

Enumerations

Name Description

GENERIC_TRAP_NOTIFICATION_TYPE (see
page 317)

This is type GENERIC_TRAP_NOTIFICATION_TYPE.

VENDOR_SPECIFIC_TRAP_NOTIFICATION_TYPE
(see page 317)

This is type
VENDOR_SPECIFIC_TRAP_NOTIFICATION_TYPE.

SNMP_ACTION (see page 317) This is the list of SNMP action a remote NMS can
perform. This inforamtion is passed to application via
callback SNMPValidateCommunity (see page 321)().
Application should validate the action for given
community string.

COMMUNITY_TYPE (see page 318) This is type COMMUNITY_TYPE.

Functions

Name Description

SNMPSendTrap (see page
320)

Prepare, validate remote node which will receive trap and send trap pdu.

SNMPValidateCommunity (
see page 321)

This is function SNMPValidateCommunity.

SNMPNotify (see page
321)

Creates and Sends TRAP pdu.

SNMPSetVar (see page
322)

This routine Set the mib variable with the requested value.

SNMPGetVar (see page
323)

Used to Get/collect OID variable information.

SNMPIsNotifyReady (see
page 323)

Resolves given remoteHost IP address into MAC address.

SNMPNotifyPrepare (see
page 324)

Collects trap notification info and send ARP to remote host.

SNMPGetNextIndex (see
page 325)

To search for next index node in case of a Sequence variable.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Public Members

315

http://www.faqs.org/rfcs/rfc3416.html

Macros

Name Description

SNMP_COMMUNITY_MAX_LEN
(see page 326)

This is the maximum length for community string. Application must ensure
that this length is observed. SNMP module adds one byte extra after
SNMP_COMMUNITY_MAX_LEN for adding '0' NULL character.

OID_MAX_LEN (see page 326) Change this to match your OID string length.

SNMP_START_OF_VAR (see
page 326)

This is macro SNMP_START_OF_VAR.

SNMP_END_OF_VAR (see
page 326)

This is macro SNMP_END_OF_VAR.

SNMP_INDEX_INVALID (see
page 327)

This is macro SNMP_INDEX_INVALID.

TRAP_TABLE_SIZE (see
page 327)

Trap information. This table maintains list of intereseted receivers who
should receive notifications when some interesting event occurs.

TRAP_COMMUNITY_MAX_LEN
(see page 327)

This is macro TRAP_COMMUNITY_MAX_LEN.

NOTIFY_COMMUNITY_LEN (
see page 327)

This is macro NOTIFY_COMMUNITY_LEN.

Module

SNMP (see page 313)

Structures

Name Description

TRAP_INFO (see page
319)

This is type TRAP_INFO.

Types

Name Description

SNMP_ID (see page 325) This is the SNMP OID variable id. This id is assigned via MIB file. Only dynamic
and AgentID variables can contian ID. MIB2BIB utility enforces this rules when
BIB was generated.

SNMP_INDEX (see page
325)

This is type SNMP_INDEX.

Unions

Name Description

SNMP_VAL (see page 318) This is type SNMP_VAL.

Variables

Name Description

gSendTrapFlag (see page
319)

global flag to send Trap

gSetTrapSendFlag (see
page 319)

#if defined(SNMP_STACK_USE_V2_TRAP) ||
defined(SNMP_V1_V2_TRAP_WITH_SNMPV3) //if gSetTrapSendFlag ==
FALSE then the last varbind variable for //multiple varbind variable pdu
structure or if there is only varbind variable send. // if gSetTrapSendFlag ==
TRUE, then v2 trap pdu is expecting more varbind variable. BYTE
gSetTrapSendFlag = FALSE; #endif

gGenericTrapNotification (
see page 320)

Global flag for Generic trap notification

gSpecificTrapNotification (
see page 320)

Vendor specific trap code

gOIDCorrespondingSnmpMibID
(see page 320)

Gloabal var to store SNMP ID of var for OID received in SNMP request.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Public Members

316

Description

The following functions and variables are available to the stack application.

10.15.1.1 GENERIC_TRAP_NOTIFICATION_TYPE Enumeration
File

SNMP.h

C

typedef enum {
 COLD_START = 0x0,
 WARM_START = 0x1,
 LINK_DOWN = 0x2,
 LINK_UP = 0x3,
 AUTH_FAILURE = 0x4,
 EGP_NEBOR_LOSS = 0x5,
 ENTERPRISE_SPECIFIC = 0x6
} GENERIC_TRAP_NOTIFICATION_TYPE;

Description

This is type GENERIC_TRAP_NOTIFICATION_TYPE.

10.15.1.2 VENDOR_SPECIFIC_TRAP_NOTIFICATION_TYPE
Enumeration
File

SNMP.h

C

typedef enum {
 VENDOR_TRAP_DEFAULT = 0x0,
 BUTTON_PUSH_EVENT = 0x1,
 POT_READING_MORE_512 = 0x2
} VENDOR_SPECIFIC_TRAP_NOTIFICATION_TYPE;

Description

This is type VENDOR_SPECIFIC_TRAP_NOTIFICATION_TYPE.

10.15.1.3 SNMP_ACTION Enumeration
File

SNMP.h

C

typedef enum {
 SNMP_GET = 0xa0,
 SNMP_GET_NEXT = 0xa1,
 SNMP_GET_RESPONSE = 0xa2,
 SNMP_SET = 0xa3,
 SNMP_TRAP = 0xa4,
 SNMP_V2C_GET_BULK = 0xa5,
 SNMP_V2_TRAP = 0xa7,
 SNMPV3_ENCRYPTION = 0x04,
 SNMP_ACTION_UNKNOWN = 0
} SNMP_ACTION;

10.15 SNMP Microchip TCP/IP Stack Help SNMP Public Members

317

Members

Members Description

SNMP_GET = 0xa0 Snmp GET identifier

SNMP_GET_NEXT = 0xa1 Snmp GET_NEXT identifier

SNMP_GET_RESPONSE = 0xa2 Snmp GET_RESPONSE (see page 335) identifier

SNMP_SET = 0xa3 Snmp SET identifier

SNMP_TRAP = 0xa4 Snmp TRAP identifier

SNMP_V2C_GET_BULK = 0xa5 Snmp GET_BULK identifier

SNMP_V2_TRAP = 0xa7 Snmp v2 Trap Identifier

SNMP_ACTION_UNKNOWN = 0 Snmp requested action unknown

Description

This is the list of SNMP action a remote NMS can perform. This inforamtion is passed to application via callback
SNMPValidateCommunity (see page 321)(). Application should validate the action for given community string.

10.15.1.4 COMMUNITY_TYPE Enumeration
File

SNMP.h

C

typedef enum {
 READ_COMMUNITY = 1,
 WRITE_COMMUNITY = 2,
 INVALID_COMMUNITY = 3
} COMMUNITY_TYPE;

Members

Members Description

READ_COMMUNITY = 1 Read only community

WRITE_COMMUNITY = 2 Read write community

INVALID_COMMUNITY = 3 Community invalid

Description

This is type COMMUNITY_TYPE.

10.15.1.5 SNMP_VAL Union
File

SNMP.h

C

typedef union {
 DWORD dword;
 WORD word;
 BYTE byte;
 BYTE v[sizeof(DWORD)];
} SNMP_VAL;

Members

Members Description

DWORD dword; double word value

WORD word; word value

10.15 SNMP Microchip TCP/IP Stack Help SNMP Public Members

318

BYTE byte; byte value

BYTE v[sizeof(DWORD)]; byte array

Description

This is type SNMP_VAL.

10.15.1.6 TRAP_INFO Structure
File

SNMP.h

C

typedef struct {
 BYTE Size;
 struct {
 BYTE communityLen;
 char community[TRAP_COMMUNITY_MAX_LEN];
 IP_ADDR IPAddress;
 struct {
 unsigned int bEnabled : 1;
 } Flags;
 } table[TRAP_TABLE_SIZE];
} TRAP_INFO;

Members

Members Description

BYTE communityLen; Community name length

char
community[TRAP_COMMUNITY_MAX_LEN];

Community name array

IP_ADDR IPAddress; IP address to which trap to be sent

unsigned int bEnabled : 1; Trap enabled flag

Description

This is type TRAP_INFO.

10.15.1.7 gSendTrapFlag Variable
File

CustomSNMPApp.c

C

BYTE gSendTrapFlag = FALSE;

Description

global flag to send Trap

10.15.1.8 gSetTrapSendFlag Variable
File

CustomSNMPApp.c

C

BYTE gSetTrapSendFlag = FALSE;

10.15 SNMP Microchip TCP/IP Stack Help SNMP Public Members

319

Description

#if defined(SNMP_STACK_USE_V2_TRAP) || defined(SNMP_V1_V2_TRAP_WITH_SNMPV3) //if gSetTrapSendFlag ==
FALSE then the last varbind variable for //multiple varbind variable pdu structure or if there is only varbind variable send. // if
gSetTrapSendFlag == TRUE, then v2 trap pdu is expecting more varbind variable. BYTE gSetTrapSendFlag = FALSE;
#endif

10.15.1.9 gGenericTrapNotification Variable
File

CustomSNMPApp.c

C

BYTE gGenericTrapNotification = ENTERPRISE_SPECIFIC;

Description

Global flag for Generic trap notification

10.15.1.10 gSpecificTrapNotification Variable
File

CustomSNMPApp.c

C

BYTE gSpecificTrapNotification = VENDOR_TRAP_DEFAULT;

Description

Vendor specific trap code

10.15.1.11 gOIDCorrespondingSnmpMibID Variable
File

CustomSNMPApp.c

C

BYTE gOIDCorrespondingSnmpMibID = MICROCHIP;

Description

Gloabal var to store SNMP ID of var for OID received in SNMP request.

10.15.1.12 SNMPSendTrap Function
File

SNMP.h

C

void SNMPSendTrap();

Returns

None.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Public Members

320

Description

This function is used to send trap notification to previously configured ip address if trap notification is enabled. There are
different trap notification code. The current implementation sends trap for authentication failure (4).

Remarks

This is a callback function called by the application on certain predefined events. This routine only implemented to send a
authentication failure Notification-type macro with PUSH_BUTTON oid stored in MPFS. If the ARP is no resolved i.e. if
SNMPIsNotifyReady (see page 323)() returns FALSE, this routine times out in 5 seconds. This routine should be modified
according to event occured and should update corrsponding OID and notification type to the trap pdu.

Preconditions

If application defined event occurs to send the trap.

10.15.1.13 SNMPValidateCommunity Function
File

SNMP.h

C

BYTE SNMPValidateCommunity(
 BYTE* community
);

Description

This is function SNMPValidateCommunity.

10.15.1.14 SNMPNotify Function
File

SNMP.h

C

BOOL SNMPNotify(
 SNMP_ID var,
 SNMP_VAL val,
 SNMP_INDEX index
);

Description

This function creates SNMP trap PDU and sends it to previously specified remoteHost. snmpv1 trap pdu: | PDU-type |
enterprise | agent-addr | generic-trap | specific-trap | | time-stamp | varbind-list |

The v1 enterprise is mapped directly to SNMPv2TrapOID.0

Remarks

This would fail if there were not UDP socket to open.

Preconditions

SNMPIsNotifyReady (see page 323)() is already called and returned TRUE.

Parameters

Parameters Description

var SNMP var ID that is to be used in notification

val Value of var. Only value of BYTE, WORD or DWORD can be sent.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Public Members

321

index Index of var. If this var is a single,index would be 0, or else if this var Is a
sequence, index could be any value from 0 to 127

Return Values

Return Values Description

TRUE if SNMP notification was successful sent. This does not guarantee that
remoteHost recieved it.

FALSE Notification sent failed.

This would fail under following contions 1) Given SNMP_BIB_FILE does not exist in MPFS 2) Given var does not exist.
3) Previously given agentID does not exist

4) Data type of given var is unknown only possible if MPFS itself was corrupted.

10.15.1.15 SNMPSetVar Function
File

SNMP.h

C

BOOL SNMPSetVar(
 SNMP_ID var,
 SNMP_INDEX index,
 BYTE ref,
 SNMP_VAL val
);

Description

This is a callback function called by module for the snmp SET request.User application must modify this function for the new
variables address.

Remarks

This function may get called more than once depending on number of bytes in a specific set request for given variable. only
dynamic read-write variables needs to be handled.

Preconditions

ProcessVariables (see page 353)() is called.

Parameters

Parameters Description

var Variable id whose value is to be set

ref Variable reference used to transfer multi-byte data 0 if first byte is set otherwise
nonzero value to indicate corresponding byte being set.

val Up to 4 byte data value. If var data type is BYTE, variable value is in val->byte If
var data type is WORD, variable value is in val->word If var data type is
DWORD, variable value is in val->dword. If var data type is IP_ADDRESS,
COUNTER32, or GAUGE32, value is in val->dword If var data type is
OCTET_STRING (see page 340), ASCII_STRING value is in val->byte;
multi-byte transfer will be performed to transfer remaining bytes of data.

Return Values

Return Values Description

TRUE if it is OK to set more byte(s).

FALSE if otherwise.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Public Members

322

10.15.1.16 SNMPGetVar Function
File

SNMP.h

C

BOOL SNMPGetVar(
 SNMP_ID var,
 SNMP_INDEX index,
 BYTE* ref,
 SNMP_VAL* val
);

Description

This is a callback function called by SNMP module. SNMP user must implement this function in user application and provide
appropriate data when called.

Remarks

None.

Preconditions

None

Parameters

Parameters Description

var Variable id whose value is to be returned

index Index of variable that should be transferred

ref Variable reference used to transfer multi-byte data It is always
SNMP_START_OF_VAR (see page 326) when very first byte is requested.
Otherwise, use this as a reference to keep track of multi-byte transfers.

val Pointer to up to 4 byte buffer. If var data type is BYTE, transfer data in val->byte
If var data type is WORD, transfer data in val->word If var data type is DWORD,
transfer data in val->dword If var data type is IP_ADDRESS, transfer data in
val->v[] or val->dword If var data type is COUNTER32, TIME_TICKS or
GAUGE32, transfer data in val->dword If var data type is ASCII_STRING or
OCTET_STRING (see page 340) transfer data in val->byte using multi-byte
transfer mechanism.

Return Values

Return Values Description

TRUE If a value exists for given variable at given index.

FALSE Otherwise.

10.15.1.17 SNMPIsNotifyReady Function
File

SNMP.h

C

BOOL SNMPIsNotifyReady(
 IP_ADDR* remoteHost
);

Description

This function resolves given remoteHost IP address into MAC address using ARP module. If remoteHost is not aviailable,
this function would never return TRUE. Application must implement timeout logic to handle "remoteHost not avialable"

10.15 SNMP Microchip TCP/IP Stack Help SNMP Public Members

323

situation.

Remarks

This would fail if there were not UDP socket to open.

Preconditions

SNMPNotifyPrepare (see page 324)() is already called.

Parameters

Parameters Description

remoteHost Pointer to remote Host IP address

Return Values

Return Values Description

TRUE If remoteHost IP address is resolved and SNMPNotify (see page 321) may
be called.

FALSE If remoteHost IP address is not resolved.

10.15.1.18 SNMPNotifyPrepare Function
File

SNMP.h

C

void SNMPNotifyPrepare(
 IP_ADDR* remoteHost,
 char* community,
 BYTE communityLen,
 SNMP_ID agentIDVar,
 BYTE notificationCode,
 DWORD timestamp
);

Returns

None

Description

This function prepares SNMP module to send SNMP trap notification to remote host. It sends ARP request to remote host to
learn remote host MAC address.

Remarks

This is first of series of functions to complete SNMP notification.

Preconditions

SNMPInit (see page 355)() is already called.

Parameters

Parameters Description

remoteHost pointer to remote Host IP address

community Community string to use to notify

communityLen Community string length

agentIDVar System ID to use identify this agent

notificaitonCode Notification Code to use

timestamp Notification timestamp in 100th of second.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Public Members

324

10.15.1.19 SNMPGetNextIndex Function
File

SNMP.h

C

BOOL SNMPGetNextIndex(
 SNMP_ID var,
 SNMP_INDEX* index
);

Description

This is a callback function called by SNMP module. SNMP user must implement this function in user application and provide
appropriate data when called. This function will only be called for OID variable of type sequence.

Remarks

Only sequence index needs to be handled in this function.

Preconditions

None

Parameters

Parameters Description

var Variable id whose value is to be returned

index Next Index of variable that should be transferred

Return Values

Return Values Description

TRUE If a next index value exists for given variable at given index and index
parameter contains next valid index.

FALSE Otherwise.

10.15.1.20 SNMP_ID Type
File

SNMP.h

C

typedef int SNMP_ID;

Description

This is the SNMP OID variable id. This id is assigned via MIB file. Only dynamic and AgentID variables can contian ID.
MIB2BIB utility enforces this rules when BIB was generated.

10.15.1.21 SNMP_INDEX Type
File

SNMP.h

C

typedef BYTE SNMP_INDEX;

10.15 SNMP Microchip TCP/IP Stack Help SNMP Public Members

325

Description

This is type SNMP_INDEX.

10.15.1.22 SNMP_COMMUNITY_MAX_LEN Macro
File

TCPIP MRF24WB.h

C

#define SNMP_COMMUNITY_MAX_LEN (8u)

Description

This is the maximum length for community string. Application must ensure that this length is observed. SNMP module adds
one byte extra after SNMP_COMMUNITY_MAX_LEN for adding '0' NULL character.

10.15.1.23 OID_MAX_LEN Macro
File

SNMP.h

C

#define OID_MAX_LEN (18)

Description

Change this to match your OID string length.

10.15.1.24 SNMP_START_OF_VAR Macro
File

SNMP.h

C

#define SNMP_START_OF_VAR (0)

Description

This is macro SNMP_START_OF_VAR.

10.15.1.25 SNMP_END_OF_VAR Macro
File

SNMP.h

C

#define SNMP_END_OF_VAR (0xff)

Description

This is macro SNMP_END_OF_VAR.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Public Members

326

10.15.1.26 SNMP_INDEX_INVALID Macro
File

SNMP.h

C

#define SNMP_INDEX_INVALID (0xff)

Description

This is macro SNMP_INDEX_INVALID.

10.15.1.27 TRAP_TABLE_SIZE Macro
File

SNMP.h

C

#define TRAP_TABLE_SIZE (2)

Description

Trap information. This table maintains list of intereseted receivers who should receive notifications when some interesting
event occurs.

10.15.1.28 TRAP_COMMUNITY_MAX_LEN Macro
File

SNMP.h

C

#define TRAP_COMMUNITY_MAX_LEN (8)

Description

This is macro TRAP_COMMUNITY_MAX_LEN.

10.15.1.29 NOTIFY_COMMUNITY_LEN Macro
File

TCPIP MRF24WB.h

C

#define NOTIFY_COMMUNITY_LEN (SNMP_COMMUNITY_MAX_LEN)

Description

This is macro NOTIFY_COMMUNITY_LEN.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

327

10.15.2 SNMP Internal Members

Enumerations

Name Description

DATA_TYPE (see page
333)

SNMP_ERR_STATUS (
see page 343)

Functions

Name Description

_SNMPDuplexInit (see page 331)

_SNMPGet (see page 331) This is function _SNMPGet.

_SNMPPut (see page 331)

FindOIDsInRequest (see page
335)

This is function FindOIDsInRequest.

GetDataTypeInfo (see page 338) This is function GetDataTypeInfo.

IsASNNull (see page 339) static BYTE IsValidStructure (see page 351)(WORD* dataLen);

SetErrorStatus (see page 342) This is function SetErrorStatus.

IsValidLength (see page 346) This is function IsValidLength.

GetDataTypeInfo (see page 349) This is function GetDataTypeInfo.

GetNextLeaf (see page 349) This is function GetNextLeaf.

GetOIDStringByAddr (see page
350)

This is function GetOIDStringByAddr.

GetOIDStringByID (see page
350)

This function is used only when TRAP is enabled.

IsValidCommunity (see page
350)

This is function IsValidCommunity.

IsValidInt (see page 350) This is function IsValidInt.

IsValidLength (see page 351) This is function IsValidLength.

IsValidOID (see page 351)

IsValidPDU (see page 351) static BOOL IsValidInt (see page 350)(DWORD* val);

IsValidStructure (see page 351) This is function IsValidStructure.

OIDLookup (see page 352)

ProcessGetSetHeader (see
page 352)

Validates the received udp packet Get/Set request header.

ProcessHeader (see page 353) Validates the received udp packet Snmp header.

ProcessSetVar (see page 353) This is function ProcessSetVar.

ProcessVariables (see page 353) This routine processes the snmp request and parallely creates the
response pdu.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

328

ReadMIBRecord (see page 354) This is function ReadMIBRecord.

SNMPCheckIfPvtMibObjRequested
(see page 354)

Macros

Name Description

_SNMPGetTxOffset (see
page 331)

This is macro _SNMPGetTxOffset.

_SNMPSetTxOffset (see
page 332)

AGENT_NOTIFY_PORT (
see page 332)

This is macro AGENT_NOTIFY_PORT.

ASN_INT (see page 332) This is macro ASN_INT.

ASN_NULL (see page 333) This is macro ASN_NULL.

ASN_OID (see page 333) This is macro ASN_OID.

DATA_TYPE_TABLE_SIZE
(see page 334)

GET_BULK_REQUEST (
see page 335)

This is macro GET_BULK_REQUEST.

GET_NEXT_REQUEST (
see page 335)

This is macro GET_NEXT_REQUEST.

GET_REQUEST (see
page 335)

GET_RESPONSE (see
page 335)

This is macro GET_RESPONSE.

IS_AGENT_PDU (see
page 336)

This is macro IS_AGENT_PDU.

IS_ASN_INT (see page
337)

This is macro IS_ASN_INT.

IS_ASN_NULL (see page
337)

This is macro IS_ASN_NULL.

IS_GET_NEXT_REQUEST
(see page 337)

This is macro IS_GET_NEXT_REQUEST.

IS_GET_REQUEST (see
page 337)

This is macro IS_GET_REQUEST.

IS_GET_RESPONSE (see
page 337)

This is macro IS_GET_RESPONSE.

IS_OCTET_STRING (see
page 338)

This is macro IS_OCTET_STRING.

IS_OID (see page 338) This is macro IS_OID.

IS_SET_REQUEST (see
page 338)

This is macro IS_SET_REQUEST.

IS_STRUCTURE (see
page 339)

IS_TRAP (see page 339) This is macro IS_TRAP.

OCTET_STRING (see
page 340)

This is macro OCTET_STRING.

SET_REQUEST (see page
342)

This is macro SET_REQUEST.

SNMP_AGENT_PORT (
see page 342)

SNMP_BIB_FILE_NAME (
see page 343)

This is the file that contains SNMP bib file. File name must contain all upper
case letter and must match with what was included in MPFS2 image.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

329

SNMP_COUNTER32 (see
page 343)

This is macro SNMP_COUNTER32.

SNMP_GAUGE32 (see
page 344)

This is macro SNMP_GAUGE32.

SNMP_IP_ADDR (see
page 344)

This is macro SNMP_IP_ADDR.

SNMP_NMS_PORT (see
page 345)

This is macro SNMP_NMS_PORT.

SNMP_NSAP_ADDR (see
page 345)

This is macro SNMP_NSAP_ADDR.

SNMP_OPAQUE (see
page 346)

This is macro SNMP_OPAQUE.

SNMP_TIME_TICKS (see
page 346)

This is macro SNMP_TIME_TICKS.

SNMP_V1 (see page 347)

SNMP_V2C (see page 347) This is macro SNMP_V2C.

STRUCTURE (see page
348)

TRAP (see page 349) This is macro TRAP.

Module

SNMP (see page 313)

Structures

Name Description

DATA_TYPE_INFO (see
page 334)

OID_INFO (see page 340)

PDU_INFO (see page 341)

reqVarErrStatus (see page
341)

SNMP_NOTIFY_INFO (
see page 345)

Unions

Name Description

INDEX_INFO (see page
336)

MIB_INFO (see page 339)

SNMP_STATUS (see page
346)

Variables

Name Description

appendZeroToOID (see
page 332)

global flag to modify OID by appending zero

dataTypeTable (see page
334)

ASN format datatype for snmp v1 and v2c

hMPFS (see page 336) MPFS file handler

SNMPAgentSocket (see
page 347)

Snmp udp socket

SNMPNotifyInfo (see page
347)

notify info for trap

snmpReqVarErrStatus (
see page 348)

vars from req list processing err status

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

330

SNMPRxOffset (see page
348)

Snmp udp buffer rx offset

SNMPStatus (see page
348)

MIB file access status

SNMPTxOffset (see page
348)

Snmp udp buffer tx offset

trapInfo (see page 349) Initialize trap table with no entries.

Description

The following functions and variables are designated as internal to the SNMP module.

10.15.2.1 _SNMPDuplexInit Function
File

SNMP.c

C

void _SNMPDuplexInit(
 UDP_SOCKET socket
);

Section

Global variables configuration for pdu processings

10.15.2.2 _SNMPGet Function
File

SNMP.h

C

BYTE _SNMPGet();

Description

This is function _SNMPGet.

10.15.2.3 _SNMPGetTxOffset Macro
File

SNMP.h

C

#define _SNMPGetTxOffset SNMPTxOffset

Description

This is macro _SNMPGetTxOffset.

10.15.2.4 _SNMPPut Function
File

SNMP.c

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

331

C

void _SNMPPut(
 BYTE v
);

Section

Process SNMP request pdus,form response pdus routines

static BYTE _SNMPGet(void);

10.15.2.5 _SNMPSetTxOffset Macro
File

SNMP.h

C

#define _SNMPSetTxOffset(o) (SNMPTxOffset = o)

Section

SNMP Tx pdu offset settings

10.15.2.6 AGENT_NOTIFY_PORT Macro
File

SNMP.h

C

#define AGENT_NOTIFY_PORT (0xfffe)

Description

This is macro AGENT_NOTIFY_PORT.

10.15.2.7 appendZeroToOID Variable
File

SNMP.c

C

BYTE appendZeroToOID;

Description

global flag to modify OID by appending zero

10.15.2.8 ASN_INT Macro
File

SNMP.h

C

#define ASN_INT (0x02u)

Description

This is macro ASN_INT.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

332

10.15.2.9 ASN_NULL Macro
File

SNMP.h

C

#define ASN_NULL (0x05u)

Description

This is macro ASN_NULL.

10.15.2.10 ASN_OID Macro
File

SNMP.h

C

#define ASN_OID (0x06u)

Description

This is macro ASN_OID.

10.15.2.11 DATA_TYPE Enumeration
File

SNMP.h

C

typedef enum {
 INT8_VAL = 0x00,
 INT16_VAL = 0x01,
 INT32_VAL = 0x02,
 BYTE_ARRAY = 0x03,
 ASCII_STRING = 0x04,
 IP_ADDRESS = 0x05,
 COUNTER32 = 0x06,
 TIME_TICKS_VAL = 0x07,
 GAUGE32 = 0x08,
 OID_VAL = 0x09,
 DATA_TYPE_UNKNOWN
} DATA_TYPE;

Members

Members Description

INT8_VAL = 0x00 8 bit integer value

INT16_VAL = 0x01 16 bit integer value

INT32_VAL = 0x02 32 bit integer value

BYTE_ARRAY = 0x03 Aray of bytes

ASCII_STRING = 0x04 Ascii string type

IP_ADDRESS = 0x05 IP address variable

COUNTER32 = 0x06 32 bit counter variable

TIME_TICKS_VAL = 0x07 Timer vakue counter variable

GAUGE32 = 0x08 32 bit guage variable

OID_VAL = 0x09 Object id value var

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

333

DATA_TYPE_UNKNOWN Unknown data type

Section

Data Structures and Enumerations

**

SNMP specific data tyes

10.15.2.12 DATA_TYPE_INFO Structure
File

SNMP.h

C

typedef struct {
 BYTE asnType;
 BYTE asnLen;
} DATA_TYPE_INFO;

Members

Members Description

BYTE asnType; ASN data type

BYTE asnLen; ASN data length

Section

ASN data type info

10.15.2.13 DATA_TYPE_TABLE_SIZE Macro
File

SNMP.h

C

#define DATA_TYPE_TABLE_SIZE (sizeof(dataTypeTable)/sizeof(dataTypeTable[0]))

Section

Macros and Definitions

10.15.2.14 dataTypeTable Variable
File

SNMP.c

C

ROM DATA_TYPE_INFO dataTypeTable[] = { { ASN_INT, 1 }, { ASN_INT, 2 }, { ASN_INT, 4 }, {
OCTET_STRING, 0xff }, { OCTET_STRING, 0xff }, { SNMP_IP_ADDR, 4 }, { SNMP_COUNTER32, 4 }, {
SNMP_TIME_TICKS, 4 }, { SNMP_GAUGE32, 4 }, { ASN_OID, 0xff } };

Description

ASN format datatype for snmp v1 and v2c

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

334

10.15.2.15 FindOIDsInRequest Function
File

SNMP.c

C

static BYTE FindOIDsInRequest(
 WORD pdulen
);

Description

This is function FindOIDsInRequest.

10.15.2.16 GET_BULK_REQUEST Macro
File

SNMP.h

C

#define GET_BULK_REQUEST (0xa5)

Description

This is macro GET_BULK_REQUEST.

10.15.2.17 GET_NEXT_REQUEST Macro
File

SNMP.h

C

#define GET_NEXT_REQUEST (0xa1)

Description

This is macro GET_NEXT_REQUEST.

10.15.2.18 GET_REQUEST Macro
File

SNMP.h

C

#define GET_REQUEST (0xa0)

Section

SNMP v1 and v2c pdu types

10.15.2.19 GET_RESPONSE Macro
File

SNMP.h

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

335

C

#define GET_RESPONSE (0xa2)

Description

This is macro GET_RESPONSE.

10.15.2.20 hMPFS Variable
File

SNMP.c

C

MPFS_HANDLE hMPFS;

Description

MPFS file handler

10.15.2.21 INDEX_INFO Union
File

SNMP.h

C

typedef union {
 struct {
 unsigned int bIsOID : 1;
 } Flags;
 BYTE Val;
} INDEX_INFO;

Members

Members Description

unsigned int bIsOID : 1; value is OID/index int flag

BYTE Val; value is OID/index byte flag

Section

SNMP OID index information

10.15.2.22 IS_AGENT_PDU Macro
File

SNMP.h

C

#define IS_AGENT_PDU(a) (a==GET_REQUEST || \
 a==GET_NEXT_REQUEST || \
 a==SET_REQUEST || \
 a==SNMP_V2C_GET_BULK)

Description

This is macro IS_AGENT_PDU.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

336

10.15.2.23 IS_ASN_INT Macro
File

SNMP.h

C

#define IS_ASN_INT(a) (a==ASN_INT)

Description

This is macro IS_ASN_INT.

10.15.2.24 IS_ASN_NULL Macro
File

SNMP.h

C

#define IS_ASN_NULL(a) (a==ASN_NULL)

Description

This is macro IS_ASN_NULL.

10.15.2.25 IS_GET_NEXT_REQUEST Macro
File

SNMP.h

C

#define IS_GET_NEXT_REQUEST(a) (a==GET_NEXT_REQUEST)

Description

This is macro IS_GET_NEXT_REQUEST.

10.15.2.26 IS_GET_REQUEST Macro
File

SNMP.h

C

#define IS_GET_REQUEST(a) (a==GET_REQUEST)

Description

This is macro IS_GET_REQUEST.

10.15.2.27 IS_GET_RESPONSE Macro
File

SNMP.h

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

337

C

#define IS_GET_RESPONSE(a) (a==GET_RESPONSE)

Description

This is macro IS_GET_RESPONSE.

10.15.2.28 IS_OCTET_STRING Macro
File

SNMP.h

C

#define IS_OCTET_STRING(a) (a==OCTET_STRING)

Description

This is macro IS_OCTET_STRING.

10.15.2.29 IS_OID Macro
File

SNMP.h

C

#define IS_OID(a) (a==ASN_OID)

Description

This is macro IS_OID.

10.15.2.30 GetDataTypeInfo Function
File

SNMP.h

C

BOOL GetDataTypeInfo(
 DATA_TYPE dataType,
 DATA_TYPE_INFO * info
);

Description

This is function GetDataTypeInfo.

10.15.2.31 IS_SET_REQUEST Macro
File

SNMP.h

C

#define IS_SET_REQUEST(a) (a==SET_REQUEST)

Description

This is macro IS_SET_REQUEST.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

338

10.15.2.32 IS_STRUCTURE Macro
File

SNMP.h

C

#define IS_STRUCTURE(a) (a==STRUCTURE)

Section

SNMP specific data validation

10.15.2.33 IS_TRAP Macro
File

SNMP.h

C

#define IS_TRAP(a) (a==TRAP)

Description

This is macro IS_TRAP.

10.15.2.34 IsASNNull Function
File

SNMP.c

C

static BOOL IsASNNull();

Description

static BYTE IsValidStructure (see page 351)(WORD* dataLen);

10.15.2.35 MIB_INFO Union
File

SNMP.h

C

typedef union {
 struct {
 unsigned int bIsDistantSibling : 1;
 unsigned int bIsConstant : 1;
 unsigned int bIsSequence : 1;
 unsigned int bIsSibling : 1;
 unsigned int bIsParent : 1;
 unsigned int bIsEditable : 1;
 unsigned int bIsAgentID : 1;
 unsigned int bIsIDPresent : 1;
 } Flags;
 BYTE Val;
} MIB_INFO;

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

339

Members

Members Description

unsigned int bIsDistantSibling : 1; Object have distant sibling node

unsigned int bIsConstant : 1; Object is constant

unsigned int bIsSequence : 1; Object is sequence

unsigned int bIsSibling : 1; Sibling node flag

unsigned int bIsParent : 1; Node is parent flag

unsigned int bIsEditable : 1; Node is editable flag

unsigned int bIsAgentID : 1; Node have agent id flag

unsigned int bIsIDPresent : 1; Id present flag

BYTE Val; MIB Obj info as byte value

Section

SNMP object information

10.15.2.36 OCTET_STRING Macro
File

SNMP.h

C

#define OCTET_STRING (0x04u)

Description

This is macro OCTET_STRING.

10.15.2.37 OID_INFO Structure
File

SNMP.h

C

typedef struct {
 DWORD hNode;
 BYTE oid;
 MIB_INFO nodeInfo;
 DATA_TYPE dataType;
 SNMP_ID id;
 WORD_VAL dataLen;
 DWORD hData;
 DWORD hSibling;
 DWORD hChild;
 BYTE index;
 BYTE indexLen;
} OID_INFO;

Members

Members Description

DWORD hNode; Node location in the mib

BYTE oid; Object Id

MIB_INFO nodeInfo; Node info

DATA_TYPE dataType; Data type

SNMP_ID id; Snmp Id

WORD_VAL dataLen; Data length

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

340

DWORD hData; Data

DWORD hSibling; Sibling info

DWORD hChild; Child info

BYTE index; Index of object

BYTE indexLen; Index length

Section

SNMP MIB variable object information

10.15.2.38 PDU_INFO Structure
File

SNMP.h

C

typedef struct {
 DWORD_VAL requestID;
 BYTE nonRepeators;
 BYTE maxRepetitions;
 BYTE pduType;
 BYTE errorStatus;
 BYTE erroIndex;
 BYTE snmpVersion;
 WORD pduLength;
} PDU_INFO;

Members

Members Description

DWORD_VAL requestID; Snmp request id

BYTE nonRepeators; non repeaters in the request

BYTE maxRepetitions; max repeaters in the request

BYTE pduType; Snmp pdu type

BYTE errorStatus; Pdu error status

BYTE erroIndex; Pdu error Index

BYTE snmpVersion; Snmp version

WORD pduLength; Pdu length

Section

SNMP pdu information database

10.15.2.39 reqVarErrStatus Structure
File

SNMP.h

C

typedef struct {
 WORD noSuchObjectErr;
 WORD noSuchNameErr;
 WORD noSuchInstanceErr;
 WORD endOfMibViewErr;
} reqVarErrStatus;

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

341

Members

Members Description

WORD noSuchObjectErr; Var list no such obj errors flags

WORD noSuchNameErr; Var list no such name error

WORD noSuchInstanceErr; Var list no such instance error

WORD endOfMibViewErr; Var list end of mib view error

Section

SNMP reuested variable list error status information.

Max variable in a request supported 15

10.15.2.40 SET_REQUEST Macro
File

SNMP.h

C

#define SET_REQUEST (0xa3)

Description

This is macro SET_REQUEST.

10.15.2.41 SetErrorStatus Function
File

SNMP.c

C

void SetErrorStatus(
 WORD errorStatusOffset,
 WORD errorIndexOffset,
 SNMP_ERR_STATUS errorStatus,
 BYTE errorIndex
);

Description

This is function SetErrorStatus.

10.15.2.42 SNMP_AGENT_PORT Macro
File

SNMP.h

C

#define SNMP_AGENT_PORT (161)

Section

SNMP Udp ports

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

342

10.15.2.43 SNMP_BIB_FILE_NAME Macro
File

SNMP.h

C

#define SNMP_BIB_FILE_NAME "snmp.bib"

Description

This is the file that contains SNMP bib file. File name must contain all upper case letter and must match with what was
included in MPFS2 image.

10.15.2.44 SNMP_COUNTER32 Macro
File

SNMP.h

C

#define SNMP_COUNTER32 (0x41)

Description

This is macro SNMP_COUNTER32.

10.15.2.45 SNMP_ERR_STATUS Enumeration
File

SNMP.h

C

typedef enum {
 SNMP_NO_ERR = 0,
 SNMP_TOO_BIG,
 SNMP_NO_SUCH_NAME,
 SNMP_BAD_VALUE,
 SNMP_READ_ONLY,
 SNMP_GEN_ERR,
 SNMP_NO_ACCESS,
 SNMP_WRONG_TYPE,
 SNMP_WRONG_LENGTH,
 SNMP_WRONG_ENCODING,
 SNMP_WRONG_VALUE,
 SNMP_NO_CREATION,
 SNMP_INCONSISTENT_VAL,
 SNMP_RESOURCE_UNAVAILABE,
 SNMP_COMMIT_FAILED,
 SNMP_UNDO_FAILED,
 SNMP_AUTH_ERROR,
 SNMP_NOT_WRITABLE,
 SNMP_INCONSISTENT_NAME,
 SNMP_NO_SUCH_OBJ = 128,
 SNMP_NO_SUCH_INSTANCE = 129,
 SNMP_END_OF_MIB_VIEW = 130
} SNMP_ERR_STATUS;

Members

Members Description

SNMP_NO_ERR = 0 Snmp no error

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

343

SNMP_TOO_BIG Value too big error

SNMP_NO_SUCH_NAME No such name in MIB error

SNMP_BAD_VALUE Not assignable value for the var error

SNMP_READ_ONLY Read only variable, write not allowed err

SNMP_GEN_ERR Snmp gen error

SNMP_NO_ACCESS Access to modify or read not granted err

SNMP_WRONG_TYPE Variable data type wrong error

SNMP_WRONG_LENGTH Wrong data length error

SNMP_WRONG_ENCODING Wrong encoding error

SNMP_WRONG_VALUE Wrong value for the var type

SNMP_NO_CREATION No creationg error

SNMP_INCONSISTENT_VAL Inconsistent value error

SNMP_RESOURCE_UNAVAILABE Resource unavailbe error

SNMP_COMMIT_FAILED Modification update failed error

SNMP_UNDO_FAILED Modification undo failed

SNMP_AUTH_ERROR Authorization failed error

SNMP_NOT_WRITABLE Variable read only

SNMP_INCONSISTENT_NAME Inconsistent name

SNMP_NO_SUCH_OBJ = 128 No such object error

SNMP_NO_SUCH_INSTANCE = 129 No such instance error

SNMP_END_OF_MIB_VIEW = 130 Reached to end of mib error

Section

SNMP specific errors

10.15.2.46 SNMP_GAUGE32 Macro
File

SNMP.h

C

#define SNMP_GAUGE32 (0x42)

Description

This is macro SNMP_GAUGE32.

10.15.2.47 SNMP_IP_ADDR Macro
File

SNMP.h

C

#define SNMP_IP_ADDR (0x40)

Description

This is macro SNMP_IP_ADDR.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

344

10.15.2.48 SNMP_NMS_PORT Macro
File

SNMP.h

C

#define SNMP_NMS_PORT (162)

Description

This is macro SNMP_NMS_PORT.

10.15.2.49 SNMP_NOTIFY_INFO Structure
File

SNMP.h

C

typedef struct {
 char community[NOTIFY_COMMUNITY_LEN];
 BYTE communityLen;
 SNMP_ID agentIDVar;
 BYTE notificationCode;
 UDP_SOCKET socket;
 DWORD_VAL timestamp;
 SNMP_ID trapIDVar;
} SNMP_NOTIFY_INFO;

Members

Members Description

char
community[NOTIFY_COMMUNITY_LEN];

Community name array

BYTE communityLen; Community name length

SNMP_ID agentIDVar; Agent id for trap identification

BYTE notificationCode; Trap notification code

UDP_SOCKET socket; Udp socket number

DWORD_VAL timestamp; Time stamp for trap

SNMP_ID trapIDVar; SNMPV2 specific trap

Section

SNMP trap notification information for agent

10.15.2.50 SNMP_NSAP_ADDR Macro
File

SNMP.h

C

#define SNMP_NSAP_ADDR (0x45)

Description

This is macro SNMP_NSAP_ADDR.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

345

10.15.2.51 IsValidLength Function
File

SNMP.h

C

BYTE IsValidLength(
 WORD * len
);

Description

This is function IsValidLength.

10.15.2.52 SNMP_OPAQUE Macro
File

SNMP.h

C

#define SNMP_OPAQUE (0x44)

Description

This is macro SNMP_OPAQUE.

10.15.2.53 SNMP_STATUS Union
File

SNMP.h

C

typedef union {
 struct {
 unsigned int bIsFileOpen : 1;
 } Flags;
 BYTE Val;
} SNMP_STATUS;

Members

Members Description

unsigned int bIsFileOpen : 1; MIB file access int flag

BYTE Val; MIB file access byte flag

Section

SNMP specific mib file access information

10.15.2.54 SNMP_TIME_TICKS Macro
File

SNMP.h

C

#define SNMP_TIME_TICKS (0x43)

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

346

Description

This is macro SNMP_TIME_TICKS.

10.15.2.55 SNMP_V1 Macro
File

SNMP.h

C

#define SNMP_V1 (0)

Section

SNMP agent version types

10.15.2.56 SNMP_V2C Macro
File

SNMP.h

C

#define SNMP_V2C (1)

Description

This is macro SNMP_V2C.

10.15.2.57 SNMPAgentSocket Variable
File

SNMP.c

C

UDP_SOCKET SNMPAgentSocket = INVALID_UDP_SOCKET;

Description

Snmp udp socket

10.15.2.58 SNMPNotifyInfo Variable
File

SNMP.c

C

SNMP_NOTIFY_INFO SNMPNotifyInfo;

Description

notify info for trap

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

347

10.15.2.59 snmpReqVarErrStatus Variable
File

SNMP.c

C

reqVarErrStatus snmpReqVarErrStatus;

Description

vars from req list processing err status

10.15.2.60 SNMPRxOffset Variable
File

SNMP.c

C

WORD SNMPRxOffset;

Description

Snmp udp buffer rx offset

10.15.2.61 SNMPStatus Variable
File

SNMP.c

C

SNMP_STATUS SNMPStatus;

Description

MIB file access status

10.15.2.62 SNMPTxOffset Variable
File

SNMP.c

C

WORD SNMPTxOffset;

Description

Snmp udp buffer tx offset

10.15.2.63 STRUCTURE Macro
File

SNMP.h

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

348

C

#define STRUCTURE (0x30u)

Section

SNMP specific variables

10.15.2.64 TRAP Macro
File

SNMP.h

C

#define TRAP (0xa4)

Description

This is macro TRAP.

10.15.2.65 trapInfo Variable
File

CustomSNMPApp.c

C

TRAP_INFO trapInfo = { TRAP_TABLE_SIZE };

Description

Initialize trap table with no entries.

10.15.2.66 GetDataTypeInfo Function
File

SNMP.c

C

BOOL GetDataTypeInfo(
 DATA_TYPE dataType,
 DATA_TYPE_INFO* info
);

Description

This is function GetDataTypeInfo.

10.15.2.67 GetNextLeaf Function
File

SNMP.c

C

BOOL GetNextLeaf(
 OID_INFO* rec
);

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

349

Description

This is function GetNextLeaf.

10.15.2.68 GetOIDStringByAddr Function
File

SNMP.c

C

BOOL GetOIDStringByAddr(
 OID_INFO* rec,
 BYTE* oidString,
 BYTE* len
);

Description

This is function GetOIDStringByAddr.

10.15.2.69 GetOIDStringByID Function
File

SNMP.c

C

BOOL GetOIDStringByID(
 SNMP_ID id,
 OID_INFO* info,
 BYTE* oidString,
 BYTE* len
);

Description

This function is used only when TRAP is enabled.

10.15.2.70 IsValidCommunity Function
File

SNMP.c

C

static BOOL IsValidCommunity(
 char* community,
 BYTE* len
);

Description

This is function IsValidCommunity.

10.15.2.71 IsValidInt Function
File

SNMP.h

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

350

C

BOOL IsValidInt(
 DWORD* val
);

Description

This is function IsValidInt.

10.15.2.72 IsValidLength Function
File

SNMP.c

C

BYTE IsValidLength(
 WORD* len
);

Description

This is function IsValidLength.

10.15.2.73 IsValidOID Function
File

SNMP.c

C

static BOOL IsValidOID(
 BYTE* oid,
 BYTE* len
);

Section

Routines to validate snmp request pdu elements for SNMP format

10.15.2.74 IsValidPDU Function
File

SNMP.c

C

static BOOL IsValidPDU(
 SNMP_ACTION* pdu
);

Description

static BOOL IsValidInt (see page 350)(DWORD* val);

10.15.2.75 IsValidStructure Function
File

SNMP.h

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

351

C

BYTE IsValidStructure(
 WORD* dataLen
);

Description

This is function IsValidStructure.

10.15.2.76 OIDLookup Function
File

SNMP.c

C

BYTE OIDLookup(
 PDU_INFO* pduDbPtr,
 BYTE* oid,
 BYTE oidLen,
 OID_INFO* rec
);

Section

Routines to read/search OIDs,objects from the SNMP MIB database

10.15.2.77 ProcessGetSetHeader Function
File

SNMP.c

C

static BOOL ProcessGetSetHeader(
 PDU_INFO* pduDbPtr
);

Description

All the variables of snmp pdu request header are validated for their data types. Collects request_id for the snmp request pdu.
Fetch,validates error status,error index and discard as they are need not to be processed as received in request pdu.
Collects non repeaters and max repeaters values in case of Get_Bulk request.

Remarks

The request pdu will be processed only if this routine returns TRUE

Preconditions

ProcessHeader (see page 353)() is called and returns pdu type and do not returns SNMP_ACTION_UNKNOWN

Parameters

Parameters Description

pduDbPtr Pointer to received pdu information database.

Return Values

Return Values Description

TRUE If the received request header is validated and passed.

FALSE If rxed request header is not valid.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

352

10.15.2.78 ProcessHeader Function
File

SNMP.c

C

static SNMP_ACTION ProcessHeader(
 PDU_INFO* pduDbPtr,
 char* community,
 BYTE* len
);

Description

Collects PDU_INFO (see page 341) (SNMP pdu information database),community name, community length and length of
data payload. This function validates the received udp packet for these different variables of snmp pdu. The sequence in
which these elements are received is important. The validation is done for the agent processing capabilities and the max
UDP packet length as UDP packets can not be fragmented.

Remarks

The received pdu will be processed only if this routine returns the pdu type else the pdu is discarded as not Snmp pdu.

Preconditions

UDPIsGetReady (see page 524)(SNMPAgentSocket (see page 347)) is called in SNMPTask (see page 355)(), it
check if there is any packet on SNMP Agent socket, should return TRUE.

Parameters

Parameters Description

pduDbPtr Pointer to received pdu information database

community Pointer to var storing, community string in rxed pdu

len Pointer to var storing, community string length rxed in pdu

Return Values

Return Values Description

SNMP_ACTION (see page 317) Snmp request pdu type.

10.15.2.79 ProcessSetVar Function
File

SNMP.h

C

BYTE ProcessSetVar(
 PDU_INFO* pduDbPtr,
 OID_INFO* rec,
 SNMP_ERR_STATUS* errorStatus
);

Description

This is function ProcessSetVar.

10.15.2.80 ProcessVariables Function
File

SNMP.c

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

353

C

static BOOL ProcessVariables(
 PDU_INFO* pduDbPtr,
 char* community,
 BYTE len
);

Description

Once the received pdu is validated as Snmp pdu, it is forwarded for processing to this routine. This rotuine handles Get,
Get_Next, Get_Bulk, Set request and creates appropriate response as Get_Response. This routine will decide on whether
the request pdu should be processed or be discarded.

Remarks

None

Preconditions

The received udp packet is varified as SNMP request. ProcessHeader (see page 353)() and ProcessGetSetHeader (see
page 352)() returns but FALSE.

Parameters

Parameters Description

pduDbPtr Pointer to received pdu information database

community Pointer to var, storing community string in rxed pdu

len Pointer to var, storing community string length rxed in pdu

Return Values

Return Values Description

TRUE If the snmp request processing is successful.

FALSE If the processing failed else the processing is not completed.

10.15.2.81 ReadMIBRecord Function
File

SNMP.c

C

static void ReadMIBRecord(
 DWORD h,
 OID_INFO* rec
);

Description

This is function ReadMIBRecord.

10.15.2.82 SNMPCheckIfPvtMibObjRequested Function
File

SNMP.c

C

static BOOL SNMPCheckIfPvtMibObjRequested(
 BYTE* OIDValuePtr
);

10.15 SNMP Microchip TCP/IP Stack Help SNMP Internal Members

354

Section

Routine to check if private mib object is requested by NMS.

10.15.3 SNMP Stack Members

Functions

Name Description

SNMPInit (see page 355) Initialize SNMP module internals.

SNMPTask (see page 355) Polls for every snmp pdu received.

Module

SNMP (see page 313)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.15.3.1 SNMPInit Function
File

SNMP.h

C

void SNMPInit();

Returns

None

Description

This function initializes the Snmp agent. One udp socket is intialized and opened at port 161. Agent will receive and transmit
all the snmp pdus on this udp socket.

Remarks

This function is called only once during lifetime of the application. One UDP socket will be used.

Preconditions

At least one UDP socket must be available. UDPInit (see page 531)() is already called.

Section

Function Prototypes

10.15.3.2 SNMPTask Function
File

SNMP.h

C

BOOL SNMPTask();

Description

Handle incoming SNMP requests as well as any outgoing SNMP responses and timeout conditions.

10.15 SNMP Microchip TCP/IP Stack Help SNMP Stack Members

355

Remarks

None

Preconditions

SNMPInit (see page 355)() is already called.

Return Values

Return Values Description

TRUE If SNMP module has finished with a state

FALSE If a state has not been finished.

10.15.4 Functions

Functions

Name Description

getSnmpV2GenTrapOid (see page 357) Resolves generic trap code to generic trap OID.

ProcessGetBulkVar (see page 357) This is function ProcessGetBulkVar.

ProcessGetNextVar (see page 358) This is function ProcessGetNextVar.

ProcessGetVar (see page 358) This is function ProcessGetVar.

ProcessSnmpv3MsgData (see page
358)

This is function ProcessSnmpv3MsgData.

SNMPGetExactIndex (see page 358) To search for exact index node in case of a Sequence variable.

SNMPIdRecrdValidation (see page 359) Used to Restrict the access dynamic and non dynamic OID string
for A perticular SNMP Version.

SNMPIsValidSetLen (see page 360) Validates the set variable data length to data type.

Snmpv3AESDecryptRxedScopedPdu (
see page 360)

This is function Snmpv3AESDecryptRxedScopedPdu.

Snmpv3BufferPut (see page 360) This is function Snmpv3BufferPut.

Snmpv3FormulateEngineID (see page
361)

This is function Snmpv3FormulateEngineID.

Snmpv3GetAuthEngineTime (see page
361)

This is function Snmpv3GetAuthEngineTime.

Snmpv3GetBufferData (see page 361) This is function Snmpv3GetBufferData.

Snmpv3InitializeUserDataBase (see
page 361)

This is function Snmpv3InitializeUserDataBase.

Snmpv3MsgProcessingModelProcessPDU
(see page 362)

This is function Snmpv3MsgProcessingModelProcessPDU.

Snmpv3Notify (see page 362) This is function Snmpv3Notify.

Snmpv3ScopedPduProcessing (see
page 362)

This is function Snmpv3ScopedPduProcessing.

Snmpv3TrapScopedpdu (see page 362) This is function Snmpv3TrapScopedpdu.

Snmpv3UserSecurityModelProcessPDU
(see page 363)

This is function Snmpv3UserSecurityModelProcessPDU.

Snmpv3UsmAesEncryptDecryptInitVector
(see page 363)

This is function Snmpv3UsmAesEncryptDecryptInitVector.

10.15 SNMP Microchip TCP/IP Stack Help Functions

356

Snmpv3UsmOutMsgAuthenticationParam
(see page 363)

This is function Snmpv3UsmOutMsgAuthenticationParam.

Snmpv3ValidateEngineId (see page
363)

This is function Snmpv3ValidateEngineId.

Snmpv3ValidateSecNameAndSecLvl (
see page 364)

This is function Snmpv3ValidateSecNameAndSecLvl.

Snmpv3ValidateSecurityName (see
page 364)

This is function Snmpv3ValidateSecurityName.

Module

SNMP (see page 313)

10.15.4.1 getSnmpV2GenTrapOid Function
File

SNMP.h

C

BYTE * getSnmpV2GenTrapOid(
 BYTE generic_trap_code,
 BYTE * len
);

Description

This function resolves given generic trap code to generic trap OID.

Remarks

This would fail if generic_trap_code is not coming under GENERIC_TRAP_NOTIFICATION_TYPE (see page 317)

Preconditions

SNMPNotifyPrepare (see page 324)() is already called.

Parameters

Parameters Description

generic_trap_code GENERIC_TRAP_NOTIFICATION_TYPE (see page 317)

len generic trap OID length

Return Values

Return Values Description

BYTE * TRAP OID

10.15.4.2 ProcessGetBulkVar Function
File

SNMP.h

C

BYTE ProcessGetBulkVar(
 OID_INFO* rec,
 BYTE* oidValuePtr,
 BYTE* oidLenPtr,
 BYTE* successor,
 PDU_INFO* pduDbPtr
);

10.15 SNMP Microchip TCP/IP Stack Help Functions

357

Description

This is function ProcessGetBulkVar.

10.15.4.3 ProcessGetNextVar Function
File

SNMP.h

C

BYTE ProcessGetNextVar(
 OID_INFO* rec,
 PDU_INFO* pduDbPtr
);

Description

This is function ProcessGetNextVar.

10.15.4.4 ProcessGetVar Function
File

SNMP.h

C

BYTE ProcessGetVar(
 OID_INFO* rec,
 BOOL bAsOID,
 PDU_INFO* pduDbPtr
);

Description

This is function ProcessGetVar.

10.15.4.5 ProcessSnmpv3MsgData Function
File

SNMP.h

C

BOOL ProcessSnmpv3MsgData(
 PDU_INFO* pduDbPtr
);

Description

This is function ProcessSnmpv3MsgData.

10.15.4.6 SNMPGetExactIndex Function
File

SNMP.h

C

BOOL SNMPGetExactIndex(
 SNMP_ID var,

10.15 SNMP Microchip TCP/IP Stack Help Functions

358

 SNMP_INDEX index
);

Description

This is a callback function called by SNMP module. SNMP user must implement this function in user application and provide
appropriate data when called. This function will only be called for OID variable of type sequence.

Remarks

Only sequence index needs to be handled in this function.

Preconditions

None

Parameters

Parameters Description

var Variable id as per mib.h (input)

index Index of variable (input)

Return Values

Return Values Description

TRUE If the exact index value exists for given variable at given index.

FALSE Otherwise.

10.15.4.7 SNMPIdRecrdValidation Function
File

SNMP.h

C

BOOL SNMPIdRecrdValidation(
 PDU_INFO * pduPtr,
 OID_INFO * var,
 BYTE * oidValuePtr,
 BYTE oidLen
);

Description

This is a callback function called by SNMP module. SNMP user must implement this function as per SNMP version. One
need to add the new SNMP MIB IDs hereas per SNMP version. e.g - SYS_UP_TIME (250) is common for V1/V2/V3
ENGINE_ID - is the part of V3, So put the all the SNMPv3 var ids within Macro STACK_USE_SNMPV3_SERVER.

Remarks

None.

Preconditions

None

Parameters

Parameters Description

var Variable rec whose record id need to be validated

oidValuePtr OID Value

oidLen oidValuePtr length

Return Values

Return Values Description

TRUE If a Var ID exists .

10.15 SNMP Microchip TCP/IP Stack Help Functions

359

FALSE Otherwise.

10.15.4.8 SNMPIsValidSetLen Function
File

SNMP.h

C

BOOL SNMPIsValidSetLen(
 SNMP_ID var,
 BYTE len,
 BYTE index
);

Description

This routine is used to validate the dyanmic variable data length to the variable data type. It is used when SET request is
processed. This is a callback function called by module. User application must implement this function.

Remarks

This function will be called for only dynamic variables that are defined as ASCII_STRING and OCTET_STRING (see page
340) (i.e. data length greater than 4 bytes)

Preconditions

ProcessSetVar (see page 353)() is called.

Parameters

Parameters Description

var Variable id whose value is to be set

len Length value that is to be validated.

index instance of a OID

Return Values

Return Values Description

TRUE if given var can be set to given len

FALSE if otherwise.

10.15.4.9 Snmpv3AESDecryptRxedScopedPdu Function
File

SNMP.h

C

BYTE Snmpv3AESDecryptRxedScopedPdu();

Description

This is function Snmpv3AESDecryptRxedScopedPdu.

10.15.4.10 Snmpv3BufferPut Function
File

SNMP.h

10.15 SNMP Microchip TCP/IP Stack Help Functions

360

C

BOOL Snmpv3BufferPut(
 BYTE val,
 SNMPV3MSGDATA * putbuf
);

Description

This is function Snmpv3BufferPut.

10.15.4.11 Snmpv3FormulateEngineID Function
File

SNMP.h

C

void Snmpv3FormulateEngineID(
 UINT8 fifthOctectIdentifier
);

Description

This is function Snmpv3FormulateEngineID.

10.15.4.12 Snmpv3GetAuthEngineTime Function
File

SNMP.h

C

void Snmpv3GetAuthEngineTime();

Description

This is function Snmpv3GetAuthEngineTime.

10.15.4.13 Snmpv3GetBufferData Function
File

SNMP.h

C

BYTE Snmpv3GetBufferData(
 SNMPV3MSGDATA getbuf,
 UINT16 pos
);

Description

This is function Snmpv3GetBufferData.

10.15.4.14 Snmpv3InitializeUserDataBase Function
File

SNMP.c

10.15 SNMP Microchip TCP/IP Stack Help Functions

361

C

void Snmpv3InitializeUserDataBase();

Description

This is function Snmpv3InitializeUserDataBase.

10.15.4.15 Snmpv3MsgProcessingModelProcessPDU Function
File

SNMP.h

C

SNMP_ACTION Snmpv3MsgProcessingModelProcessPDU(
 BYTE inOutPdu
);

Description

This is function Snmpv3MsgProcessingModelProcessPDU.

10.15.4.16 Snmpv3Notify Function
File

SNMP.h

C

BOOL Snmpv3Notify(
 SNMP_ID var,
 SNMP_VAL val,
 SNMP_INDEX index,
 UINT8 targetIndex
);

Description

This is function Snmpv3Notify.

10.15.4.17 Snmpv3ScopedPduProcessing Function
File

SNMP.h

C

SNMP_ACTION Snmpv3ScopedPduProcessing(
 BYTE inOutPdu
);

Description

This is function Snmpv3ScopedPduProcessing.

10.15.4.18 Snmpv3TrapScopedpdu Function
File

SNMP.h

10.15 SNMP Microchip TCP/IP Stack Help Functions

362

C

UINT8 Snmpv3TrapScopedpdu(
 SNMP_ID var,
 SNMP_VAL val,
 SNMP_INDEX index,
 UINT8 targetIndex
);

Description

This is function Snmpv3TrapScopedpdu.

10.15.4.19 Snmpv3UserSecurityModelProcessPDU Function
File

SNMP.h

C

SNMP_ACTION Snmpv3UserSecurityModelProcessPDU(
 BYTE inOutPdu
);

Description

This is function Snmpv3UserSecurityModelProcessPDU.

10.15.4.20 Snmpv3UsmAesEncryptDecryptInitVector Function
File

SNMP.h

C

void Snmpv3UsmAesEncryptDecryptInitVector(
 BYTE inOutPdu
);

Description

This is function Snmpv3UsmAesEncryptDecryptInitVector.

10.15.4.21 Snmpv3UsmOutMsgAuthenticationParam Function
File

SNMP.h

C

void Snmpv3UsmOutMsgAuthenticationParam(
 UINT8 hashType
);

Description

This is function Snmpv3UsmOutMsgAuthenticationParam.

10.15.4.22 Snmpv3ValidateEngineId Function
File

SNMP.h

10.15 SNMP Microchip TCP/IP Stack Help Functions

363

C

BOOL Snmpv3ValidateEngineId();

Description

This is function Snmpv3ValidateEngineId.

10.15.4.23 Snmpv3ValidateSecNameAndSecLvl Function
File

SNMP.h

C

BOOL Snmpv3ValidateSecNameAndSecLvl();

Description

This is function Snmpv3ValidateSecNameAndSecLvl.

10.15.4.24 Snmpv3ValidateSecurityName Function
File

SNMP.h

C

BOOL Snmpv3ValidateSecurityName();

Description

This is function Snmpv3ValidateSecurityName.

10.15.5 Types

Enumerations

Name Description

INOUT_SNMP_PDU (see
page 364)

This is type INOUT_SNMP_PDU.

Module

SNMP (see page 313)

Structures

Name Description

SNMPNONMIBRECDINFO
(see page 365)

This is type SNMPNONMIBRECDINFO.

SNMPV3MSGDATA (see
page 365)

SNMPv3

10.15.5.1 INOUT_SNMP_PDU Enumeration
File

SNMP.h

10.15 SNMP Microchip TCP/IP Stack Help Types

364

C

typedef enum {
 SNMP_RESPONSE_PDU = 0x01,
 SNMP_REQUEST_PDU = 0x02
} INOUT_SNMP_PDU;

Description

This is type INOUT_SNMP_PDU.

10.15.5.2 SNMPNONMIBRECDINFO Structure
File

SNMP.h

C

typedef struct {
 UINT8 oidstr[16];
 UINT8 version;
} SNMPNONMIBRECDINFO;

Description

This is type SNMPNONMIBRECDINFO.

10.15.5.3 SNMPV3MSGDATA Structure
File

SNMP.h

C

typedef struct {
 UINT8 * head;
 WORD length;
 WORD maxlength;
 WORD msgAuthParamOffset;
} SNMPV3MSGDATA;

Description

SNMPv3

10.15.6 Variables

Module

SNMP (see page 313)

Variables

Name Description

getZeroInstance (see page 366) This variable is used for gext next request for zero instance

gSNMPv3ScopedPduDataPos (
see page 366)

This is variable gSNMPv3ScopedPduDataPos.

gSNMPv3ScopedPduRequestBuf
(see page 366)

This is variable gSNMPv3ScopedPduRequestBuf.

10.15 SNMP Microchip TCP/IP Stack Help Variables

365

gSNMPv3ScopedPduResponseBuf
(see page 366)

This is variable gSNMPv3ScopedPduResponseBuf.

msgSecrtyParamLenOffset (see
page 367)

This is variable msgSecrtyParamLenOffset.

10.15.6.1 getZeroInstance Variable
File

SNMP.c

C

BOOL getZeroInstance;

Description

This variable is used for gext next request for zero instance

10.15.6.2 gSNMPv3ScopedPduDataPos Variable
File

SNMP.h

C

UINT16 gSNMPv3ScopedPduDataPos;

Description

This is variable gSNMPv3ScopedPduDataPos.

10.15.6.3 gSNMPv3ScopedPduRequestBuf Variable
File

SNMP.h

C

SNMPV3MSGDATA gSNMPv3ScopedPduRequestBuf;

Description

This is variable gSNMPv3ScopedPduRequestBuf.

10.15.6.4 gSNMPv3ScopedPduResponseBuf Variable
File

SNMP.h

C

SNMPV3MSGDATA gSNMPv3ScopedPduResponseBuf;

Description

This is variable gSNMPv3ScopedPduResponseBuf.

10.15 SNMP Microchip TCP/IP Stack Help Variables

366

10.15.6.5 msgSecrtyParamLenOffset Variable
File

SNMP.c

C

WORD msgSecrtyParamLenOffset;

Description

This is variable msgSecrtyParamLenOffset.

10.15.7 Macros

Macros

Name Description

IS_SNMPV3_AUTH_STRUCTURE
(see page 367)

This is macro IS_SNMPV3_AUTH_STRUCTURE.

REPORT_RESPONSE (see
page 367)

This is macro REPORT_RESPONSE.

SNMP_MAX_MSG_SIZE (see
page 368)

SNMP MIN and MAX message 484 bytes in size As per RFC 3411
snmpEngineMaxMessageSize and RFC 1157 (section 4- protocol
specification) and implementation supports more than 484 whenever
feasible.

SNMP_V3 (see page 368) This is macro SNMP_V3.

Module

SNMP (see page 313)

10.15.7.1 IS_SNMPV3_AUTH_STRUCTURE Macro
File

SNMP.h

C

#define IS_SNMPV3_AUTH_STRUCTURE(a) (a==SNMPV3_ENCRYPTION)

Description

This is macro IS_SNMPV3_AUTH_STRUCTURE.

10.15.7.2 REPORT_RESPONSE Macro
File

SNMP.h

C

#define REPORT_RESPONSE (0xa8)

Description

This is macro REPORT_RESPONSE.

10.15 SNMP Microchip TCP/IP Stack Help Macros

367

10.15.7.3 SNMP_MAX_MSG_SIZE Macro
File

SNMP.h

C

#define SNMP_MAX_MSG_SIZE 484

Description

SNMP MIN and MAX message 484 bytes in size As per RFC 3411 snmpEngineMaxMessageSize and RFC 1157 (section
4- protocol specification) and implementation supports more than 484 whenever feasible.

10.15.7.4 SNMP_V3 Macro
File

SNMP.h

C

#define SNMP_V3 (3)

Description

This is macro SNMP_V3.

10.16 SNTP Client
The SNTP module implements the Simple Network Time Protocol. The module (by default) updates its internal time every 10
minutes using a pool of public global time servers. It then calculates reference times on any call to SNTPGetUTCSeconds (
see page 369) using the internal Tick timer module.

The SNTP module is good for providing absolute time stamps. However, it should not be relied upon for measuring time
differences (especially small differences). The pool of public time servers is implemented using round-robin DNS, so each
update will come from a different server. Differing network delays and the fact that these servers are not verified implies that
this time could be non-linear. While it is deemed reliable, it is not guaranteed to be accurate.

The Tick module provides much better accuracy (since it is driven by a hardware clock) and resolution, and should be used
for measuring timeouts and other internal requirements.

Developers can change the value of NTP_SERVER (see page 373) if they wish to always point to a preferred time server,
or to specify a region when accessing time servers. The default is to use the global pool.

10.16.1 SNTP Client Public Members

Functions

Name Description

SNTPGetUTCSeconds (
see page 369)

Obtains the current time from the SNTP module.

Module

SNTP Client (see page 368)

10.16 SNTP Client Microchip TCP/IP Stack Help SNTP Client Public Members

368

Description

The following functions and variables are available to the stack application.

10.16.1.1 SNTPGetUTCSeconds Function
File

SNTP.h

C

DWORD SNTPGetUTCSeconds();

Returns

The number of seconds since the Epoch. (Default 01-Jan-1970 00:00:00)

Description

This function obtains the current time as reported by the SNTP module. Use this value for absolute time stamping. The value
returned is (by default) the number of seconds since 01-Jan-1970 00:00:00.

Remarks

Do not use this function for time difference measurements. The Tick module is more appropriate for those requirements.

Preconditions

None

10.16.2 SNTP Client Stack Members

Functions

Name Description

SNTPClient (see page 369) Periodically checks the current time from a pool of servers.

Module

SNTP Client (see page 368)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.16.2.1 SNTPClient Function
File

SNTP.h

C

void SNTPClient();

Returns

None

Description

This function periodically checks a pool of time servers to obtain the current date/time.

10.16 SNTP Client Microchip TCP/IP Stack Help SNTP Client Stack Members

369

Remarks

This function requires once available UDP socket while processing, but frees that socket when the SNTP module is idle.

Preconditions

UDP is initialized.

10.16.3 SNTP Client Internal Members

Macros

Name Description

NTP_EPOCH (see page 372) Reference Epoch to use. (default: 01-Jan-1970 00:00:00)

NTP_FAST_QUERY_INTERVAL
(see page 372)

Defines how long to wait to retry an update after a failure. Updates may take
up to 6 seconds to fail, so this 14 second delay is actually only an 8-second
retry.

NTP_QUERY_INTERVAL (
see page 372)

Defines how frequently to resynchronize the date/time (default: 10 minutes)

NTP_REPLY_TIMEOUT (see
page 373)

Defines how long to wait before assuming the query has failed

NTP_SERVER (see page 373) These are normally available network time servers. The actual IP returned
from the pool will vary every minute so as to spread the load around stratum
1 timeservers. For best accuracy and network overhead you should locate
the pool server closest to your geography, but it will still work if you use the
global pool.ntp.org address or choose the wrong one or ship your
embedded device to another geography.

NTP_SERVER_PORT (see
page 373)

Port for contacting NTP servers

Module

SNTP Client (see page 368)

Structures

Name Description

NTP_PACKET (see page
370)

Defines the structure of an NTP packet

Variables

Name Description

dwLastUpdateTick (see
page 371)

Tick count of last update

dwSNTPSeconds (see
page 372)

Seconds value obtained by last update

Description

The following functions and variables are designated as internal to the SNTP Client module.

10.16.3.1 NTP_PACKET Structure
File

SNTP.c

10.16 SNTP Client Microchip TCP/IP Stack Help SNTP Client Internal Members

370

C

typedef struct {
 struct {
 BYTE mode : 3;
 BYTE versionNumber : 3;
 BYTE leapIndicator : 2;
 } flags;
 BYTE stratum;
 CHAR poll;
 CHAR precision;
 DWORD root_delay;
 DWORD root_dispersion;
 DWORD ref_identifier;
 DWORD ref_ts_secs;
 DWORD ref_ts_fraq;
 DWORD orig_ts_secs;
 DWORD orig_ts_fraq;
 DWORD recv_ts_secs;
 DWORD recv_ts_fraq;
 DWORD tx_ts_secs;
 DWORD tx_ts_fraq;
} NTP_PACKET;

Members

Members Description

struct {
BYTE mode : 3;
BYTE versionNumber : 3;
BYTE leapIndicator : 2;
} flags;

Flags for the packet

BYTE mode : 3; NTP mode

BYTE versionNumber : 3; SNTP version number

BYTE leapIndicator : 2; Leap second indicator

BYTE stratum; Stratum level of local clock

CHAR poll; Poll interval

CHAR precision; Precision (seconds to nearest power of 2)

DWORD root_delay; Root delay between local machine and server

DWORD root_dispersion; Root dispersion (maximum error)

DWORD ref_identifier; Reference clock identifier

DWORD ref_ts_secs; Reference timestamp (in seconds)

DWORD ref_ts_fraq; Reference timestamp (fractions)

DWORD orig_ts_secs; Origination timestamp (in seconds)

DWORD orig_ts_fraq; Origination timestamp (fractions)

DWORD recv_ts_secs; Time at which request arrived at sender (seconds)

DWORD recv_ts_fraq; Time at which request arrived at sender (fractions)

DWORD tx_ts_secs; Time at which request left sender (seconds)

DWORD tx_ts_fraq; Time at which request left sender (fractions)

Description

Defines the structure of an NTP packet

10.16.3.2 dwLastUpdateTick Variable
File

SNTP.c

10.16 SNTP Client Microchip TCP/IP Stack Help SNTP Client Internal Members

371

C

DWORD dwLastUpdateTick = 0;

Description

Tick count of last update

10.16.3.3 dwSNTPSeconds Variable
File

SNTP.c

C

DWORD dwSNTPSeconds = 0;

Description

Seconds value obtained by last update

10.16.3.4 NTP_EPOCH Macro
File

SNTP.c

C

#define NTP_EPOCH (86400ul * (365ul * 70ul + 17ul))

Description

Reference Epoch to use. (default: 01-Jan-1970 00:00:00)

10.16.3.5 NTP_FAST_QUERY_INTERVAL Macro
File

SNTP.c

C

#define NTP_FAST_QUERY_INTERVAL (14ull * TICK_SECOND)

Description

Defines how long to wait to retry an update after a failure. Updates may take up to 6 seconds to fail, so this 14 second delay
is actually only an 8-second retry.

10.16.3.6 NTP_QUERY_INTERVAL Macro
File

SNTP.c

C

#define NTP_QUERY_INTERVAL (10ull*60ull * TICK_SECOND)

Description

Defines how frequently to resynchronize the date/time (default: 10 minutes)

10.16 SNTP Client Microchip TCP/IP Stack Help SNTP Client Internal Members

372

10.16.3.7 NTP_REPLY_TIMEOUT Macro
File

SNTP.c

C

#define NTP_REPLY_TIMEOUT (6ul*TICK_SECOND)

Description

Defines how long to wait before assuming the query has failed

10.16.3.8 NTP_SERVER Macro
File

SNTP.c

C

#define NTP_SERVER "pool.ntp.org"

Description

These are normally available network time servers. The actual IP returned from the pool will vary every minute so as to
spread the load around stratum 1 timeservers. For best accuracy and network overhead you should locate the pool server
closest to your geography, but it will still work if you use the global pool.ntp.org address or choose the wrong one or ship
your embedded device to another geography.

10.16.3.9 NTP_SERVER_PORT Macro
File

SNTP.c

C

#define NTP_SERVER_PORT (123ul)

Description

Port for contacting NTP servers

10.17 SSL
The SSL module adds encryption support to the TCP layer by implementing the SSLv3 protocol. This protocol is the
standard for secure communications across the Internet, and prevents snooping or tampering of data as it travels across an
untrusted network.

To comply with US Export Control restrictions, the encryption portion of the SSL module must be purchased
separately from Microchip. The library of Data Encryption Routines (SW300052) is available for a nominal fee from
http://www.microchipdirect.com/productsearch.aspx?Keywords=SW300052.

SSL Client Support

An SSL client can be initiated by first opening a TCP connection, then calling TCPStartSSLSession to initiate the SSL
handshake process. The handshake uses the public key from the certificate provided by the server. Key lengths up to 1024

10.17 SSL Microchip TCP/IP Stack Help

373

http://www.microchipdirect.com/productsearch.aspx?Keywords=SW300052

bits are supported.

Once the handshake has started, call TCPSSLIsHandshaking (see page 378) until it returns FALSE. This will indicate that
the handshake has completed and all traffic is now secured using 128-bit ARCFOUR encryption. If the handshake fails for
any reason, the TCP connection will automatically be terminated as required by the SSL protocol specification.

For faster performance, the SSL module caches security parameters for the most recently made connections. This allows
quick reconnections to the same node without the computational expense of another RSA handshake. By default, the two
most recent connections are cached, but this can be modified in TCPIPConfig.h.

SSL client support is already enabled for SMTP. When STACK_USE_SSL_CLIENT is defined, the SMTP module
automatically adds a field to SMTPClient (see page 299) called UseSSL. That field controls whether or not the SMTP
client module will attempt to make an SSL connection before transmitting any data.

SSL Server Support

To initiate an SSL server, first open a TCP socket for listening using TCPOpen (see page 452). Then call
TCPAddSSLListener (see page 378) to listen (see page 170) for incoming SSL connections on an alternate port. This
allows a single socket to share application-level resources and listen (see page 170) for connections on two different
ports. Connections occurring on the originally opened port will proceed unsecured, while connections on the SSL port will
first complete an SSL handshake to secure the data.

If you application will not accept (see page 164) unsecured traffic, simply open a non-secured socket on a free port
number, then verify that each incoming connection is secured (not on that port) by calling TCPIsSSL (see page 380).

SSL server support is automatically enabled for HTTP2 when STACK_USE_SSL_SERVER is defined. By default, the
HTTP2 module will then listen (see page 170) for unsecured traffic on port 80 and secured connections on port 443.

Limitations

SSL was designed for desktop PCs with faster processors and significantly more resources than are available on an
embedded platform. A few compromises must be made in order to use SSL in a less resource-intensive manner.

The SSL client module does not perform any validation or verification of certificates. Doing so would require many root
certificates to be stored locally for verification, which is not feasible for memory-limited parts. This does not compromise
security once the connection has been established, but does not provide complete security against man-in-the-middle
attacks. (This sort of attack is uncommon and would be difficult to execute.)

Neither the SSL client nor the server can completely verify MACs before processing data. SSL records include a signature to
verify that messages were not modified in transit. This Message Authentication (see page 85) Code, or MAC, is inserted
after at least every 16kB of traffic. (It usually is inserted much more frequently than that.) Without 16kB of RAM to buffer
packets for each socket, incoming data must be handed to the application layer before the MAC can be completely verified.
Invalid MACs will still cause the connection to terminate immediately, but by the time this is detected some bad data may
have already reached the application. Since the ARCFOUR cipher in use is a stream cipher, it would be difficult to exploit
this in any meaningful way. An attacker would not be able to control what data is actually modified or inserted, as doing so
without knowledge of the key would yield garbage. However, it is important to understand that incoming data is not
completely verified before being passed to the application.

10.17.1 Generating Server Certificates

Module

SSL (see page 373)

Description

The SSL certificates used by the TCP/IP Stack's SSL module are stored in the CustomSSLCert.c source file. The following
series of steps describe how to create the structures in CustomSSLCert.c using an SSL certificate.

1. Download and install the OpenSSL library. There are several third-party sites that offer SSL installers (e.g.

10.17 SSL Microchip TCP/IP Stack Help Generating Server Certificates

374

http://www.slproweb.com/products/Win32OpenSSL.html). Note that some distributions may not include all commands
specified by the OpenSSL documentation.

2. Open a console and change directory to the OpenSSL/bin folder.

3. If you don't have a key and certificate, you can generate them first. The following example console commands will
generate a a 512-bit key:

1. Generate the key: openssl genrsa -out 512bits.key 512

2. Generate the Certificate Signing Request (CSR). You will need to add additional information when prompted: openssl
req -new -key 512bits.key -out 512bits.csr

3. Generate the X.509 certificate if self-signing (or send the CSR to a Certificate Authority for signing): openssl x509 -req
-days 365 -in 512bits.csr -signkey 512bits.key -out 512bits.crt (note that if the -days option is not specified, the
default expiration time is 30 days)

4. For additional documentation, refer to http://www.openssl.org/docs/apps/openssl.html.

4. Parse your key file using the command: openssl.exe asn1parse -in "[directory containing your key]\512bits.key"

5. You should see a screen like this:

6. If you are not using an ENCX24J600 family device, then the last 5 integers displayed here are the SSL_P, SSL_Q,
SSL_dP, SSL_dQ, and SSL_qInv parameters, respectively. However, they are displayed here in big-endian format, and
the Microchip cryptographic library implementation requires parameters in little-endian format, so you will have to enter
the parameters into the C arrays in opposite order. For example, the INTEGER at offset 145:

 145:d=1 h1=2 ;= 33 prim: INTEGER
:D777566780029FCD610200B66D89507D
915E3E5BDB6FAB0233B5DFA2E4081DF7

will be swapped in the CustomSSLCert.c file:

ROM BYTE SSL_P[] = {
 0xF7, 0x1D, 0x08, 0xE4, 0xA2, 0xDF, 0xB5, 0x33,
 0x02, 0xAB, 0x6F, 0xDB, 0x5B, 0x3E, 0x5E, 0x91,
 0x7D, 0x50, 0x89, 0x6D, 0xB6, 0x00, 0x02, 0x61,
 0xCD, 0x9F, 0x02, 0x80, 0x67, 0x56, 0x77, 0xD7
};

7. If you are using an ENCX24J600 family device, then the second and fourth integers displayed here are the SSL_N and
SSL_D parameters, respectively. There is no need to do an endian format change for these parameters. For the example,
the expected SSL_N and SSL_D values are shown in the figure below:

10.17 SSL Microchip TCP/IP Stack Help Generating Server Certificates

375

http://www.slproweb.com/products/Win32OpenSSL.html
http://www.openssl.org/docs/apps/openssl.html

8. Parse your X.509 certificate using the command: openssl.exe asn1parse -in "[directory containing your
cert]\512bits.crt" -out cert.bin

9. Open the cert.bin output file in a hex editor. For example, here is the default certificate information generated from
512bits.crt given in the stack:

10. This information must be copied verbatim into the SSL_CERT (see page 405)[] array. Note that this is binary data (not
a large integer) so it does not get endian-swapped like the private key parameters.

ROM BYTE SSL_CERT[524] = {
 0x30, 0x82, 0x02, 0x08, 0x30, 0x82, 0x01, 0xb2, 0x02, 0x09, 0x00, 0xa5, 0x6a, 0xea, 0x1a, 0xa9,
 0x52, 0x9d, 0x1e, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x05,
 0x05, 0x00, 0x30, 0x81, 0x8a, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02,
 0x55, 0x53, 0x31, 0x10, 0x30, 0x0e, 0x06, 0x03, 0x55, 0x04, 0x08, 0x13, 0x07, 0x41, 0x72, 0x69,
 0x7a, 0x6f, 0x6e, 0x61, 0x31, 0x11, 0x30, 0x0f, 0x06, 0x03, 0x55, 0x04, 0x07, 0x13, 0x08, 0x43,
 0x68, 0x61, 0x6e, 0x64, 0x6c, 0x65, 0x72, 0x31, 0x23, 0x30, 0x21, 0x06, 0x03, 0x55, 0x04, 0x0a,
 0x13, 0x1a, 0x4d, 0x69, 0x63, 0x72, 0x6f, 0x63, 0x68, 0x69, 0x70, 0x20, 0x54, 0x65, 0x63, 0x68,
 0x6e, 0x6f, 0x6c, 0x6f, 0x67, 0x79, 0x2c, 0x20, 0x49, 0x6e, 0x63, 0x2e, 0x31, 0x1d, 0x30, 0x1b,
 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x14, 0x53, 0x53, 0x4c, 0x20, 0x44, 0x65, 0x6d, 0x6f, 0x20,
 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x65, 0x31, 0x12, 0x30, 0x10, 0x06,

10.17 SSL Microchip TCP/IP Stack Help Generating Server Certificates

376

 0x03, 0x55, 0x04, 0x03, 0x13, 0x09, 0x6d, 0x63, 0x68, 0x70, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x30,
 0x1e, 0x17, 0x0d, 0x30, 0x37, 0x31, 0x30, 0x30, 0x39, 0x31, 0x38, 0x33, 0x37, 0x32, 0x37, 0x5a,
 0x17, 0x0d, 0x31, 0x37, 0x31, 0x30, 0x30, 0x36, 0x31, 0x38, 0x33, 0x37, 0x32, 0x37, 0x5a, 0x30,
 0x81, 0x8a, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x55, 0x53, 0x31,
 0x10, 0x30, 0x0e, 0x06, 0x03, 0x55, 0x04, 0x08, 0x13, 0x07, 0x41, 0x72, 0x69, 0x7a, 0x6f, 0x6e,
 0x61, 0x31, 0x11, 0x30, 0x0f, 0x06, 0x03, 0x55, 0x04, 0x07, 0x13, 0x08, 0x43, 0x68, 0x61, 0x6e,
 0x64, 0x6c, 0x65, 0x72, 0x31, 0x23, 0x30, 0x21, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x1a, 0x4d,
 0x69, 0x63, 0x72, 0x6f, 0x63, 0x68, 0x69, 0x70, 0x20, 0x54, 0x65, 0x63, 0x68, 0x6e, 0x6f, 0x6c,
 0x6f, 0x67, 0x79, 0x2c, 0x20, 0x49, 0x6e, 0x63, 0x2e, 0x31, 0x1d, 0x30, 0x1b, 0x06, 0x03, 0x55,
 0x04, 0x0b, 0x13, 0x14, 0x53, 0x53, 0x4c, 0x20, 0x44, 0x65, 0x6d, 0x6f, 0x20, 0x43, 0x65, 0x72,
 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x65, 0x31, 0x12, 0x30, 0x10, 0x06, 0x03, 0x55, 0x04,
 0x03, 0x13, 0x09, 0x6d, 0x63, 0x68, 0x70, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x30, 0x5c, 0x30, 0x0d,
 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x03, 0x4b, 0x00,
 0x30, 0x48, 0x02, 0x41, 0x00, 0xaa, 0x96, 0xca, 0x97, 0xea, 0x27, 0xb0, 0xd7, 0xe9, 0x21, 0xd0,
 0x40, 0xd4, 0x2c, 0x09, 0x5a, 0x2e, 0x3a, 0xe4, 0x12, 0x64, 0x2d, 0x4b, 0x1b, 0x92, 0xdf, 0x79,
 0x68, 0x4e, 0x3c, 0x51, 0xf4, 0x43, 0x48, 0x0d, 0xf2, 0xc8, 0x50, 0x9b, 0x6e, 0xe5, 0xea, 0xfe,
 0xef, 0xd9, 0x10, 0x41, 0x08, 0x14, 0xf9, 0x85, 0x49, 0xfc, 0x50, 0xd3, 0x57, 0x34, 0xdc, 0x3a,
 0x0d, 0x79, 0xf8, 0xd3, 0x99, 0x02, 0x03, 0x01, 0x00, 0x01, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86,
 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x05, 0x05, 0x00, 0x03, 0x41, 0x00, 0x18, 0x18, 0xfe, 0x8b,
 0x2d, 0x0d, 0xf7, 0x0d, 0x65, 0x9d, 0x29, 0xec, 0xb3, 0x51, 0x6e, 0x3b, 0x93, 0xbb, 0x40, 0x1a,
 0x0b, 0x34, 0x07, 0x63, 0x5e, 0x6a, 0x1c, 0x74, 0x59, 0xd4, 0x54, 0xd2, 0x1b, 0xf3, 0x31, 0xb7,
 0x57, 0x4b, 0xa5, 0xe6, 0xe2, 0x35, 0xf7, 0xb3, 0x6a, 0x15, 0x6e, 0x3c, 0x93, 0x85, 0xb2, 0xca,
 0xf5, 0x35, 0x00, 0xf4, 0x49, 0xe7, 0x00, 0x8a, 0x00, 0xd8, 0xe8, 0xcf
};

11. Update the SSL_CERT_LEN (see page 405) variable to contain the correct value.

10.17.2 SSL Public Members

Enumerations

Name Description

SSL_SUPPLEMENTARY_DATA_TYPES
(see page 381)

This is type SSL_SUPPLEMENTARY_DATA_TYPES.

Functions

Name Description

TCPAddSSLListener (see
page 378)

Listens for SSL connection on a specific port.

TCPSSLIsHandshaking (
see page 378)

Determines if an SSL session is still handshaking.

TCPStartSSLClient (see
page 379)

Begins an SSL client session.

TCPIsSSL (see page 380) Determines if a TCP connection is secured with SSL.

SSLStartSession (see
page 380)

Begins a new SSL session for the given TCP connection.

Macros

Name Description

SSL_INVALID_ID (see
page 378)

Identifier for invalid SSL allocations

Module

SSL (see page 373)

10.17 SSL Microchip TCP/IP Stack Help SSL Public Members

377

Structures

Name Description

SSL_PKEY_INFO (see
page 381)

To hash the public key information, we need to actually get the public key
information... 1024 bit key at 8 bits/byte = 128 bytes needed for the public key.

Description

The following functions and variables are available to the stack application.

10.17.2.1 SSL_INVALID_ID Macro
File

SSL.h

C

#define SSL_INVALID_ID (0xFFu) // Identifier for invalid SSL allocations

Description

Identifier for invalid SSL allocations

10.17.2.2 TCPAddSSLListener Function
File

TCP.h

C

BOOL TCPAddSSLListener(
 TCP_SOCKET hTCP,
 WORD port
);

Description

This function adds an additional listening port to a TCP connection. Connections made on this alternate port will be secured
via SSL.

Preconditions

TCP is initialized and hTCP is listening.

Parameters

Parameters Description

hTCP TCP connection to secure

port SSL port to listen (see page 170) on

Return Values

Return Values Description

TRUE SSL port was added.

FALSE The socket was not a listening socket.

10.17.2.3 TCPSSLIsHandshaking Function
File

TCP.h

10.17 SSL Microchip TCP/IP Stack Help SSL Public Members

378

C

BOOL TCPSSLIsHandshaking(
 TCP_SOCKET hTCP
);

Description

Call this function after calling TCPStartSSLClient (see page 379) until FALSE is returned. Then your application may
continue with its normal data transfer (which is now secured).

Preconditions

TCP is initialized and hTCP is connected.

Parameters

Parameters Description

hTCP TCP connection to check

Return Values

Return Values Description

TRUE SSL handshake is still progressing

FALSE SSL handshake has completed

10.17.2.4 TCPStartSSLClient Function
File

TCP.h

C

BOOL TCPStartSSLClient(
 TCP_SOCKET hTCP,
 BYTE* host
);

Description

This function escalates the current connection to an SSL secured connection by initiating an SSL client handshake.

Remarks

The host parameter is currently ignored and is not validated.

Preconditions

TCP is initialized and hTCP is already connected.

Parameters

Parameters Description

hTCP TCP connection to secure

host Expected host name on certificate (currently ignored)

Return Values

Return Values Description

TRUE an SSL connection was initiated

FALSE Insufficient SSL resources (stubs) were available

10.17 SSL Microchip TCP/IP Stack Help SSL Public Members

379

10.17.2.5 TCPIsSSL Function
File

TCP.h

C

BOOL TCPIsSSL(
 TCP_SOCKET hTCP
);

Description

Call this function to determine whether or not a TCP connection is secured with SSL.

Preconditions

TCP is initialized and hTCP is connected.

Parameters

Parameters Description

hTCP TCP connection to check

Return Values

Return Values Description

TRUE Connection is secured via SSL

FALSE Connection is not secured

10.17.2.6 SSLStartSession Function
File

SSL.h

C

BYTE SSLStartSession(
 TCP_SOCKET hTCP,
 void * buffer,
 BYTE supDataType
);

Description

Begins a new SSL session for the given TCP connection.

Preconditions

SSL has been initialized and hTCP is connected.

Parameters

Parameters Description

hTCP the socket to begin the SSL connection on

buffer pointer to a supplementary data buffer

supDataType type of supplementary data to store

Return Values

Return Values Description

SSL_INVALID_ID (see page 378) insufficient SSL resources to start a new connection

others the allocated SSL stub ID

10.17 SSL Microchip TCP/IP Stack Help SSL Public Members

380

10.17.2.7 SSL_SUPPLEMENTARY_DATA_TYPES Enumeration
File

SSL.h

C

typedef enum {
 SSL_SUPPLEMENTARY_DATA_NONE = 0,
 SSL_SUPPLEMENTARY_DATA_CERT_PUBLIC_KEY
} SSL_SUPPLEMENTARY_DATA_TYPES;

Description

This is type SSL_SUPPLEMENTARY_DATA_TYPES.

10.17.2.8 SSL_PKEY_INFO Structure
File

SSL.h

C

typedef struct {
 WORD pub_size_bytes;
 BYTE pub_key[128];
 BYTE pub_e[3];
 BYTE pub_guid;
} SSL_PKEY_INFO;

Members

Members Description

BYTE pub_guid; This is used as a TCP_SOCKET (see page 463) which is a BYTE

Description

To hash the public key information, we need to actually get the public key information... 1024 bit key at 8 bits/byte = 128
bytes needed for the public key.

10.17.3 SSL Stack Members

Enumerations

Name Description

SSL_STATE (see page
382)

This is type SSL_STATE.

Functions

Name Description

SSLInit (see page 382) Initializes the SSL engine.

SSLPeriodic (see page
383)

Performs any periodic tasks for the SSL module.

TCPRequestSSLMessage (
see page 383)

Requests an SSL message to be transmitted.

TCPSSLGetPendingTxSize
(see page 384)

Determines how many bytes are pending for a future SSL record.

10.17 SSL Microchip TCP/IP Stack Help SSL Stack Members

381

TCPSSLHandleIncoming (
see page 384)

Hands newly arrive TCP data to the SSL module for processing.

TCPSSLHandshakeComplete
(see page 385)

Clears the SSL handshake flag.

TCPSSLInPlaceMACEncrypt
(see page 385)

Encrypts and MACs data in place in the TCP TX buffer.

TCPSSLPutRecordHeader (
see page 386)

Writes an SSL record header and sends an SSL record.

TCPStartSSLServer (see
page 386)

Begins an SSL server session.

Macros

Name Description

SSL_MIN_SESSION_LIFETIME (
see page 387)

Minimum lifetime for SSL Sessions Sessions cannot be reallocated until
this much time has elapsed

SSL_RSA_LIFETIME_EXTENSION
(see page 387)

Lifetime extension for RSA operations Sessions lifetime is extended by
this amount when an RSA calculation is made

Module

SSL (see page 373)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.17.3.1 SSL_STATE Enumeration
File

TCP.h

C

typedef enum {
 SSL_NONE = 0,
 SSL_HANDSHAKING,
 SSL_ESTABLISHED,
 SSL_CLOSED
} SSL_STATE;

Members

Members Description

SSL_NONE = 0 No security is enabled

SSL_HANDSHAKING Handshake is progressing (no application data allowed)

SSL_ESTABLISHED Connection is established and secured

SSL_CLOSED Connection has been closed (no applicaiton data is allowed)

Description

This is type SSL_STATE.

10.17.3.2 SSLInit Function
File

SSL.h

10.17 SSL Microchip TCP/IP Stack Help SSL Stack Members

382

C

void SSLInit();

Returns

None

Description

Initializes the SSL engine.

Remarks

This function is called only one during lifetime of the application.

Preconditions

None

Section

Function Prototypes

10.17.3.3 SSLPeriodic Function
File

SSL.h

C

void SSLPeriodic(
 TCP_SOCKET hTCP,
 BYTE sslStubID
);

Returns

None

Description

This function performs periodic tasks for the SSL module. This includes processing for RSA operations.

Preconditions

SSL has already been initialized.

Parameters

Parameters Description

hTCP the socket for which to perform periodic functions

id the SSL stub to use

10.17.3.4 TCPRequestSSLMessage Function
File

TCP.h

C

BOOL TCPRequestSSLMessage(
 TCP_SOCKET hTCP,
 BYTE msg
);

Description

This function is called to request that a specific SSL message be transmitted. This message should only be called by the

10.17 SSL Microchip TCP/IP Stack Help SSL Stack Members

383

SSL module.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP TCP connection to use

msg One of the SSL_MESSAGE types to transmit.

Return Values

Return Values Description

TRUE The message was requested.

FALSE Another message is already pending transmission.

10.17.3.5 TCPSSLGetPendingTxSize Function
File

TCP.h

C

WORD TCPSSLGetPendingTxSize(
 TCP_SOCKET hTCP
);

Returns

None

Description

This function determines how many bytes are pending for a future SSL record.

Preconditions

TCP is initialized, and hTCP is connected with an active SSL connection.

Parameters

Parameters Description

hTCP TCP connection to check

10.17.3.6 TCPSSLHandleIncoming Function
File

TCP.h

C

void TCPSSLHandleIncoming(
 TCP_SOCKET hTCP
);

Returns

None

Description

This function processes incoming TCP data as an SSL record and performs any necessary repositioning and decrypting.

Remarks

This function should never be called by an application. It is used only by the SSL module itself.

10.17 SSL Microchip TCP/IP Stack Help SSL Stack Members

384

Preconditions

TCP is initialized, and hTCP is connected with an active SSL session.

Parameters

Parameters Description

hTCP TCP connection to handle incoming data on

10.17.3.7 TCPSSLHandshakeComplete Function
File

TCP.h

C

void TCPSSLHandshakeComplete(
 TCP_SOCKET hTCP
);

Returns

None

Description

This function clears the flag indicating that an SSL handshake is complete.

Remarks

This function should never be called by an application. It is used only by the SSL module itself.

Preconditions

TCP is initialized and hTCP is connected.

Parameters

Parameters Description

hTCP TCP connection to set

10.17.3.8 TCPSSLInPlaceMACEncrypt Function
File

TCP.h

C

void TCPSSLInPlaceMACEncrypt(
 TCP_SOCKET hTCP,
 ARCFOUR_CTX* ctx,
 BYTE* MACSecret,
 WORD len
);

Returns

None

Description

This function encrypts data in the TCP buffer while calcuating a MAC. When encryption is finished, the MAC is appended to
the buffer and the record will be ready to transmit.

Remarks

This function should never be called by an application. It is used only by the SSL module itself.

10.17 SSL Microchip TCP/IP Stack Help SSL Stack Members

385

Preconditions

TCP is initialized, hTCP is connected, and ctx's Sbox is loaded.

Parameters

Parameters Description

hTCP TCP connection to encrypt in

ctx ARCFOUR encryption context to use

MACSecret MAC encryption secret to use

len Number of bytes to crypt

10.17.3.9 TCPSSLPutRecordHeader Function
File

TCP.h

C

void TCPSSLPutRecordHeader(
 TCP_SOCKET hTCP,
 BYTE* hdr,
 BOOL recDone
);

Returns

None

Description

This function writes an SSL record header to the pending TCP SSL data, then indicates that the data is ready to be sent by
moving the txHead pointer.

If the record is complete, set recDone to TRUE. The sslTxHead pointer will be moved forward 5 bytes to leave space for a
future record header. If the record is only partially sent, use FALSE and to leave the pointer where it is so that more data can
be added to the record. Partial records can only be used for the SERVER_CERTIFICATE handshake message.

Remarks

This function should never be called by an application. It is used only by the SSL module itself.

Preconditions

TCP is initialized, and hTCP is connected with an active SSL session.

Parameters

Parameters Description

hTCP TCP connection to write the header and transmit with

hdr Record header (5 bytes) to send or NULL to just move the pointerctx

recDone TRUE if the record is done, FALSE otherwise

10.17.3.10 TCPStartSSLServer Function
File

TCP.h

C

BOOL TCPStartSSLServer(
 TCP_SOCKET hTCP
);

10.17 SSL Microchip TCP/IP Stack Help SSL Stack Members

386

Description

This function sets up an SSL server session when a new connection is established on an SSL port.

Preconditions

TCP is initialized and hTCP is already connected.

Parameters

Parameters Description

hTCP TCP connection to secure

Return Values

Return Values Description

TRUE an SSL connection was initiated

FALSE Insufficient SSL resources (stubs) were available

10.17.3.11 SSL_MIN_SESSION_LIFETIME Macro
File

SSL.h

C

#define SSL_MIN_SESSION_LIFETIME (1*TICK_SECOND)

Description

Minimum lifetime for SSL Sessions Sessions cannot be reallocated until this much time has elapsed

10.17.3.12 SSL_RSA_LIFETIME_EXTENSION Macro
File

SSL.h

C

#define SSL_RSA_LIFETIME_EXTENSION (8*TICK_SECOND)

Description

Lifetime extension for RSA operations Sessions lifetime is extended by this amount when an RSA calculation is made

10.17.4 SSL Internal Members

Enumerations

Name Description

SM_SSL_RX_SERVER_HELLO
(see page 401)

State machine for SSLRxServerHello (see page 424)

SSL_ALERT_LEVEL (see
page 402)

Describes the two types of Alert records

SSL_MESSAGES (see page
407)

Describes the types of SSL messages (handshake and alerts)

SSL_SESSION_TYPE (see
page 410)

SSL Session Type Enumeration

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

387

Functions

Name Description

CalculateFinishedHash (
see page 393)

Calculates the handshake hash over the data. hashID can be either MD5 or
SHA-1, and this function will calculate accordingly.

GenerateHashRounds (
see page 393)

Generates hash rounds to find either the Master Secret or the Key Block.

GenerateSessionKeys (
see page 394)

Generates the session write keys and MAC secrets

HSEnd (see page 394) Hashes (see page 197) the message contents into the Handshake hash
structures and begins a new handshake hash.

HSGet (see page 395) Reads data from socket, transparently hashing it into the handshake hashes.

HSGetArray (see page 395) • Function: static WORD HSGetArray(TCP_SOCKET (see page 463) skt,
BYTE *data, WORD len)

*

• PreCondition: None

*

• Input: skt - socket to read data from

• data - array to read into, or NULL

• len - number of bytes to read

*

• Output: Number of bytes read

*

• Side Effects: None

*

• Overview: Reads data from socket, transparently hashing it

• into the handshake hashes.

*

• Note: None

HSGetWord (see page 396) Reads data from socket, transparently hashing it into the handshake hashes.

HSPut (see page 396) Writes data to socket, transparently hashing it into the handshake hashes.

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

388

HSPutArray (see page 397) • Function: static WORD HSPutArray(TCP_SOCKET (see page 463) skt,
BYTE *data, BYTE len)

*

• PreCondition: None

*

• Input: skt - socket to write data to

• data - data to write

• len - number of bytes to write

*

• Output: Number of bytes written

*

• Side Effects: None

*

• Overview: Writes data to socket, transparently hashing it

• into the handshake hashes.

*

• Note: None

HSPutROMArray (see
page 398)

This is function HSPutROMArray.

HSPutWord (see page 398) Writes data to socket, transparently hashing it into the handshake hashes.

HSStart (see page 398) Sets up the buffer to store data for handshake hash tracking

LoadOffChip (see page
400)

Copies data from Ethernet RAM to local RAM

SaveOffChip (see page
401)

Copies data in PIC RAM to the Ethernet RAM

SSLBufferAlloc (see page
412)

Allocates a buffer for use.

SSLBufferFree (see page
413)

Specified buffer is released

SSLBufferSync (see page
414)

Specified buffer is loaded to RAM. Only loads if necessary, and saves any
current buffer before switching.

SSLHashAlloc (see page
415)

Allocates a hash for use.

SSLHashFree (see page
415)

Specified hash is released

SSLHashSync (see page
416)

Specified hash is loaded to RAM. Only loads if necessary, and saves any
current hash before switching.

SSLKeysSync (see page
417)

Specified key set is loaded to RAM. Only loads if necessary, and saves any
current key set before switching.

SSLMACAdd (see page
418)

This is function SSLMACAdd.

SSLMACBegin (see page
418)

This is function SSLMACBegin.

SSLMACCalc (see page
418)

This is function SSLMACCalc.

SSLRSAOperation (see
page 418)

Pauses connection processing until RSA calculation is complete.

SSLRxAlert (see page 419) Receives an alert message and decides what to do

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

389

SSLRxAntiqueClientHello (
see page 420)

Receives the SSLv2 ClientHello message, initiating a new SSL session with a
client

SSLRxCCS (see page 420) Receives a ChangeCipherSpec from the remote server

SSLRxClientHello (see
page 421)

Receives the ClientHello message, initiating a new SSL session with a client

SSLRxClientKeyExchange
(see page 421)

Receives the ClientKeyExchange message and begins the decryption process.

SSLRxFinished (see page
422)

Receives the Finished message from remote node

SSLRxHandshake (see
page 422)

Receives a handshake message.

SSLRxRecord (see page
423)

Receives an SSL record.

SSLRxServerCertificate (
see page 423)

Receives ServerCertificate from the remote server, locates the public key
information, and executes RSA operation.

SSLRxServerHello (see
page 424)

Receives the ServerHello from the remote server

SSLSessionMatchID (see
page 425)

Locates a cached SSL session for reuse. Syncs found session into RAM.

SSLSessionMatchIP (see
page 425)

Locates a cached SSL session for reuse

SSLSessionNew (see
page 426)

Finds space for a new SSL session

SSLSessionSync (see
page 427)

Specified session is loaded to RAM. Only loads if necessary, and saves any
current session before switching if it has been updated.

SSLStartPartialRecord (
see page 428)

Begins a long SSL record.

SSLStubAlloc (see page
429)

Allocates a stub for use.

SSLStubFree (see page
429)

Specified stub is released

SSLStubSync (see page
430)

Specified stub is loaded to RAM. Only loads if necessary, and saves any
current stub before switching.

SSLTerminate (see page
430)

Terminates an SSL connection and releases allocated resources.

SSLTxCCSFin (see page
431)

Generates the session keys from the master secret, then allocates and
generates the encryption context. Once processing is complete, transmits the
Change Cipher Spec message and the Finished handshake message to the
server.

SSLTxClientHello (see
page 431)

Transmits the ClientHello message to initiate a new SSL session with the
server.

SSLTxClientKeyExchange (
see page 432)

Transmits the encrypted pre-master secret to the server and requests the
Change Cipher Spec. Also generates the Master Secret from the pre-master
secret that was used.

SSLTxMessage (see page
432)

Transmits an SSL message.

SSLTxRecord (see page
433)

Transmits an SSL record.

SSLTxServerCertificate (
see page 433)

Transmits the Certificate message with the server's specified public key
certificate.

SSLTxServerHello (see
page 434)

Transmits the ServerHello message.

SSLTxServerHelloDone (
see page 435)

Transmits the ServerHelloDone message.

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

390

Macros

Name Description

RESERVED_SSL_MEMORY (see page 400) Total space needed by all SSL storage requirements

SSL_ALERT (see page 402) Protocol code for Alert records

SSL_APPLICATION (see page 402) Protocol code for Application data records

SSL_BASE_BUFFER_ADDR (see page 403) Base address for SSL buffers

SSL_BASE_HASH_ADDR (see page 403) Base address for SSL hashes

SSL_BASE_KEYS_ADDR (see page 403) Base address for SSL keys

SSL_BASE_SESSION_ADDR (see page 403) Base address for SSL sessions

SSL_BASE_STUB_ADDR (see page 403) Base address for SSL stubs

SSL_BUFFER_SIZE (see page 404) Amount of space needed by a single SSL buffer

SSL_BUFFER_SPACE (see page 404) Amount of space needed by all SSL buffer

SSL_CHANGE_CIPHER_SPEC (see page 405) Protocol code for Change Cipher Spec records

SSL_HANDSHAKE (see page 405) Protocol code for Handshake records

SSL_HASH_SIZE (see page 405) Amount of space needed by a single SSL hash

SSL_HASH_SPACE (see page 406) Amount of space needed by all SSL hash

SSL_KEYS_SIZE (see page 407) Amount of space needed by a single SSL key

SSL_KEYS_SPACE (see page 407) Amount of space needed by all SSL key

SSL_RSA_EXPORT_WITH_ARCFOUR_40_MD5
(see page 408)

This is macro
SSL_RSA_EXPORT_WITH_ARCFOUR_40_MD5.

SSL_RSA_WITH_ARCFOUR_128_MD5 (see
page 408)

This is macro SSL_RSA_WITH_ARCFOUR_128_MD5.

SSL_SESSION_SIZE (see page 409) Amount of space needed by a single SSL session

SSL_SESSION_SPACE (see page 409) Amount of space needed by all SSL session

SSL_STUB_SIZE (see page 411) Amount of space needed by a single SSL stub

SSL_STUB_SPACE (see page 411) Amount of space needed by all SSL stubs

SSL_VERSION (see page 412) SSL version number

SSL_VERSION_HI (see page 412) SSL version number (high byte)

SSL_VERSION_LO (see page 412) SSL version number (low byte)

SSLFinishPartialRecord (see page 414) This is macro SSLFinishPartialRecord.

SSLFlushPartialRecord (see page 414) This is macro SSLFlushPartialRecord.

SSLSessionUpdated (see page 427) This is macro SSLSessionUpdated.

Module

SSL (see page 373)

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

391

Structures

Name Description

SSL_KEYS (see page 406) Memory definition for SSL keys. This area is split into Local and Remote areas.
During the handshake, Local.random and Remote.random hold the
ServerRandom and ClientRandom values. Once the session keys are
calculated, the Local.app and Remote.app contain the MAC secret, record
sequence number, and encryption context for the ARCFOUR module.

SSL_SESSION (see page
408)

Storage space for SSL Session identifiers. (The SessionID and MasterSecret)

SSL_SESSION_STUB (
see page 409)

Stub value for an SSL_SESSION (see page 408). The tag associates this
session with a remote node, either by matching to a remote IP address when
we are the client or the first 3 bytes of the session ID when we are the host.
When a session is free/expired, the tag is 0x00000000. The lastUsed value is
the Tick count when the session was last used so that older sessions may be
overwritten first.

SSL_STUB (see page 410) Memory holder for general information associated with an SSL connections.

Unions

Name Description

SSL_BUFFER (see page
404)

Generic buffer space for SSL. The hashRounds element is used when this
buffer is needed for handshake hash calculations, and the full element is used
as the Sbox for ARCFOUR calculations.

Variables

Name Description

isBufferUsed (see page
399)

Indicates which buffers are in use

isHashUsed (see page 399) Indicates which hashes are in use

isStubUsed (see page 399) Indicates which stubs are in use

masks (see page 400) Masks for each bit in the is*Used variables

ptrHS (see page 400) Used in buffering handshake results

SSL_CERT (see page 405) RSA public certificate data ?

SSL_CERT_LEN (see
page 405)

RSA public certificate length ?

sslBufferID (see page 413) Which buffer is loaded

sslHash (see page 415) Hash storage

sslHashID (see page 416) Which hash is loaded

sslKeys (see page 417) The current SSL session

sslKeysID (see page 417) Which SSL_KEYS (see page 406) are loaded

sslRSAStubID (see page
419)

Which stub is using RSA, if any

sslSession (see page 424) Current session data

sslSessionID (see page
425)

Which session is loaded

sslSessionStubs (see page
426)

8 byte session stubs

sslSessionUpdated (see
page 427)

Whether or not it has been updated

sslStub (see page 428) The current SSL stub

sslStubID (see page 430) Which SSL_STUB (see page 410) is loaded

Description

The following functions and variables are designated as internal to the SSL module.

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

392

10.17.4.1 CalculateFinishedHash Function
File

SSL.c

C

static void CalculateFinishedHash(
 BYTE hashID,
 BOOL fromClient,
 BYTE * result
);

Side Effects

None

Returns

None

Description

Calculates the handshake hash over the data. hashID can be either MD5 or SHA-1, and this function will calculate
accordingly.

Remarks

None

Preconditions

hashID has all handshake data hashed so far and the current session is synced in.

Parameters

Parameters Description

hashID the hash sum to use

fromClient TRUE if client is sender

result where to store results

10.17.4.2 GenerateHashRounds Function
File

SSL.c

C

static void GenerateHashRounds(
 BYTE num,
 BYTE* rand1,
 BYTE* rand2
);

Side Effects

Destroys the SSL Buffer space

Returns

None

Description

Generates hash rounds to find either the Master Secret or the Key Block.

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

393

Remarks

This function will overflow the buffer after 7 rounds, but in practice num = 3 or num = 4.

Preconditions

The SSL buffer is allocated for temporary usage and the data to run rounds on is in sslSession.masterSecret

Parameters

Parameters Description

num how many rounds to compute

rand1 the first random data block to use

rand2 the second random data block to use

10.17.4.3 GenerateSessionKeys Function
File

SSL.c

C

static void GenerateSessionKeys();

Side Effects

Destroys the SSL Buffer Space

Returns

None

Description

Generates the session write keys and MAC secrets

Remarks

None

Preconditions

The SSL buffer is allocated for temporary usage, session keys are synced, and the TX and RX buffers are allocated for
S-boxes.

10.17.4.4 HSEnd Function
File

SSL.c

C

static void HSEnd();

Side Effects

None

Returns

None

Description

Hashes (see page 197) the message contents into the Handshake hash structures and begins a new handshake hash.

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

394

Remarks

None

Preconditions

None

10.17.4.5 HSGet Function
File

SSL.c

C

static WORD HSGet(
 TCP_SOCKET skt,
 BYTE * b
);

Side Effects

None

Returns

Number of bytes read

Description

Reads data from socket, transparently hashing it into the handshake hashes.

Remarks

None

Preconditions

None

Parameters

Parameters Description

skt socket to read data from

b byte to read into

10.17.4.6 HSGetArray Function
File

SSL.c

C

static WORD HSGetArray(
 TCP_SOCKET skt,
 BYTE * data,
 WORD len
);

Description

• Function: static WORD HSGetArray(TCP_SOCKET (see page 463) skt, BYTE *data, WORD len)

*

• PreCondition: None

*

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

395

• Input: skt - socket to read data from

• data - array to read into, or NULL

• len - number of bytes to read

*

• Output: Number of bytes read

*

• Side Effects: None

*

• Overview: Reads data from socket, transparently hashing it

• into the handshake hashes.

*

• Note: None

10.17.4.7 HSGetWord Function
File

SSL.c

C

static WORD HSGetWord(
 TCP_SOCKET skt,
 WORD * w
);

Side Effects

None

Returns

Number of bytes read

Description

Reads data from socket, transparently hashing it into the handshake hashes.

Remarks

None

Preconditions

None

Parameters

Parameters Description

skt socket to read data from

w word to read into

10.17.4.8 HSPut Function
File

SSL.c

C

static WORD HSPut(

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

396

 TCP_SOCKET skt,
 BYTE b
);

Side Effects

None

Returns

Number of bytes written

Description

Writes data to socket, transparently hashing it into the handshake hashes.

Remarks

None

Preconditions

None

Parameters

Parameters Description

skt socket to write data to

b byte to write

10.17.4.9 HSPutArray Function
File

SSL.c

C

static WORD HSPutArray(
 TCP_SOCKET skt,
 BYTE * data,
 WORD len
);

Description

• Function: static WORD HSPutArray(TCP_SOCKET (see page 463) skt, BYTE *data, BYTE len)

*

• PreCondition: None

*

• Input: skt - socket to write data to

• data - data to write

• len - number of bytes to write

*

• Output: Number of bytes written

*

• Side Effects: None

*

• Overview: Writes data to socket, transparently hashing it

• into the handshake hashes.

*

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

397

• Note: None

10.17.4.10 HSPutROMArray Function
File

SSL.c

C

static WORD HSPutROMArray(
 TCP_SOCKET skt,
 ROM BYTE * data,
 WORD len
);

Description

This is function HSPutROMArray.

10.17.4.11 HSPutWord Function
File

SSL.c

C

static WORD HSPutWord(
 TCP_SOCKET skt,
 WORD w
);

Side Effects

None

Returns

Number of bytes written

Description

Writes data to socket, transparently hashing it into the handshake hashes.

Remarks

None

Preconditions

None

Parameters

Parameters Description

skt socket to write data to

w word to write

10.17.4.12 HSStart Function
File

SSL.c

C

static void HSStart();

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

398

Side Effects

None

Returns

None

Description

Sets up the buffer to store data for handshake hash tracking

Remarks

None

Preconditions

None

Section

Handshake Hash and I/O Functions

10.17.4.13 isBufferUsed Variable
File

SSL.c

C

WORD isBufferUsed;

Description

Indicates which buffers are in use

10.17.4.14 isHashUsed Variable
File

SSL.c

C

WORD isHashUsed;

Description

Indicates which hashes are in use

10.17.4.15 isStubUsed Variable
File

SSL.c

C

WORD isStubUsed;

Description

Indicates which stubs are in use

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

399

10.17.4.16 masks Variable
File

SSL.c

C

ROM WORD masks[16] = { 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000 };

Description

Masks for each bit in the is*Used variables

10.17.4.17 ptrHS Variable
File

SSL.c

C

BYTE * ptrHS;

Description

Used in buffering handshake results

10.17.4.18 RESERVED_SSL_MEMORY Macro
File

SSL.h

C

#define RESERVED_SSL_MEMORY ((DWORD)(SSL_STUB_SPACE + SSL_KEYS_SPACE + SSL_HASH_SPACE +
SSL_BUFFER_SPACE + SSL_SESSION_SPACE))

Description

Total space needed by all SSL storage requirements

10.17.4.19 LoadOffChip Function
File

SSL.c

C

static void LoadOffChip(
 BYTE * ramAddr,
 PTR_BASE ethAddr,
 WORD len
);

Side Effects

None

Returns

None

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

400

Description

Copies data from Ethernet RAM to local RAM

Remarks

None

Preconditions

None

Parameters

Parameters Description

ramAddr destination address in RAM

ethAddr source address in Ethernet RAM

len number of bytes to copy

10.17.4.20 SaveOffChip Function
File

SSL.c

C

static void SaveOffChip(
 BYTE * ramAddr,
 PTR_BASE ethAddr,
 WORD len
);

Side Effects

None

Returns

None

Description

Copies data in PIC RAM to the Ethernet RAM

Remarks

None

Preconditions

None

Parameters

Parameters Description

ramAddr source address in RAM

ethAddr destination address in Ethernet RAM

len number of bytes to copy

10.17.4.21 SM_SSL_RX_SERVER_HELLO Enumeration
File

SSL.h

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

401

C

typedef enum {
 RX_SERVER_CERT_START = 0u,
 RX_SERVER_CERT_FIND_KEY,
 RX_SERVER_CERT_FIND_N,
 RX_SERVER_CERT_READ_N,
 RX_SERVER_CERT_READ_E,
 RX_SERVER_CERT_CLEAR
} SM_SSL_RX_SERVER_HELLO;

Description

State machine for SSLRxServerHello (see page 424)

10.17.4.22 SSL_ALERT Macro
File

SSL.h

C

#define SSL_ALERT 21u // Protocol code for Alert records

Description

Protocol code for Alert records

10.17.4.23 SSL_ALERT_LEVEL Enumeration
File

SSL.h

C

typedef enum {
 SSL_ALERT_WARNING = 1u,
 SSL_ALERT_FATAL = 2u
} SSL_ALERT_LEVEL;

Members

Members Description

SSL_ALERT_WARNING = 1u Alert message is a warning (session can be resumed)

SSL_ALERT_FATAL = 2u Alert message is fatal (session is non-resumable)

Description

Describes the two types of Alert records

10.17.4.24 SSL_APPLICATION Macro
File

SSL.h

C

#define SSL_APPLICATION 23u // Protocol code for Application data records

Description

Protocol code for Application data records

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

402

10.17.4.25 SSL_BASE_BUFFER_ADDR Macro
File

SSL.c

C

#define SSL_BASE_BUFFER_ADDR (BASE_SSLB_ADDR + SSL_STUB_SPACE + SSL_KEYS_SPACE +
SSL_HASH_SPACE)

Description

Base address for SSL buffers

10.17.4.26 SSL_BASE_HASH_ADDR Macro
File

SSL.c

C

#define SSL_BASE_HASH_ADDR (BASE_SSLB_ADDR + SSL_STUB_SPACE + SSL_KEYS_SPACE)

Description

Base address for SSL hashes

10.17.4.27 SSL_BASE_KEYS_ADDR Macro
File

SSL.c

C

#define SSL_BASE_KEYS_ADDR (BASE_SSLB_ADDR + SSL_STUB_SPACE)

Description

Base address for SSL keys

10.17.4.28 SSL_BASE_SESSION_ADDR Macro
File

SSL.c

C

#define SSL_BASE_SESSION_ADDR (BASE_SSLB_ADDR + SSL_STUB_SPACE + SSL_KEYS_SPACE +
SSL_HASH_SPACE + SSL_BUFFER_SPACE)

Description

Base address for SSL sessions

10.17.4.29 SSL_BASE_STUB_ADDR Macro
File

SSL.c

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

403

C

#define SSL_BASE_STUB_ADDR (BASE_SSLB_ADDR)

Description

Base address for SSL stubs

10.17.4.30 SSL_BUFFER Union
File

SSL.h

C

typedef union {
 struct {
 HASH_SUM hash;
 BYTE md5_hash[16];
 BYTE sha_hash[20];
 BYTE temp[256-sizeof(HASH_SUM)-16-20];
 } hashRounds;
 BYTE full[256];
} SSL_BUFFER;

Description

Generic buffer space for SSL. The hashRounds element is used when this buffer is needed for handshake hash calculations,
and the full element is used as the Sbox for ARCFOUR calculations.

10.17.4.31 SSL_BUFFER_SIZE Macro
File

SSL.h

C

#define SSL_BUFFER_SIZE ((DWORD)sizeof(SSL_BUFFER)) // Amount of space
needed by a single SSL buffer

Description

Amount of space needed by a single SSL buffer

10.17.4.32 SSL_BUFFER_SPACE Macro
File

SSL.h

C

#define SSL_BUFFER_SPACE (SSL_BUFFER_SIZE*MAX_SSL_BUFFERS) // Amount of space needed
by all SSL buffer

Description

Amount of space needed by all SSL buffer

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

404

10.17.4.33 SSL_CERT Variable
File

SSL.c

C

ROM BYTE SSL_CERT[];

Description

RSA public certificate data ?

10.17.4.34 SSL_CERT_LEN Variable
File

SSL.c

C

ROM WORD SSL_CERT_LEN;

Description

RSA public certificate length ?

10.17.4.35 SSL_CHANGE_CIPHER_SPEC Macro
File

SSL.h

C

#define SSL_CHANGE_CIPHER_SPEC 20u // Protocol code for Change Cipher Spec records

Description

Protocol code for Change Cipher Spec records

10.17.4.36 SSL_HANDSHAKE Macro
File

SSL.h

C

#define SSL_HANDSHAKE 22u // Protocol code for Handshake records

Description

Protocol code for Handshake records

10.17.4.37 SSL_HASH_SIZE Macro
File

SSL.h

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

405

C

#define SSL_HASH_SIZE ((DWORD)sizeof(HASH_SUM)) // Amount of space needed by
a single SSL hash

Description

Amount of space needed by a single SSL hash

10.17.4.38 SSL_HASH_SPACE Macro
File

SSL.h

C

#define SSL_HASH_SPACE ((DWORD)(SSL_HASH_SIZE*MAX_SSL_HASHES)) // Amount of space needed
by all SSL hash

Description

Amount of space needed by all SSL hash

10.17.4.39 SSL_KEYS Structure
File

SSL.h

C

typedef struct {
 union {
 struct {
 BYTE MACSecret[16];
 DWORD sequence;
 ARCFOUR_CTX cryptCtx;
 BYTE reserved[8];
 } app;
 BYTE random[32];
 } Local;
 union {
 struct {
 BYTE MACSecret[16];
 DWORD sequence;
 ARCFOUR_CTX cryptCtx;
 BYTE reserved[8];
 } app;
 BYTE random[32];
 } Remote;
} SSL_KEYS;

Members

Members Description

BYTE MACSecret[16]; Server's MAC write secret

DWORD sequence; Server's write sequence number

ARCFOUR_CTX cryptCtx; Server's write encryption context

BYTE reserved[8]; Future expansion

BYTE random[32]; Server.random value

BYTE MACSecret[16]; Client's MAC write secret

DWORD sequence; Client's write sequence number

ARCFOUR_CTX cryptCtx; Client's write encryption context

BYTE reserved[8]; Future expansion

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

406

BYTE random[32]; Client.random value

Description

Memory definition for SSL keys. This area is split into Local and Remote areas. During the handshake, Local.random and
Remote.random hold the ServerRandom and ClientRandom values. Once the session keys are calculated, the Local.app
and Remote.app contain the MAC secret, record sequence number, and encryption context for the ARCFOUR module.

10.17.4.40 SSL_KEYS_SIZE Macro
File

SSL.h

C

#define SSL_KEYS_SIZE ((DWORD)sizeof(SSL_KEYS)) // Amount of space needed by
a single SSL key

Description

Amount of space needed by a single SSL key

10.17.4.41 SSL_KEYS_SPACE Macro
File

SSL.h

C

#define SSL_KEYS_SPACE (SSL_KEYS_SIZE*MAX_SSL_CONNECTIONS) // Amount of space needed
by all SSL key

Description

Amount of space needed by all SSL key

10.17.4.42 SSL_MESSAGES Enumeration
File

SSL.h

C

typedef enum {
 SSL_HELLO_REQUEST = 0u,
 SSL_CLIENT_HELLO = 1u,
 SSL_ANTIQUE_CLIENT_HELLO = 18u,
 SSL_SERVER_HELLO = 2u,
 SSL_CERTIFICATE = 11u,
 SSL_SERVER_HELLO_DONE = 14u,
 SSL_CLIENT_KEY_EXCHANGE = 16u,
 SSL_FINISHED = 20u,
 SSL_ALERT_CLOSE_NOTIFY = 0u+0x80,
 SSL_ALERT_UNEXPECTED_MESSAGE = 10u+0x80,
 SSL_ALERT_BAD_RECORD_MAC = 20u+0x80,
 SSL_ALERT_HANDSHAKE_FAILURE = 40u+0x80,
 SSL_NO_MESSAGE = 0xff
} SSL_MESSAGES;

Members

Members Description

SSL_HELLO_REQUEST = 0u HelloRequest handshake message (not currently supported)

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

407

SSL_CLIENT_HELLO = 1u ClientHello handshake message

SSL_ANTIQUE_CLIENT_HELLO = 18u SSLv2 ClientHello handshake message (Supported for backwards
compatibility. This is an internally defined value.)

SSL_SERVER_HELLO = 2u ServerHello handshake message

SSL_CERTIFICATE = 11u ServerCertifiate handshake message

SSL_SERVER_HELLO_DONE = 14u ServerHelloDone handshake message

SSL_CLIENT_KEY_EXCHANGE = 16u ClientKeyExchange handshake message

SSL_FINISHED = 20u Finished handshake message

SSL_ALERT_CLOSE_NOTIFY = 0u+0x80 CloseNotify alert message (dummy value used internally)

SSL_ALERT_UNEXPECTED_MESSAGE
= 10u+0x80

UnexpectedMessage alert message (dummy value used internally)

SSL_ALERT_BAD_RECORD_MAC =
20u+0x80

BadRecordMAC alert message (dummy value used internally)

SSL_ALERT_HANDSHAKE_FAILURE =
40u+0x80

HandshakeFailure alert message (dummy value used internally)

SSL_NO_MESSAGE = 0xff No message is currently requested (internally used value)

Description

Describes the types of SSL messages (handshake and alerts)

10.17.4.43 SSL_RSA_EXPORT_WITH_ARCFOUR_40_MD5 Macro
File

SSL.c

C

#define SSL_RSA_EXPORT_WITH_ARCFOUR_40_MD5 0x0003u

Description

This is macro SSL_RSA_EXPORT_WITH_ARCFOUR_40_MD5.

10.17.4.44 SSL_RSA_WITH_ARCFOUR_128_MD5 Macro
File

SSL.c

C

#define SSL_RSA_WITH_ARCFOUR_128_MD5 0x0004u

Description

This is macro SSL_RSA_WITH_ARCFOUR_128_MD5.

10.17.4.45 SSL_SESSION Structure
File

SSL.h

C

typedef struct {
 BYTE sessionID[32];
 BYTE masterSecret[48];
} SSL_SESSION;

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

408

Members

Members Description

BYTE sessionID[32]; The SSL Session ID for this session

BYTE masterSecret[48]; Associated Master Secret for this session

Description

Storage space for SSL Session identifiers. (The SessionID and MasterSecret)

10.17.4.46 SSL_SESSION_SIZE Macro
File

SSL.h

C

#define SSL_SESSION_SIZE ((DWORD)sizeof(SSL_SESSION)) // Amount of space needed
by a single SSL session

Description

Amount of space needed by a single SSL session

10.17.4.47 SSL_SESSION_SPACE Macro
File

SSL.h

C

#define SSL_SESSION_SPACE (SSL_SESSION_SIZE*MAX_SSL_SESSIONS) // Amount of space
needed by all SSL session

Description

Amount of space needed by all SSL session

10.17.4.48 SSL_SESSION_STUB Structure
File

SSL.h

C

typedef struct {
 DWORD_VAL tag;
 DWORD lastUsed;
} SSL_SESSION_STUB;

Members

Members Description

DWORD_VAL tag; Identifying tag for connection When we're a client, this is the remote IP When
we're a host, this is 0x00 followed by first 3 bytes of session ID When this stub
is free/expired, this is 0x00

DWORD lastUsed; Tick count when session was last used

Description

Stub value for an SSL_SESSION (see page 408). The tag associates this session with a remote node, either by matching
to a remote IP address when we are the client or the first 3 bytes of the session ID when we are the host. When a session is

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

409

free/expired, the tag is 0x00000000. The lastUsed value is the Tick count when the session was last used so that older
sessions may be overwritten first.

10.17.4.49 SSL_SESSION_TYPE Enumeration
File

SSL.h

C

typedef enum {
 SSL_CLIENT,
 SSL_SERVER
} SSL_SESSION_TYPE;

Members

Members Description

SSL_CLIENT Local device is the SSL client

SSL_SERVER Local device is the SSL host

Description

SSL Session Type Enumeration

10.17.4.50 SSL_STUB Structure
File

SSL.h

C

typedef struct {
 WORD wRxBytesRem;
 WORD wRxHsBytesRem;
 BYTE rxProtocol;
 BYTE rxHSType;
 BYTE idSession;
 BYTE idMD5, idSHA1;
 BYTE idRxHash;
 BYTE idRxBuffer, idTxBuffer;
 DWORD_VAL dwTemp;
 struct {
 unsigned char bIsServer : 1;
 unsigned char bClientHello : 1;
 unsigned char bServerHello : 1;
 unsigned char bServerCertificate : 1;
 unsigned char bServerHelloDone : 1;
 unsigned char bClientKeyExchange : 1;
 unsigned char bRemoteChangeCipherSpec : 1;
 unsigned char bRemoteFinished : 1;
 unsigned char bLocalChangeCipherSpec : 1;
 unsigned char bLocalFinished : 1;
 unsigned char bExpectingMAC : 1;
 unsigned char bNewSession : 1;
 unsigned char bCloseNotify : 1;
 unsigned char bDone : 1;
 unsigned char bRSAInProgress : 1;
 unsigned char bKeysValid : 1;
 } Flags;
 BYTE requestedMessage;
 void * supplementaryBuffer;
 BYTE supplementaryDataType;
} SSL_STUB;

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

410

Members

Members Description

WORD wRxBytesRem; Bytes left to read in current record

WORD wRxHsBytesRem; Bytes left to read in current Handshake submessage

BYTE rxProtocol; Protocol for message being read

BYTE rxHSType; Handshake message being received

BYTE idSession; ID for associated session

BYTE idRxHash; ID for MAC hash (TX needs no persistence)

DWORD_VAL dwTemp; Used for state machine in RxCertificate

unsigned char bIsServer : 1; We are the server

unsigned char bClientHello : 1; ClientHello has been sent/received

unsigned char bServerHello : 1; ServerHello has been sent/received

unsigned char bServerCertificate : 1; ServerCertificate has been sent/received

unsigned char bServerHelloDone : 1; ServerHelloDone has been sent/received

unsigned char bClientKeyExchange : 1; ClientKeyExchange has been sent/received

unsigned char
bRemoteChangeCipherSpec : 1;

Remote node has sent a ChangeCipherSpec message

unsigned char bRemoteFinished : 1; Remote node has sent a Finished message

unsigned char bLocalChangeCipherSpec
: 1;

We have sent a ChangeCipherSpec message

unsigned char bLocalFinished : 1; We have sent a Finished message

unsigned char bExpectingMAC : 1; We expect a MAC at end of message

unsigned char bNewSession : 1; TRUE if a new session, FALSE if resuming

unsigned char bCloseNotify : 1; Whether or not a CloseNotify has been sent/received

unsigned char bDone : 1; TRUE if the connection is closed

unsigned char bRSAInProgress : 1; TRUE when RSA op is in progress

unsigned char bKeysValid : 1; TRUE if the session keys have been generated

BYTE requestedMessage; Currently requested message to send, or 0xff

Description

Memory holder for general information associated with an SSL connections.

10.17.4.51 SSL_STUB_SIZE Macro
File

SSL.h

C

#define SSL_STUB_SIZE ((DWORD)sizeof(SSL_STUB)) // Amount of space needed by
a single SSL stub

Description

Amount of space needed by a single SSL stub

10.17.4.52 SSL_STUB_SPACE Macro
File

SSL.h

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

411

C

#define SSL_STUB_SPACE (SSL_STUB_SIZE*MAX_SSL_CONNECTIONS) // Amount of space needed
by all SSL stubs

Description

Amount of space needed by all SSL stubs

10.17.4.53 SSL_VERSION Macro
File

SSL.h

C

#define SSL_VERSION (0x0300u) // SSL version number

Description

SSL version number

10.17.4.54 SSL_VERSION_HI Macro
File

SSL.h

C

#define SSL_VERSION_HI (0x03u) // SSL version number (high byte)

Description

SSL version number (high byte)

10.17.4.55 SSL_VERSION_LO Macro
File

SSL.h

C

#define SSL_VERSION_LO (0x00u) // SSL version number (low byte)

Description

SSL version number (low byte)

10.17.4.56 SSLBufferAlloc Function
File

SSL.c

C

static void SSLBufferAlloc(
 BYTE * id
);

Side Effects

None

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

412

Returns

id - Allocated buffer ID, or SSL_INVALID_ID (see page 378) if none available

Description

Allocates a buffer for use.

Remarks

None

Preconditions

None

Parameters

Parameters Description

id Where to store the allocated ID

10.17.4.57 SSLBufferFree Function
File

SSL.c

C

static void SSLBufferFree(
 BYTE * id
);

Side Effects

None

Description

Specified buffer is released

Remarks

None

Preconditions

None

Parameters

Parameters Description

id the buffer ID to free

Outputs id - SSL_INVALID_ID (see page 378)

10.17.4.58 sslBufferID Variable
File

SSL.c

C

BYTE sslBufferID;

Description

Which buffer is loaded

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

413

10.17.4.59 SSLBufferSync Function
File

SSL.c

C

static void SSLBufferSync(
 BYTE id
);

Side Effects

None

Returns

None

Description

Specified buffer is loaded to RAM. Only loads if necessary, and saves any current buffer before switching.

Remarks

None

Preconditions

None

Parameters

Parameters Description

id the buffer ID to sync to RAM

10.17.4.60 SSLFinishPartialRecord Macro
File

SSL.h

C

#define SSLFinishPartialRecord(a) TCPSSLPutRecordHeader(a, NULL, TRUE);

Description

This is macro SSLFinishPartialRecord.

10.17.4.61 SSLFlushPartialRecord Macro
File

SSL.h

C

#define SSLFlushPartialRecord(a) TCPSSLPutRecordHeader(a, NULL, FALSE);

Description

This is macro SSLFlushPartialRecord.

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

414

10.17.4.62 sslHash Variable
File

SSL.c

C

HASH_SUM sslHash;

Description

Hash storage

10.17.4.63 SSLHashAlloc Function
File

SSL.c

C

static void SSLHashAlloc(
 BYTE * id
);

Side Effects

None

Description

Allocates a hash for use.

Remarks

None

Preconditions

None

Parameters

Parameters Description

id Where to store the allocated ID

Outputs id - Allocated hash ID, or SSL_INVALID_ID (see page 378) if none available

10.17.4.64 SSLHashFree Function
File

SSL.c

C

static void SSLHashFree(
 BYTE * id
);

Side Effects

None

Description

Specified hash is released

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

415

Remarks

None

Preconditions

None

Parameters

Parameters Description

id the hash ID to free

Outputs id - SSL_INVALID_ID (see page 378)

10.17.4.65 sslHashID Variable
File

SSL.c

C

BYTE sslHashID;

Description

Which hash is loaded

10.17.4.66 SSLHashSync Function
File

SSL.c

C

static void SSLHashSync(
 BYTE id
);

Side Effects

None

Returns

None

Description

Specified hash is loaded to RAM. Only loads if necessary, and saves any current hash before switching.

Remarks

None

Preconditions

None

Parameters

Parameters Description

id the hash ID to sync to RAM

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

416

10.17.4.67 sslKeys Variable
File

SSL.c

C

SSL_KEYS sslKeys;

Description

The current SSL session

10.17.4.68 sslKeysID Variable
File

SSL.c

C

BYTE sslKeysID;

Description

Which SSL_KEYS (see page 406) are loaded

10.17.4.69 SSLKeysSync Function
File

SSL.c

C

static void SSLKeysSync(
 BYTE id
);

Side Effects

None

Returns

None

Description

Specified key set is loaded to RAM. Only loads if necessary, and saves any current key set before switching.

Remarks

None

Preconditions

None

Parameters

Parameters Description

id the key set ID to sync to RAM

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

417

10.17.4.70 SSLMACAdd Function
File

SSL.h

C

void SSLMACAdd(
 BYTE* data,
 WORD len
);

Description

This is function SSLMACAdd.

10.17.4.71 SSLMACBegin Function
File

SSL.h

C

void SSLMACBegin(
 BYTE* MACSecret,
 DWORD seq,
 BYTE protocol,
 WORD len
);

Description

This is function SSLMACBegin.

10.17.4.72 SSLMACCalc Function
File

SSL.h

C

void SSLMACCalc(
 BYTE* MACSecret,
 BYTE* result
);

Description

This is function SSLMACCalc.

10.17.4.73 SSLRSAOperation Function
File

SSL.c

C

static RSA_STATUS SSLRSAOperation();

Side Effects

None

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

418

Returns

None

Description

Pauses connection processing until RSA calculation is complete.

Remarks

This function exists outside of the handshaking functions so that the system does not incur the expense of resuming and
suspending handshake hashes.

Preconditions

The RSA Module has been secured, an RSA operation is pending, sslStub.wRxHsBytesRem is the value of
sslStub.wRxBytesRem after completion, and sslStub.wRxBytesRem is the value of sslStub.rxProtocol after completion. Also
requires sslStub (see page 428) to be synchronized.

Section

Function Prototypes

**

Cryptographic Calculation Functions

10.17.4.74 sslRSAStubID Variable
File

SSL.c

C

BYTE sslRSAStubID;

Description

Which stub is using RSA, if any

10.17.4.75 SSLRxAlert Function
File

SSL.c

C

static void SSLRxAlert(
 TCP_SOCKET hTCP
);

Side Effects

None

Returns

None

Description

Receives an alert message and decides what to do

Remarks

None

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

419

Preconditions

sslStub (see page 428) is synchronized

Parameters

Parameters Description

hTCP the TCP Socket to read from

10.17.4.76 SSLRxAntiqueClientHello Function
File

SSL.c

C

static void SSLRxAntiqueClientHello(
 TCP_SOCKET hTCP
);

Side Effects

None

Returns

None

Description

Receives the SSLv2 ClientHello message, initiating a new SSL session with a client

Remarks

This is the only SSLv2 message we support, and is provided for browsers seeking backwards compatibility. Connections
must be upgraded to SSLv3.0 immediately following, otherwise the connection will fail.

Preconditions

Handshake hasher is started, and SSL has a stub assigned.

Parameters

Parameters Description

hTCP the TCP Socket to send the message to

10.17.4.77 SSLRxCCS Function
File

SSL.c

C

static void SSLRxCCS(
 TCP_SOCKET hTCP
);

Side Effects

None

Returns

None

Description

Receives a ChangeCipherSpec from the remote server

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

420

Remarks

None

Preconditions

sslStub (see page 428) is synchronized.

Parameters

Parameters Description

hTCP the TCP Socket to read from

10.17.4.78 SSLRxClientHello Function
File

SSL.c

C

static void SSLRxClientHello(
 TCP_SOCKET hTCP
);

Side Effects

None

Returns

None

Description

Receives the ClientHello message, initiating a new SSL session with a client

Remarks

None

Preconditions

Handshake hasher is started, and SSL has a stub assigned.

Parameters

Parameters Description

hTCP the TCP Socket to send the message to

10.17.4.79 SSLRxClientKeyExchange Function
File

SSL.c

C

static void SSLRxClientKeyExchange(
 TCP_SOCKET hTCP
);

Side Effects

None

Returns

None

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

421

Description

Receives the ClientKeyExchange message and begins the decryption process.

Remarks

None

Preconditions

sslStub (see page 428) is synchronized and HSStart (see page 398)() has been called.

Parameters

Parameters Description

hTCP the TCP Socket to read from

10.17.4.80 SSLRxFinished Function
File

SSL.c

C

static void SSLRxFinished(
 TCP_SOCKET hTCP
);

Side Effects

None

Returns

None

Description

Receives the Finished message from remote node

Remarks

None

Preconditions

sslStub (see page 428) is synchronized and HSStart (see page 398)() has been called.

Parameters

Parameters Description

hTCP the TCP Socket to read from

10.17.4.81 SSLRxHandshake Function
File

SSL.h

C

void SSLRxHandshake(
 TCP_SOCKET hTCP
);

Returns

None

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

422

Description

This function receives handshake messages, reads the handshake header, and passes the data off to the appropriate
handshake parser.

Preconditions

The specified SSL stub is initialized and the TCP socket is connected. Also requires that rxBytesRem has been populated
and the current SSL stub has been synced into memory.

Parameters

Parameters Description

hTCP The TCP socket to read a handshake message from

10.17.4.82 SSLRxRecord Function
File

SSL.h

C

WORD SSLRxRecord(
 TCP_SOCKET hTCP,
 BYTE sslStubID
);

Returns

WORD indicating the number of data bytes there were decrypted but left in the stream.

Description

Reads at most one SSL Record header from the TCP stream and determines what to do with the rest of the data. If not all of
the data is available for the record, then the function returns and future call(s) to SSLRxRecord() will process the remaining
data until the end of the record is reached. If this call process data from a past record, the next record will not be started until
the next call.

Remarks

SSL record headers, MAC footers, and symetric cipher block padding (if any) will be extracted from the TCP stream by this
function. Data will be decrypted but left in the stream.

Preconditions

The specified SSL stub is initialized and the TCP socket is connected.

Parameters

Parameters Description

hTCP The TCP socket from which to read

id The active SSL stub ID

10.17.4.83 SSLRxServerCertificate Function
File

SSL.c

C

static void SSLRxServerCertificate(
 TCP_SOCKET hTCP
);

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

423

Side Effects

None

Returns

None

Description

Receives ServerCertificate from the remote server, locates the public key information, and executes RSA operation.

Remarks

This shortcuts full parsing of the certificate by just finding the Public Key Algorithm identifier for RSA. From there, the
following ASN.1 struct is the public key. That struct consists of the value for N, followed by the value for E.

Preconditions

sslStub (see page 428) is synchronized and HSStart (see page 398)() has been called.

Parameters

Parameters Description

hTCP the TCP Socket to read from

10.17.4.84 SSLRxServerHello Function
File

SSL.c

C

static void SSLRxServerHello(
 TCP_SOCKET hTCP
);

Side Effects

None

Returns

None

Description

Receives the ServerHello from the remote server

Remarks

None

Preconditions

sslStub (see page 428) is synchronized and HSStart (see page 398)() has been called.

Parameters

Parameters Description

hTCP the TCP Socket to read from

10.17.4.85 sslSession Variable
File

SSL.c

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

424

C

SSL_SESSION sslSession;

Description

Current session data

10.17.4.86 sslSessionID Variable
File

SSL.c

C

BYTE sslSessionID;

Description

Which session is loaded

10.17.4.87 SSLSessionMatchID Function
File

SSL.c

C

static BYTE SSLSessionMatchID(
 BYTE* SessionID
);

Side Effects

None

Returns

The matched session ID, or SSL_INVALID_ID (see page 378) if not found

Description

Locates a cached SSL session for reuse. Syncs found session into RAM.

Remarks

None

Preconditions

None

Parameters

Parameters Description

SessionID the session identifier to match

Section

Server messages

10.17.4.88 SSLSessionMatchIP Function
File

SSL.c

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

425

C

static BYTE SSLSessionMatchIP(
 IP_ADDR ip
);

Side Effects

None

Returns

The matched session ID, or SSL_INVALID_ID (see page 378) if not found

Description

Locates a cached SSL session for reuse

Remarks

None

Preconditions

None

Parameters

Parameters Description

ip the host session to match

Section

Client messages

10.17.4.89 SSLSessionNew Function
File

SSL.c

C

static BYTE SSLSessionNew();

Side Effects

None

Returns

Allocated Session ID, or SSL_INVALID_ID (see page 378) if none available

Description

Finds space for a new SSL session

Remarks

None

Preconditions

None

10.17.4.90 sslSessionStubs Variable
File

SSL.c

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

426

C

SSL_SESSION_STUB sslSessionStubs[MAX_SSL_SESSIONS];

Description

8 byte session stubs

10.17.4.91 SSLSessionSync Function
File

SSL.c

C

static void SSLSessionSync(
 BYTE id
);

Side Effects

None

Returns

None

Description

Specified session is loaded to RAM. Only loads if necessary, and saves any current session before switching if it has been
updated.

Remarks

None

Preconditions

None

Parameters

Parameters Description

id the session ID to sync to RAM

10.17.4.92 SSLSessionUpdated Macro
File

SSL.c

C

#define SSLSessionUpdated sslSessionUpdated = TRUE;

Description

This is macro SSLSessionUpdated.

10.17.4.93 sslSessionUpdated Variable
File

SSL.c

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

427

C

BOOL sslSessionUpdated;

Description

Whether or not it has been updated

10.17.4.94 SSLStartPartialRecord Function
File

SSL.h

C

void SSLStartPartialRecord(
 TCP_SOCKET hTCP,
 BYTE sslStubID,
 BYTE txProtocol,
 WORD wLen
);

Returns

None

Description

This function allows messages longer than the TCP buffer to be sent, which is frequently the case for the Certificate
handshake message. The final message length is required to be known in order to transmit the header. Once called,
SSLFlushPartialRecord (see page 414) and SSLFinishPartialRecord (see page 414) must be called to write remaining
data, finalize, and prepare for a new record.

Remarks

Partial messages do not support the current cipher spec, so this can only be used during the handshake procedure.

Preconditions

The specified SSL stub is initialized and the TCP socket is connected.

Parameters

Parameters Description

hTCP The TCP socket with data waiting to be transmitted

id The active SSL stub ID

txPortocol The SSL protocol number to attach to this record

wLen The length of all the data to be sent

10.17.4.95 sslStub Variable
File

SSL.c

C

SSL_STUB sslStub;

Description

The current SSL stub

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

428

10.17.4.96 SSLStubAlloc Function
File

SSL.c

C

static BOOL SSLStubAlloc();

Side Effects

None

Returns

TRUE if stub was allocated, FALSE otherwise

Description

Allocates a stub for use.

Remarks

None

Preconditions

None

Parameters

Parameters Description

Outputs None

10.17.4.97 SSLStubFree Function
File

SSL.c

C

static void SSLStubFree(
 BYTE id
);

Side Effects

None

Returns

None

Description

Specified stub is released

Remarks

None

Preconditions

None

Parameters

Parameters Description

id the stub ID to free

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

429

Outputs None

10.17.4.98 sslStubID Variable
File

SSL.c

C

BYTE sslStubID;

Description

Which SSL_STUB (see page 410) is loaded

10.17.4.99 SSLStubSync Function
File

SSL.c

C

static void SSLStubSync(
 BYTE id
);

Side Effects

None

Returns

None

Description

Specified stub is loaded to RAM. Only loads if necessary, and saves any current stub before switching.

Remarks

None

Preconditions

None

Parameters

Parameters Description

id the stub ID to sync to RAM

Section

Ethernet Buffer RAM Management

10.17.4.100 SSLTerminate Function
File

SSL.h

C

void SSLTerminate(
 BYTE sslStubId
);

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

430

Returns

None

Description

Terminates an SSL connection and releases allocated resources.

Preconditions

None

Parameters

Parameters Description

id the SSL stub ID to terminate

10.17.4.101 SSLTxCCSFin Function
File

SSL.c

C

static void SSLTxCCSFin(
 TCP_SOCKET hTCP
);

Side Effects

None

Returns

None

Description

Generates the session keys from the master secret, then allocates and generates the encryption context. Once processing is
complete, transmits the Change Cipher Spec message and the Finished handshake message to the server.

Remarks

None

Preconditions

sslStub (see page 428) is synchronized, and the current session has a valid pre-master secret to use.

Parameters

Parameters Description

hTCP the TCP Socket to write the message to

Section

Client and server messages

10.17.4.102 SSLTxClientHello Function
File

SSL.c

C

static void SSLTxClientHello(
 TCP_SOCKET hTCP
);

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

431

Side Effects

None

Returns

None

Description

Transmits the ClientHello message to initiate a new SSL session with the server.

Remarks

None

Preconditions

Enough space is available in hTCP to write the entire message.

Parameters

Parameters Description

hTCP the TCP Socket to send the message to

10.17.4.103 SSLTxClientKeyExchange Function
File

SSL.c

C

static void SSLTxClientKeyExchange(
 TCP_SOCKET hTCP
);

Side Effects

None

Returns

None

Description

Transmits the encrypted pre-master secret to the server and requests the Change Cipher Spec. Also generates the Master
Secret from the pre-master secret that was used.

Remarks

None

Preconditions

sslStub (see page 428) is synchronized, sslStub.dwTemp.v[1] contains the length of the public key, and the RxBuffer
contains the encrypted pre-master secret at address 0x80.

Parameters

Parameters Description

hTCP the TCP Socket to write the message to

10.17.4.104 SSLTxMessage Function
File

SSL.h

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

432

C

void SSLTxMessage(
 TCP_SOCKET hTCP,
 BYTE sslStubID,
 BYTE msg
);

Returns

None

Description

This function transmits a specific SSL message for handshakes and alert messages. Supported messages are listed in
SSL_MESSAGES (see page 407).

Preconditions

The specified SSL stub is initialized and the TCP socket is connected.

Parameters

Parameters Description

hTCP The TCP socket with data waiting to be transmitted

id The active SSL stub ID

msg One of the SSL_MESSAGES (see page 407) types to send

10.17.4.105 SSLTxRecord Function
File

SSL.h

C

void SSLTxRecord(
 TCP_SOCKET hTCP,
 BYTE sslStubID,
 BYTE txProtocol
);

Returns

None

Description

Transmits all pending data in the TCP TX buffer as an SSL record using the specified protocol. This function transparently
encrypts and MACs the data if there is an active cipher spec.

Preconditions

The specified SSL stub is initialized and the TCP socket is connected.

Parameters

Parameters Description

hTCP The TCP socket with data waiting to be transmitted

id The active SSL stub ID

txPortocol The SSL protocol number to attach to this record

10.17.4.106 SSLTxServerCertificate Function
File

SSL.c

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

433

C

static void SSLTxServerCertificate(
 TCP_SOCKET hTCP
);

Side Effects

None

Returns

None

Description

Transmits the Certificate message with the server's specified public key certificate.

Remarks

Certificate is defined in CustomSSLCert.c. This function requires special handling for partial records because the certificate
will likely be larger than the TCP buffer, and SSL handshake messages are constrained to fit in a single SSL handshake
record

Preconditions

None

Parameters

Parameters Description

hTCP the TCP Socket to send the message to

10.17.4.107 SSLTxServerHello Function
File

SSL.c

C

static void SSLTxServerHello(
 TCP_SOCKET hTCP
);

Side Effects

None

Returns

None

Description

Transmits the ServerHello message.

Remarks

None

Preconditions

None

Parameters

Parameters Description

hTCP the TCP Socket to send the message to

10.17 SSL Microchip TCP/IP Stack Help SSL Internal Members

434

10.17.4.108 SSLTxServerHelloDone Function
File

SSL.c

C

static void SSLTxServerHelloDone(
 TCP_SOCKET hTCP
);

Side Effects

None

Returns

None

Description

Transmits the ServerHelloDone message.

Remarks

None

Preconditions

None

Parameters

Parameters Description

hTCP the TCP Socket to send the message to

10.18 TCP
Variables

Name Description

NextPort (see page 481) Tracking variable for next local client port number

Description

TCP is a standard transport layer protocol described in RFC 793. It provides reliable stream-based connections over
unreliable networks, and forms the foundation for HTTP, SMTP, and many other protocol standards.

Connections made over TCP guarantee data transfer at the expense of throughput. Connections are made through a
three-way handshake process, ensuring a one-to-one connection. Remote nodes advertise how much data they are ready to
receive, and all data transmitted must be acknowledged. If a remote node fails to acknowledge the receipt of data, it is
automatically retransmitted. This ensures that network errors such as lost, corrupted, or out-of-order packets are
automatically corrected.

To accomplish this, TCP must operate in a buffer. Once the transmit buffer is full, no more data can be sent until the remote
node has acknowledged receipt. For the Microchip TCP/IP Stack, the application must return to the main stack loop in order
for this to happen. Likewise, the remote node cannot transmit more data until the local device has acknowledged receipt and
that space is available in the buffer. When a local application needs to read more data, it must return to the main stack loop
and wait for a new packet to arrive.

The TCP flow diagram below provides an overview for the use of the TCP module:

10.18 TCP Microchip TCP/IP Stack Help

435

Sockets (see page 147) are opened using TCPOpen (see page 452). This function can either open a listening socket to
wait for client connections, or can make a client connection to the remote node. The remote node can be specified by a host
name string to be resolved in DNS, an IP address, or a NODE_INFO struct containing previously resolved IP and MAC
address information.

Once connected, applications can read and write data. On each entry, the application must verify that the socket is still
connected. For most applications a call to TCPIsConnected (see page 450) will be sufficient, but TCPWasReset (see
page 458) may also be used for listening sockets that may turn over quickly.

To write data, call TCPIsPutReady (see page 451) to check how much space is available. Then, call any of the TCPPut (
see page 454) family of functions to write data as space is available. Once complete, call TCPFlush (see page 447) to
transmit data immediately. Alternately, return to the main stack loop. Data will be transmitted when either a) half of the
transmit buffer becomes full or b) a delay time has passed (usually 40ms).

To read data, call TCPIsGetReady (see page 451) to determine how many bytes are ready to be retrieved. Then use the
TCPGet (see page 447) family of functions to read data from the socket, and/or the TCPFind (see page 443) family of
functions to locate data in the buffer. When no more data remains, return to the main stack loop to wait for more data to
arrive.

If the application needs to close the connection, call TCPDisconnect (see page 443), then return to the main stack loop
and wait for the remote node to acknowledge the disconnection. Client sockets will return to the idle state, while listening
sockets will wait for a new connection.

For more information, refer to the GenericTCPClient (see page 94) or GenericTCPServer (see page 97) examples, or
read the associated RFC.

10.18.1 TCP Public Members

Functions

Name Description

TCPAdjustFIFOSize (see
page 441)

Adjusts the relative sizes of the RX and TX buffers.

TCPClose (see page 442) Disconnects an open socket and destroys the socket handle, including server
mode socket handles.

TCPDiscard (see page 442) Discards any pending data in the TCP RX FIFO.

TCPDisconnect (see page
443)

Disconnects an open socket.

TCPFindArrayEx (see
page 444)

Searches for a string in the TCP RX buffer.

TCPFindEx (see page 445) Searches for a byte in the TCP RX buffer.

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

436

TCPFindROMArrayEx (see
page 446)

Searches for a ROM string in the TCP RX buffer.

TCPFlush (see page 447) Immediately transmits all pending TX data.

TCPGet (see page 447) Retrieves a single byte to a TCP socket.

TCPGetArray (see page
448)

Reads an array of data bytes from a TCP socket's receive FIFO. The data is
removed from the FIFO in the process.

TCPGetRemoteInfo (see
page 448)

Obtains information about a currently open socket.

TCPGetRxFIFOFree (see
page 449)

Determines how many bytes are free in the RX FIFO.

TCPGetTxFIFOFull (see
page 450)

Determines how many bytes are pending in the TCP TX FIFO.

TCPIsConnected (see
page 450)

Determines if a socket has an established connection.

TCPIsGetReady (see page
451)

Determines how many bytes can be read from the TCP RX buffer.

TCPIsPutReady (see page
451)

Determines how much free space is available in the TCP TX buffer.

TCPOpen (see page 452) Opens a TCP socket for listening or as a client.

TCPPeek (see page 453) Peaks at one byte in the TCP RX FIFO without removing it from the buffer.

TCPPeekArray (see page
454)

Reads a specified number of data bytes from the TCP RX FIFO without
removing them from the buffer.

TCPPut (see page 454) Writes a single byte to a TCP socket.

TCPPutArray (see page
455)

Writes an array from RAM to a TCP socket.

TCPPutROMArray (see
page 455)

Writes an array from ROM to a TCP socket.

TCPPutROMString (see
page 456)

Writes a null-terminated string from ROM to a TCP socket. The null-terminator
is not copied to the socket.

TCPPutString (see page
457)

Writes a null-terminated string from RAM to a TCP socket. The null-terminator
is not copied to the socket.

TCPRAMCopy (see page
457)

Copies data to/from various memory mediums.

TCPRAMCopyROM (see
page 458)

Copies data to/from various memory mediums.

TCPWasReset (see page
458)

Self-clearing semaphore inidicating socket reset.

Macros

Name Description

INVALID_SOCKET (see page 438) The socket is invalid or could not be opened

UNKNOWN_SOCKET (see page
438)

The socket is not known

TCP_ADJUST_GIVE_REST_TO_RX
(see page 439)

Resize flag: extra bytes go to RX

TCP_ADJUST_GIVE_REST_TO_TX
(see page 439)

Resize flag: extra bytes go to TX

TCP_ADJUST_PRESERVE_RX (
see page 439)

Resize flag: attempt to preserve RX buffer

TCP_ADJUST_PRESERVE_TX (
see page 439)

Resize flag: attempt to preserve TX buffer

TCP_OPEN_IP_ADDRESS (see
page 439)

Emit an undeclared identifier diagnostic if code tries to use
TCP_OPEN_IP_ADDRESS while STACK_CLIENT_MODE feature is
not enabled.

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

437

TCP_OPEN_NODE_INFO (see
page 440)

Emit an undeclared identifier diagnostic if code tries to use
TCP_OPEN_NODE_INFO while STACK_CLIENT_MODE feature is not
enabled.

TCP_OPEN_RAM_HOST (see
page 440)

Emit an undeclared identifier diagnostic if code tries to use
TCP_OPEN_RAM_HOST while STACK_CLIENT_MODE feature is not
enabled.

TCP_OPEN_ROM_HOST (see
page 440)

Emit an undeclared identifier diagnostic if code tries to use
TCP_OPEN_ROM_HOST while STACK_CLIENT_MODE feature is not
enabled.

TCP_OPEN_SERVER (see page
440)

Create a server socket and ignore dwRemoteHost.

TCPConnect (see page 442) Alias to TCPOpen (see page 452) as a client.

TCPFind (see page 443) Alias to TCPFindEx (see page 445) with no length parameter.

TCPFindArray (see page 444) Alias to TCPFindArrayEx (see page 444) with no length parameter.

TCPFindROMArray (see page 446) Alias to TCPFindROMArrayEx (see page 446) with no length
parameter.

TCPGetRxFIFOFull (see page 449) Alias to TCPIsGetReady (see page 451) provided for API
completeness

TCPGetTxFIFOFree (see page
449)

Alias to TCPIsPutReady (see page 451) provided for API
completeness

TCPListen (see page 451) Alias to TCPOpen (see page 452) as a server.

Module

TCP (see page 435)

Description

The following functions and variables are available to the stack application.

10.18.1.1 INVALID_SOCKET Macro
File

TCP.h

C

#define INVALID_SOCKET (0xFE) // The socket is invalid or could not be opened

Description

The socket is invalid or could not be opened

10.18.1.2 UNKNOWN_SOCKET Macro
File

TCP.h

C

#define UNKNOWN_SOCKET (0xFF) // The socket is not known

Description

The socket is not known

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

438

10.18.1.3 TCP_ADJUST_GIVE_REST_TO_RX Macro
File

TCP.h

C

#define TCP_ADJUST_GIVE_REST_TO_RX 0x01u // Resize flag: extra bytes go to RX

Description

Resize flag: extra bytes go to RX

10.18.1.4 TCP_ADJUST_GIVE_REST_TO_TX Macro
File

TCP.h

C

#define TCP_ADJUST_GIVE_REST_TO_TX 0x02u // Resize flag: extra bytes go to TX

Description

Resize flag: extra bytes go to TX

10.18.1.5 TCP_ADJUST_PRESERVE_RX Macro
File

TCP.h

C

#define TCP_ADJUST_PRESERVE_RX 0x04u // Resize flag: attempt to preserve RX buffer

Description

Resize flag: attempt to preserve RX buffer

10.18.1.6 TCP_ADJUST_PRESERVE_TX Macro
File

TCP.h

C

#define TCP_ADJUST_PRESERVE_TX 0x08u // Resize flag: attempt to preserve TX buffer

Description

Resize flag: attempt to preserve TX buffer

10.18.1.7 TCP_OPEN_IP_ADDRESS Macro
File

TCP.h

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

439

C

#define TCP_OPEN_IP_ADDRESS You_need_to_enable_STACK_CLIENT_MODE_to_use_TCP_OPEN_IP_ADDRESS

Description

Emit an undeclared identifier diagnostic if code tries to use TCP_OPEN_IP_ADDRESS while STACK_CLIENT_MODE
feature is not enabled.

10.18.1.8 TCP_OPEN_NODE_INFO Macro
File

TCP.h

C

#define TCP_OPEN_NODE_INFO You_need_to_enable_STACK_CLIENT_MODE_to_use_TCP_OPEN_NODE_INFO

Description

Emit an undeclared identifier diagnostic if code tries to use TCP_OPEN_NODE_INFO while STACK_CLIENT_MODE feature
is not enabled.

10.18.1.9 TCP_OPEN_RAM_HOST Macro
File

TCP.h

C

#define TCP_OPEN_RAM_HOST You_need_to_enable_STACK_CLIENT_MODE_to_use_TCP_OPEN_RAM_HOST

Description

Emit an undeclared identifier diagnostic if code tries to use TCP_OPEN_RAM_HOST while STACK_CLIENT_MODE feature
is not enabled.

10.18.1.10 TCP_OPEN_ROM_HOST Macro
File

TCP.h

C

#define TCP_OPEN_ROM_HOST You_need_to_enable_STACK_CLIENT_MODE_to_use_TCP_OPEN_ROM_HOST

Description

Emit an undeclared identifier diagnostic if code tries to use TCP_OPEN_ROM_HOST while STACK_CLIENT_MODE feature
is not enabled.

10.18.1.11 TCP_OPEN_SERVER Macro
File

TCP.h

C

#define TCP_OPEN_SERVER 0u

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

440

Description

Create a server socket and ignore dwRemoteHost.

10.18.1.12 TCPAdjustFIFOSize Function
File

TCP.h

C

BOOL TCPAdjustFIFOSize(
 TCP_SOCKET hTCP,
 WORD wMinRXSize,
 WORD wMinTXSize,
 BYTE vFlags
);

Side Effects

Any unacknowledged or untransmitted data in the TX FIFO is always deleted.

Description

This function can be used to adjust the relative sizes of the RX and TX FIFO depending on the immediate needs of an
application. Since a larger FIFO can allow more data to be sent in a given packet, adjusting the relative sizes on the fly can
allow for optimal transmission speed for one-sided application protocols. For example, HTTP typically begins by receiving
large amounts of data from the client, then switches to serving large amounts of data back. Adjusting the FIFO at these
points can increase performance substantially. Once the FIFO is adjusted, a window update is sent.

If neither or both of TCP_ADJUST_GIVE_REST_TO_TX (see page 439) and TCP_ADJUST_GIVE_REST_TO_RX (see
page 439) are set, the function distributes the remaining space equally.

Received data can be preserved as long as the buffer is expanding and has not wrapped.

Remarks

At least one byte must always be allocated to the RX buffer so that a FIN can be received. The function automatically
corrects for this.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to be adjusted

wMinRXSize Minimum number of byte for the RX FIFO

wMinTXSize Minimum number of bytes for the RX FIFO

vFlags Any combination of TCP_ADJUST_GIVE_REST_TO_RX (see page 439),
TCP_ADJUST_GIVE_REST_TO_TX (see page 439),
TCP_ADJUST_PRESERVE_RX (see page 439).
TCP_ADJUST_PRESERVE_TX (see page 439) is not currently supported.

Return Values

Return Values Description

TRUE The FIFOs were adjusted successfully

FALSE Minimum RX, Minimum TX, or flags couldn't be accommodated and therefore
the socket was left unchanged.

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

441

10.18.1.13 TCPConnect Macro
File

TCP.h

C

#define TCPConnect(remote,port) TCPOpen((DWORD)remote, TCP_OPEN_NODE_INFO, port,
TCP_PURPOSE_DEFAULT)

Description

This function is an alias to TCPOpen (see page 452) for client sockets. It is provided for backwards compatibility with older
versions of the stack. New applications should use the TCPOpen (see page 452) API instead.

10.18.1.14 TCPClose Function
File

TCP.h

C

void TCPClose(
 TCP_SOCKET hTCP
);

Returns

None

Description

Disconnects an open socket and destroys the socket handle, including server mode socket handles. This function performs
identically to the TCPDisconnect (see page 443)() function, except that both client and server mode socket handles are
relinquished to the TCP/IP stack upon return.

Preconditions

None

Parameters

Parameters Description

hTCP Handle to the socket to disconnect and close.

10.18.1.15 TCPDiscard Function
File

TCP.h

C

void TCPDiscard(
 TCP_SOCKET hTCP
);

Returns

None

Description

Discards any pending data in the TCP RX FIFO.

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

442

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket whose RX FIFO is to be cleared.

10.18.1.16 TCPDisconnect Function
File

TCP.h

C

void TCPDisconnect(
 TCP_SOCKET hTCP
);

Returns

None

Description

This function closes a connection to a remote node by sending a FIN (if currently connected).

The function can be called a second time to force a socket closed by sending a RST packet. This is useful when the
application knows that the remote node will not send an ACK (if it has crashed or lost its link), or when the application needs
to reuse the socket immediately regardless of whether or not the remote node would like to transmit more data before
closing.

For client mode sockets, upon return, the hTCP handle is relinquished to the TCP/IP stack and must no longer be used by
the application (except for an immediate subsequent call to TCPDisconnect() to force a RST transmission, if needed).

For server mode sockets, upon return, the hTCP handle is NOT relinquished to the TCP/IP stack. After closing, the socket
returns to the listening state allowing future connection requests to be serviced. This leaves the hTCP handle in a valid state
and must be retained for future operations on the socket. If you want to close the server and relinquish the socket back to
the TCP/IP stack, call the TCPClose (see page 442)() API instead of TCPDisconnect().

Remarks

If the socket is using SSL, a CLOSE_NOTIFY record will be transmitted first to allow the SSL session to be resumed at a
later time.

Preconditions

None

Parameters

Parameters Description

hTCP Handle of the socket to disconnect.

10.18.1.17 TCPFind Macro
File

TCP.h

C

#define TCPFind(a,b,c,d) TCPFindEx(a,b,c,0,d)

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

443

Description

This function is an alias to TCPFindEx (see page 445) with no length parameter. It is provided for backwards compatibility
with an older API.

10.18.1.18 TCPFindArray Macro
File

TCP.h

C

#define TCPFindArray(a,b,c,d,e) TCPFindArrayEx(a,b,c,d,0,e)

Description

This function is an alias to TCPFindArrayEx (see page 444) with no length parameter. It is provided for backwards
compatibility with an older API.

10.18.1.19 TCPFindArrayEx Function
File

TCP.h

C

WORD TCPFindArrayEx(
 TCP_SOCKET hTCP,
 BYTE* cFindArray,
 WORD wLen,
 WORD wStart,
 WORD wSearchLen,
 BOOL bTextCompare
);

Description

This function finds the first occurrance of an array of bytes in the TCP RX buffer. It can be used by an application to abstract
searches out of their own application code. For increased efficiency, the function is capable of limiting the scope of search to
a specific range of bytes. It can also perform a case-insensitive search if required.

For example, if the buffer contains "I love PIC MCUs!" and the search array is "love" with a length of 4, a value of 2 will be
returned.

Remarks

Since this function usually must transfer data from external storage to internal RAM for comparison, its performance
degrades significantly when the buffer is full and the array is not found. For better performance, try to search for characters
that are expected to exist or limit the scope of the search as much as possible. The HTTP2 module, for example, uses this
function to parse headers. However, it searches for newlines, then the separating colon, then reads the header name to
RAM for final comparison. This has proven to be significantly faster than searching for full header name strings outright.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to search within.

cFindArray The array of bytes to find in the buffer.

wLen Length of cFindArray.

wStart Zero-indexed starting position within the buffer.

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

444

wSearchLen Length from wStart to search in the buffer.

bTextCompare TRUE for case-insensitive text search, FALSE for binary search

Return Values

Return Values Description

0xFFFF Search array not found

Otherwise Zero-indexed position of the first occurrance

10.18.1.20 TCPFindEx Function
File

TCP.h

C

WORD TCPFindEx(
 TCP_SOCKET hTCP,
 BYTE cFind,
 WORD wStart,
 WORD wSearchLen,
 BOOL bTextCompare
);

Description

This function finds the first occurrance of a byte in the TCP RX buffer. It can be used by an application to abstract searches
out of their own application code. For increased efficiency, the function is capable of limiting the scope of search to a specific
range of bytes. It can also perform a case-insensitive search if required.

For example, if the buffer contains "I love PIC MCUs!" and the cFind byte is ' ', a value of 1 will be returned.

Remarks

Since this function usually must transfer data from external storage to internal RAM for comparison, its performance
degrades significantly when the buffer is full and the array is not found. For better performance, try to search for characters
that are expected to exist or limit the scope of the search as much as possible. The HTTP2 module, for example, uses this
function to parse headers. However, it searches for newlines, then the separating colon, then reads the header name to
RAM for final comparison. This has proven to be significantly faster than searching for full header name strings outright.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to search within.

cFind The byte to find in the buffer.

wStart Zero-indexed starting position within the buffer.

wSearchLen Length from wStart to search in the buffer.

bTextCompare TRUE for case-insensitive text search, FALSE for binary search

Return Values

Return Values Description

0xFFFF Search array not found

Otherwise Zero-indexed position of the first occurrance

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

445

10.18.1.21 TCPFindROMArray Macro
File

TCP.h

C

#define TCPFindROMArray(a,b,c,d,e) TCPFindArray(a,(BYTE*)b,c,d,e)

Description

This function is an alias to TCPFindROMArrayEx (see page 446) with no length parameter. It is provided for backwards
compatibility with an older API.

10.18.1.22 TCPFindROMArrayEx Function
File

TCP.h

C

WORD TCPFindROMArrayEx(
 TCP_SOCKET hTCP,
 ROM BYTE* cFindArray,
 WORD wLen,
 WORD wStart,
 WORD wSearchLen,
 BOOL bTextCompare
);

Description

This function finds the first occurrance of an array of bytes in the TCP RX buffer. It can be used by an application to abstract
searches out of their own application code. For increased efficiency, the function is capable of limiting the scope of search to
a specific range of bytes. It can also perform a case-insensitive search if required.

For example, if the buffer contains "I love PIC MCUs!" and the search array is "love" with a length of 4, a value of 2 will be
returned.

Remarks

Since this function usually must transfer data from external storage to internal RAM for comparison, its performance
degrades significantly when the buffer is full and the array is not found. For better performance, try to search for characters
that are expected to exist or limit the scope of the search as much as possible. The HTTP2 module, for example, uses this
function to parse headers. However, it searches for newlines, then the separating colon, then reads the header name to
RAM for final comparison. This has proven to be significantly faster than searching for full header name strings outright.

This function is aliased to TCPFindArrayEx (see page 444) on non-PIC18 platforms.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to search within.

cFindArray The array of bytes to find in the buffer.

wLen Length of cFindArray.

wStart Zero-indexed starting position within the buffer.

wSearchLen Length from wStart to search in the buffer.

bTextCompare TRUE for case-insensitive text search, FALSE for binary search

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

446

Return Values

Return Values Description

0xFFFF Search array not found

Otherwise Zero-indexed position of the first occurrance

10.18.1.23 TCPFlush Function
File

TCP.h

C

void TCPFlush(
 TCP_SOCKET hTCP
);

Returns

None

Description

This function immediately transmits all pending TX data with a PSH flag. If this function is not called, data will automatically
be sent when either a) the TX buffer is half full or b) the TCP_AUTO_TRANSMIT_TIMEOUT_VAL (see page 475) (default:
40ms) has elapsed.

Remarks

SSL application data is automatically flushed, so this function has no effect for SSL sockets.

Preconditions

TCP is initialized and the socket is connected.

Parameters

Parameters Description

hTCP The socket whose data is to be transmitted.

10.18.1.24 TCPGet Function
File

TCP.h

C

BOOL TCPGet(
 TCP_SOCKET hTCP,
 BYTE* byte
);

Description

Retrieves a single byte to a TCP socket.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket from which to read.

byte Pointer to location in which the read byte should be stored.

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

447

Return Values

Return Values Description

TRUE A byte was read from the buffer.

FALSE The buffer was empty, or the socket is not connected.

10.18.1.25 TCPGetArray Function
File

TCP.h

C

WORD TCPGetArray(
 TCP_SOCKET hTCP,
 BYTE* buffer,
 WORD count
);

Returns

The number of bytes read from the socket. If less than len, the RX FIFO buffer became empty or the socket is not conected.

Description

Reads an array of data bytes from a TCP socket's receive FIFO. The data is removed from the FIFO in the process.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket from which data is to be read.

buffer Pointer to the array to store data that was read.

len Number of bytes to be read.

10.18.1.26 TCPGetRemoteInfo Function
File

TCP.h

C

SOCKET_INFO* TCPGetRemoteInfo(
 TCP_SOCKET hTCP
);

Returns

The SOCKET_INFO (see page 460) structure associated with this socket. This structure is allocated statically by the
function and is valid only until the next time TCPGetRemoteInfo() is called.

Description

Returns the SOCKET_INFO (see page 460) structure associated with this socket. This contains the NODE_INFO
structure with IP and MAC address (or gateway MAC) and the remote port.

Preconditions

TCP is initialized and the socket is connected.

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

448

Parameters

Parameters Description

hTCP The socket to check.

10.18.1.27 TCPGetRxFIFOFree Function
File

TCP.h

C

WORD TCPGetRxFIFOFree(
 TCP_SOCKET hTCP
);

Returns

The number of bytes free in the TCP RX FIFO. If zero, no additional data can be received until the application removes
some data using one of the TCPGet (see page 447) family functions.

Description

Determines how many bytes are free in the RX FIFO.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to check.

10.18.1.28 TCPGetRxFIFOFull Macro
File

TCP.h

C

#define TCPGetRxFIFOFull(a) TCPIsGetReady(a)

Description

Alias to TCPIsGetReady (see page 451) provided for API completeness

10.18.1.29 TCPGetTxFIFOFree Macro
File

TCP.h

C

#define TCPGetTxFIFOFree(a) TCPIsPutReady(a)

Description

Alias to TCPIsPutReady (see page 451) provided for API completeness

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

449

10.18.1.30 TCPGetTxFIFOFull Function
File

TCP.h

C

WORD TCPGetTxFIFOFull(
 TCP_SOCKET hTCP
);

Returns

Number of bytes pending to be flushed in the TCP TX FIFO.

Description

Determines how many bytes are pending in the TCP TX FIFO.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to check.

10.18.1.31 TCPIsConnected Function
File

TCP.h

C

BOOL TCPIsConnected(
 TCP_SOCKET hTCP
);

Description

This function determines if a socket has an established connection to a remote node. Call this function after calling
TCPOpen (see page 452) to determine when the connection is set up and ready for use. This function was historically
used to check for disconnections, but TCPWasReset (see page 458) is now a more appropriate solution.

Remarks

A socket is said to be connected only if it is in the TCP_ESTABLISHED state. Sockets (see page 147) in the process of
opening or closing will return FALSE.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to check.

Return Values

Return Values Description

TRUE The socket has an established connection to a remote node.

FALSE The socket is not currently connected.

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

450

10.18.1.32 TCPIsGetReady Function
File

TCP.h

C

WORD TCPIsGetReady(
 TCP_SOCKET hTCP
);

Returns

The number of bytes available to be read from the TCP RX buffer.

Description

Call this function to determine how many bytes can be read from the TCP RX buffer. If this function returns zero, the
application must return to the main stack loop before continuing in order to wait for more data to arrive.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to check.

10.18.1.33 TCPIsPutReady Function
File

TCP.h

C

WORD TCPIsPutReady(
 TCP_SOCKET hTCP
);

Returns

The number of bytes available to be written in the TCP TX buffer.

Description

Call this function to determine how many bytes can be written to the TCP TX buffer. If this function returns zero, the
application must return to the main stack loop before continuing in order to transmit more data.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to check.

10.18.1.34 TCPListen Macro
File

TCP.h

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

451

C

#define TCPListen(port) TCPOpen(0, TCP_OPEN_SERVER, port, TCP_PURPOSE_DEFAULT)

Description

This function is an alias to TCPOpen (see page 452) for server sockets. It is provided for backwards compatibility with
older versions of the stack. New applications should use the TCPOpen (see page 452) API instead.

10.18.1.35 TCPOpen Function
File

TCP.h

C

TCP_SOCKET TCPOpen(
 DWORD dwRemoteHost,
 BYTE vRemoteHostType,
 WORD wPort,
 BYTE vSocketPurpose
);

Description

Provides a unified method for opening TCP sockets. This function can open both client and server sockets. For client
sockets, it can accept (see page 164) a host name string to query in DNS, an IP address as a string, an IP address in
binary form, or a previously resolved NODE_INFO structure containing the remote IP address and associated MAC address.
When a host name or IP address only is provided, the TCP module will internally perform the necessary DNS and/or ARP
resolution steps before reporting that the TCP socket is connected (via a call to TCPISConnected returning TRUE). Server
sockets ignore this destination parameter and listen (see page 170) only on the indicated port.

The vSocketPurpose field allows sockets to be opened with varying buffer size parameters and memory storage mediums.
This field corresponds to pre-defined sockets allocated in the TCPSocketInitializer[] array in TCPIPConfig.h. The
TCPIPConfig.h file can be edited using the TCP/IP Configuration Wizard.

Sockets (see page 147) are statically allocated on boot, but can be claimed with this function and freed using
TCPDisconnect (see page 443) or TCPClose (see page 442) (for client sockets). Server sockets can be freed using
TCPClose (see page 442) only (calls to TCPDisconnect (see page 443) will return server sockets to the listening state,
allowing reuse).

Remarks

This function replaces the old TCPConnect (see page 442) and TCPListen (see page 451) functions.

If TCP_OPEN_RAM_HOST (see page 440) or TCP_OPEN_ROM_HOST (see page 440) are used for the destination
type, the DNS client module must also be enabled (STACK_USE_DNS must be defined in TCPIPConfig.h).

Preconditions

TCP is initialized.

Example

// Open a server socket
skt = TCPOpen(NULL, TCP_OPEN_SERVER, HTTP_PORT, TCP_PURPOSE_HTTP_SERVER);

// Open a client socket to www.microchip.com
// The double cast here prevents compiler warnings
skt = TCPOpen((DWORD)(PTR_BASE)"www.microchip.com",
 TCP_OPEN_ROM_HOST, 80, TCP_PURPOSE_DEFAULT);

// Reopen a client socket without repeating DNS or ARP

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

452

SOCKET_INFO cache = TCPGetSocketInfo(skt); // Call with the old socket
skt = TCPOpen((DWORD)(PTR_BASE)&cache.remote, TCP_OPEN_NODE_INFO,
 cache.remotePort.Val, TCP_PURPOSE_DEFAULT);

Parameters

Parameters Description

dwRemoteHost For client sockets only. Provide a pointer to a null-terminated string of the
remote host name (ex: "www.microchip.com" or "192.168.1.123"), a literal
destination IP address (ex: 0x7B01A8C0 or an IP_ADDR data type), or a
pointer to a NODE_INFO structure with the remote IP address and remote node
or gateway MAC address specified. If a string is provided, note that it must be
statically allocated in memory and cannot be modified or deallocated until
TCPIsConnected (see page 450) returns TRUE.
This parameter is ignored for server sockets.

vRemoteHostType Any one of the following flags to identify the meaning of the dwRemoteHost
parameter:

• TCP_OPEN_SERVER (see page 440) - Open a server socket and
ignore the dwRemoteHost parameter.

• TCP_OPEN_RAM_HOST (see page 440) - Open a client socket and
connect (see page 166) it to a remote host who's name is stored as a
null terminated string in a RAM array. Ex: "www.microchip.com" or
"192.168.0.123" (BYTE* type)

• TCP_OPEN_ROM_HOST (see page 440) - Open a client socket and
connect (see page 166) it to a remote host who's name is stored as a
null terminated string in a literal string or ROM array. Ex:
"www.microchip.com" or "192.168.0.123" (ROM BYTE* type)

• TCP_OPEN_IP_ADDRESS (see page 439) - Open a client socket and
connect (see page 166) it to a remote IP address. Ex: 0x7B01A8C0 for
192.168.1.123 (DWORD type). Note that the byte ordering is big endian.

• TCP_OPEN_NODE_INFO (see page 440) - Open a client socket and
connect (see page 166) it to a remote IP and MAC addresses pair stored
in a NODE_INFO structure. dwRemoteHost must be a pointer to the
NODE_INFO structure. This option is provided for backwards compatibility
with applications built against prior stack versions that only implemented
the TCPConnect (see page 442)() function. It can also be used to skip
DNS and ARP resolution steps if connecting to a remote node which
you've already connected to and have cached addresses for.

wPort TCP port to listen (see page 170) on or connect (see page 166) to:

• Client sockets - the remote TCP port to which a connection should be
made. The local port for client sockets will be automatically picked by the
TCP module.

• Server sockets - the local TCP port on which to listen (see page 170) for
connections.

vSocketPurpose Any of the TCP_PURPOSE_* constants defined in TCPIPConfig.h or the
TCPIPConfig utility (see TCPSocketInitializer[] array).

Return Values

Return Values Description

INVALID_SOCKET (see page 438) No sockets of the specified type were available to be opened.

Otherwise A TCP_SOCKET (see page 463) handle. Save this handle and use it when
calling all other TCP APIs.

10.18.1.36 TCPPeek Function
File

TCP.h

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

453

C

BYTE TCPPeek(
 TCP_SOCKET hTCP,
 WORD wStart
);

Description

Peaks at one byte in the TCP RX FIFO without removing it from the buffer.

Remarks

Use the TCPPeekArray (see page 454)() function to read more than one byte. It will perform better than calling TCPPeek()
in a loop.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to peak from (read without removing from stream).

wStart Zero-indexed starting position within the FIFO to peek from.

10.18.1.37 TCPPeekArray Function
File

TCP.h

C

WORD TCPPeekArray(
 TCP_SOCKET hTCP,
 BYTE * vBuffer,
 WORD wLen,
 WORD wStart
);

Description

Reads a specified number of data bytes from the TCP RX FIFO without removing them from the buffer. No TCP control
actions are taken as a result of this function (ex: no window update is sent to the remote node).

Remarks

None

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to peak from (read without removing from stream).

vBuffer Destination to write the peeked data bytes.

wLen Length of bytes to peak from the RX FIFO and copy to vBuffer.

wStart Zero-indexed starting position within the FIFO to start peeking from.

10.18.1.38 TCPPut Function
File

TCP.h

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

454

C

BOOL TCPPut(
 TCP_SOCKET hTCP,
 BYTE byte
);

Description

Writes a single byte to a TCP socket.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to which data is to be written.

byte The byte to write.

Return Values

Return Values Description

TRUE The byte was written to the transmit buffer.

FALSE The transmit buffer was full, or the socket is not connected.

10.18.1.39 TCPPutArray Function
File

TCP.h

C

WORD TCPPutArray(
 TCP_SOCKET hTCP,
 BYTE* Data,
 WORD Len
);

Returns

The number of bytes written to the socket. If less than len, the buffer became full or the socket is not conected.

Description

Writes an array from RAM to a TCP socket.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to which data is to be written.

data Pointer to the array to be written.

len Number of bytes to be written.

10.18.1.40 TCPPutROMArray Function
File

TCP.h

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

455

C

WORD TCPPutROMArray(
 TCP_SOCKET hTCP,
 ROM BYTE* Data,
 WORD Len
);

Returns

The number of bytes written to the socket. If less than len, the buffer became full or the socket is not conected.

Description

Writes an array from ROM to a TCP socket.

Remarks

This function is aliased to TCPPutArray (see page 455) on non-PIC18 platforms.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to which data is to be written.

data Pointer to the array to be written.

len Number of bytes to be written.

10.18.1.41 TCPPutROMString Function
File

TCP.h

C

ROM BYTE* TCPPutROMString(
 TCP_SOCKET hTCP,
 ROM BYTE* Data
);

Returns

Pointer to the byte following the last byte written to the socket. If this pointer does not dereference to a NUL byte, the buffer
became full or the socket is not connected.

Description

Writes a null-terminated string from ROM to a TCP socket. The null-terminator is not copied to the socket.

Remarks

The return value of this function differs from that of TCPPutArray (see page 455). To write long strings in a single state,
initialize the *data pointer to the first byte, then call this function repeatedly (breaking to the main stack loop after each call)
until the return value dereferences to a NUL byte. Save the return value as the new starting *data pointer otherwise.

This function is aliased to TCPPutString (see page 457) on non-PIC18 platforms.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to which data is to be written.

data Pointer to the string to be written.

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

456

10.18.1.42 TCPPutString Function
File

TCP.h

C

BYTE* TCPPutString(
 TCP_SOCKET hTCP,
 BYTE* Data
);

Returns

Pointer to the byte following the last byte written to the socket. If this pointer does not dereference to a NUL byte, the buffer
became full or the socket is not connected.

Description

Writes a null-terminated string from RAM to a TCP socket. The null-terminator is not copied to the socket.

Remarks

The return value of this function differs from that of TCPPutArray (see page 455). To write long strings in a single state,
initialize the *data pointer to the first byte, then call this function repeatedly (breaking to the main stack loop after each call)
until the return value dereferences to a NUL byte. Save the return value as the new starting *data pointer otherwise.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to which data is to be written.

data Pointer to the string to be written.

10.18.1.43 TCPRAMCopy Function
File

TCP.c

C

static void TCPRAMCopy(
 PTR_BASE wDest,
 BYTE vDestType,
 PTR_BASE wSource,
 BYTE vSourceType,
 WORD wLength
);

Returns

None

Description

This function copies data between memory mediums (PIC RAM, SPI RAM, and Ethernet buffer RAM).

Remarks

Copying to a destination region that overlaps with the source address is supported only if the destination start address is at a
lower memory address (closer to 0x0000) than the source pointer. However, if they do overlap there must be at least 4 bytes
of non-overlap to ensure correct results due to hardware DMA requirements.

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

457

Preconditions

TCP is initialized.

Parameters

Parameters Description

ptrDest Address (see page 142) to write to

vDestType Destination meidum (TCP_PIC_RAM, TCP_ETH_RAM, TCP_SPI_RAM)

ptrSource Address (see page 142) to copy from

vSourceType Source medium (TCP_PIC_RAM, TCP_ETH_RAM, or TCP_SPI_RAM)

wLength Number of bytes to copy

Section

Function Prototypes

10.18.1.44 TCPRAMCopyROM Function
File

TCP.c

C

static void TCPRAMCopyROM(
 PTR_BASE wDest,
 BYTE wDestType,
 ROM BYTE* wSource,
 WORD wLength
);

Returns

None

Description

This function copies data between memory mediums (PIC RAM, SPI RAM, and Ethernet buffer RAM). This function is to be
used when copying from ROM.

Remarks

Copying to a destination region that overlaps with the source address is supported only if the destination start address is at a
lower memory address (closer to 0x0000) than the source pointer.

This function is aliased to TCPRAMCopy (see page 457) on non-PIC18 platforms.

Preconditions

TCP is initialized.

Parameters

Parameters Description

wDest Address (see page 142) to write to

wDestType Destination meidum (TCP_PIC_RAM, TCP_ETH_RAM, TCP_SPI_RAM)

wSource Address (see page 142) to copy from

wLength Number of bytes to copy

10.18.1.45 TCPWasReset Function
File

TCP.h

10.18 TCP Microchip TCP/IP Stack Help TCP Public Members

458

C

BOOL TCPWasReset(
 TCP_SOCKET hTCP
);

Description

This function is a self-clearing semaphore indicating whether or not a socket has been disconnected since the previous call.
This function works for all possible disconnections: a call to TCPDisconnect (see page 443), a FIN from the remote node,
or an acknowledgement timeout caused by the loss of a network link. It also returns TRUE after the first call to TCPInit (
see page 464). Applications should use this function to reset their state machines.

This function was added due to the possibility of an error when relying on TCPIsConnected (see page 450) returing
FALSE to check for a condition requiring a state machine reset. If a socket is closed (due to a FIN ACK) and then
immediately reopened (due to a the arrival of a new SYN) in the same cycle of the stack, calls to TCPIsConnected (see
page 450) by the application will never return FALSE even though the socket has been disconnected. This can cause errors
for protocols such as HTTP in which a client will immediately open a new connection upon closing of a prior one. Relying on
this function instead allows applications to trap those conditions and properly reset their internal state for the new connection.

Preconditions

TCP is initialized.

Parameters

Parameters Description

hTCP The socket to check.

Return Values

Return Values Description

TRUE The socket has been disconnected since the previous call.

FALSE The socket has not been disconnected since the previous call.

10.18.2 TCP Stack Members

Enumerations

Name Description

TCP_STATE (see page
463)

TCP States as defined by RFC 793

Functions

Name Description

TCPInit (see page 464) Initializes the TCP module.

TCPProcess (see page
464)

Handles incoming TCP segments.

TCPTick (see page 465) Performs periodic TCP tasks.

TCPSSLDecryptMAC (see
page 465)

Decrypts and MACs data arriving via SSL.

TCPStartSSLClientEx (see
page 466)

Begins an SSL client session.

Module

TCP (see page 435)

10.18 TCP Microchip TCP/IP Stack Help TCP Stack Members

459

Structures

Name Description

SOCKET_INFO (see page
460)

Information about a socket

TCB (see page 460) Remainder of TCP Control Block data. The rest of the TCB is stored in Ethernet
buffer RAM or elsewhere as defined by vMemoryMedium. Current size is 41
(PIC18), 42 (PIC24/dsPIC), or 48 bytes (PIC32)

TCB_STUB (see page 461) TCP Control Block (TCB) stub data storage. Stubs are stored in local PIC RAM
for speed. Current size is 34 bytes (PIC18), 36 bytes (PIC24/dsPIC), or 56
(PIC32)

Types

Name Description

TCP_SOCKET (see page
463)

A TCP_SOCKET is stored as a single BYTE

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.18.2.1 SOCKET_INFO Structure
File

TCP.h

C

typedef struct {
 NODE_INFO remote;
 WORD_VAL remotePort;
} SOCKET_INFO;

Members

Members Description

NODE_INFO remote; NODE_INFO structure for remote node

WORD_VAL remotePort; Port number associated with remote node

Description

Information about a socket

10.18.2.2 TCB Structure
File

TCP.h

C

typedef struct {
 DWORD retryInterval;
 DWORD MySEQ;
 DWORD RemoteSEQ;
 PTR_BASE txUnackedTail;
 WORD_VAL remotePort;
 WORD_VAL localPort;
 WORD remoteWindow;
 WORD wFutureDataSize;
 union {
 NODE_INFO niRemoteMACIP;

10.18 TCP Microchip TCP/IP Stack Help TCP Stack Members

460

 DWORD dwRemoteHost;
 } remote;
 SHORT sHoleSize;
 struct {
 unsigned char bFINSent : 1;
 unsigned char bSYNSent : 1;
 unsigned char bRemoteHostIsROM : 1;
 unsigned char bRXNoneACKed1 : 1;
 unsigned char bRXNoneACKed2 : 1;
 unsigned char filler : 3;
 } flags;
 WORD wRemoteMSS;
 WORD_VAL localSSLPort;
 BYTE retryCount;
 BYTE vSocketPurpose;
} TCB;

Members

Members Description

DWORD retryInterval; How long to wait before retrying transmission

DWORD MySEQ; Local sequence number

DWORD RemoteSEQ; Remote sequence number

PTR_BASE txUnackedTail; TX tail pointer for data that is not yet acked

WORD_VAL remotePort; Remote port number

WORD_VAL localPort; Local port number

WORD remoteWindow; Remote window size

WORD wFutureDataSize; How much out-of-order data has been received

NODE_INFO niRemoteMACIP; 10 bytes for MAC and IP address

DWORD dwRemoteHost; RAM or ROM pointer to a hostname string (ex: "www.microchip.com")

SHORT sHoleSize; Size of the hole, or -1 for none exists. (0 indicates hole has just been filled)

unsigned char bFINSent : 1; A FIN has been sent

unsigned char bSYNSent : 1; A SYN has been sent

unsigned char bRemoteHostIsROM : 1; Remote host is stored in ROM

unsigned char bRXNoneACKed1 : 1; A duplicate ACK was likely received

unsigned char bRXNoneACKed2 : 1; A second duplicate ACK was likely received

unsigned char filler : 3; future use

WORD wRemoteMSS; Maximum Segment Size option advirtised by the remote node during initial
handshaking

WORD_VAL localSSLPort; Local SSL port number (for listening sockets)

BYTE retryCount; Counter for transmission retries

BYTE vSocketPurpose; Purpose of socket (as defined in TCPIPConfig.h)

Description

Remainder of TCP Control Block data. The rest of the TCB is stored in Ethernet buffer RAM or elsewhere as defined by
vMemoryMedium. Current size is 41 (PIC18), 42 (PIC24/dsPIC), or 48 bytes (PIC32)

10.18.2.3 TCB_STUB Structure
File

TCP.h

C

typedef struct {
 PTR_BASE bufferTxStart;
 PTR_BASE bufferRxStart;
 PTR_BASE bufferEnd;

10.18 TCP Microchip TCP/IP Stack Help TCP Stack Members

461

 PTR_BASE txHead;
 PTR_BASE txTail;
 PTR_BASE rxHead;
 PTR_BASE rxTail;
 DWORD eventTime;
 WORD eventTime2;
 union {
 WORD delayedACKTime;
 WORD closeWaitTime;
 } OverlappedTimers;
 TCP_STATE smState;
 struct {
 unsigned char vUnackedKeepalives : 3;
 unsigned char bServer : 1;
 unsigned char bTimerEnabled : 1;
 unsigned char bTimer2Enabled : 1;
 unsigned char bDelayedACKTimerEnabled : 1;
 unsigned char bOneSegmentReceived : 1;
 unsigned char bHalfFullFlush : 1;
 unsigned char bTXASAP : 1;
 unsigned char bTXASAPWithoutTimerReset : 1;
 unsigned char bTXFIN : 1;
 unsigned char bSocketReset : 1;
 unsigned char bSSLHandshaking : 1;
 unsigned char filler : 2;
 } Flags;
 WORD_VAL remoteHash;
 PTR_BASE sslTxHead;
 PTR_BASE sslRxHead;
 BYTE sslStubID;
 BYTE sslReqMessage;
 BYTE vMemoryMedium;
} TCB_STUB;

Members

Members Description

PTR_BASE bufferTxStart; First byte of TX buffer

PTR_BASE bufferRxStart; First byte of RX buffer. TX buffer ends 1 byte prior

PTR_BASE bufferEnd; Last byte of RX buffer

PTR_BASE txHead; Head pointer for TX

PTR_BASE txTail; Tail pointer for TX

PTR_BASE rxHead; Head pointer for RX

PTR_BASE rxTail; Tail pointer for RX

DWORD eventTime; Packet retransmissions, state changes

WORD eventTime2; Window updates, automatic transmission

WORD delayedACKTime; Delayed Acknowledgement timer

WORD closeWaitTime; TCP_CLOSE_WAIT timeout timer

TCP_STATE smState; State of this socket

unsigned char vUnackedKeepalives : 3; Count of how many keepalives have been sent with no response

unsigned char bServer : 1; Socket should return to listening state when closed

unsigned char bTimerEnabled : 1; Timer is enabled

unsigned char bTimer2Enabled : 1; Second timer is enabled

unsigned char
bDelayedACKTimerEnabled : 1;

DelayedACK timer is enabled

unsigned char bOneSegmentReceived : 1; A segment has been received

unsigned char bHalfFullFlush : 1; Flush is for being half full

unsigned char bTXASAP : 1; Transmit as soon as possible (for Flush)

unsigned char
bTXASAPWithoutTimerReset : 1;

Transmit as soon as possible (for Flush), but do not reset retransmission timers

unsigned char bTXFIN : 1; FIN needs to be transmitted

10.18 TCP Microchip TCP/IP Stack Help TCP Stack Members

462

unsigned char bSocketReset : 1; Socket has been reset (self-clearing semaphore)

unsigned char bSSLHandshaking : 1; Socket is in an SSL handshake

unsigned char filler : 2; Future expansion

WORD_VAL remoteHash; Consists of remoteIP, remotePort, localPort for connected sockets. It is a
localPort number only for listening server sockets.

PTR_BASE sslTxHead; Position of data being written in next SSL application record Also serves as
cache of localSSLPort when smState = TCP_LISTENING

PTR_BASE sslRxHead; Position of incoming data not yet handled by SSL

BYTE sslStubID; Which sslStub (see page 428) is associated with this connection

BYTE sslReqMessage; Currently requested SSL message

BYTE vMemoryMedium; Which memory medium the TCB is actually stored

Description

TCP Control Block (TCB) stub data storage. Stubs are stored in local PIC RAM for speed. Current size is 34 bytes (PIC18),
36 bytes (PIC24/dsPIC), or 56 (PIC32)

10.18.2.4 TCP_SOCKET Type
File

TCP.h

C

typedef BYTE TCP_SOCKET;

Description

A TCP_SOCKET is stored as a single BYTE

10.18.2.5 TCP_STATE Enumeration
File

TCP.h

C

typedef enum {
 TCP_GET_DNS_MODULE,
 TCP_DNS_RESOLVE,
 TCP_GATEWAY_SEND_ARP,
 TCP_GATEWAY_GET_ARP,
 TCP_LISTEN,
 TCP_SYN_SENT,
 TCP_SYN_RECEIVED,
 TCP_ESTABLISHED,
 TCP_FIN_WAIT_1,
 TCP_FIN_WAIT_2,
 TCP_CLOSING,
 TCP_CLOSE_WAIT,
 TCP_LAST_ACK,
 TCP_CLOSED,
 TCP_CLOSED_BUT_RESERVED
} TCP_STATE;

Members

Members Description

TCP_GET_DNS_MODULE Special state for TCP client mode sockets

TCP_DNS_RESOLVE Special state for TCP client mode sockets

TCP_GATEWAY_SEND_ARP Special state for TCP client mode sockets

10.18 TCP Microchip TCP/IP Stack Help TCP Stack Members

463

TCP_GATEWAY_GET_ARP Special state for TCP client mode sockets

TCP_LISTEN Socket is listening for connections

TCP_SYN_SENT A SYN has been sent, awaiting an SYN+ACK

TCP_SYN_RECEIVED A SYN has been received, awaiting an ACK

TCP_ESTABLISHED Socket is connected and connection is established

TCP_FIN_WAIT_1 FIN WAIT state 1

TCP_FIN_WAIT_2 FIN WAIT state 2

TCP_CLOSING Socket is closing TCP_TIME_WAIT, state is not implemented

TCP_CLOSE_WAIT Waiting to close the socket

TCP_LAST_ACK The final ACK has been sent

TCP_CLOSED Socket is idle and unallocated

TCP_CLOSED_BUT_RESERVED Special state for TCP client mode sockets. Socket is idle, but still allocated
pending application closure of the handle.

Description

TCP States as defined by RFC 793

10.18.2.6 TCPInit Function
File

TCP.h

C

void TCPInit();

Returns

None

Description

Initializes the TCP module. This function sets up the TCP buffers in memory and initializes each socket to the CLOSED
state. If insufficient memory was allocated for the TCP sockets, the function will hang here to be captured by the debugger.

Remarks

This function is called only one during lifetime of the application.

Preconditions

None

Section

Function Declarations

10.18.2.7 TCPProcess Function
File

TCP.h

C

BOOL TCPProcess(
 NODE_INFO* remote,
 IP_ADDR* localIP,
 WORD len
);

10.18 TCP Microchip TCP/IP Stack Help TCP Stack Members

464

Description

This function handles incoming TCP segments. When a segment arrives, it is compared to open sockets using a hash of the
remote port and IP. On a match, the data is passed to HandleTCPSeg (see page 470) for further processing.

Preconditions

TCP is initialized and a TCP segment is ready in the MAC buffer.

Parameters

Parameters Description

remote Remote NODE_INFO structure

localIP This stack's IP address (for header checking)

len Total length of the waiting TCP segment

Return Values

Return Values Description

TRUE the segment was properly handled.

FALSE otherwise

10.18.2.8 TCPTick Function
File

TCP.h

C

void TCPTick();

Returns

None

Description

This function performs any required periodic TCP tasks. Each socket's state machine is checked, and any elapsed timeout
periods are handled.

Preconditions

TCP is initialized.

10.18.2.9 TCPSSLDecryptMAC Function
File

TCP.h

C

void TCPSSLDecryptMAC(
 TCP_SOCKET hTCP,
 ARCFOUR_CTX* ctx,
 WORD len
);

Returns

None

Description

This function decrypts data in the TCP buffer and calculates the MAC over the data. All data is left in the exact same location
in the TCP buffer. It is called to help process incoming SSL records.

10.18 TCP Microchip TCP/IP Stack Help TCP Stack Members

465

Remarks

This function should never be called by an application. It is used only by the SSL module itself.

Preconditions

TCP is initialized, hTCP is connected, and ctx's Sbox is loaded.

Parameters

Parameters Description

hTCP TCP connection to decrypt in

ctx ARCFOUR encryption context to use

len Number of bytes to crypt

inPlace TRUE to write back in place, FALSE to write at end of currently visible data.

10.18.2.10 TCPStartSSLClientEx Function
File

TCP.h

C

BOOL TCPStartSSLClientEx(
 TCP_SOCKET hTCP,
 BYTE* host,
 void * buffer,
 BYTE suppDataType
);

Description

This function escalates the current connection to an SSL secured connection by initiating an SSL client handshake.

Remarks

The host parameter is currently ignored and is not validated.

Preconditions

TCP is initialized and hTCP is already connected.

Parameters

Parameters Description

hTCP TCP connection to secure

host Expected host name on certificate (currently ignored)

buffer Buffer for supplementary data return

suppDataType Type of supplementary data to copy

Return Values

Return Values Description

TRUE an SSL connection was initiated

FALSE Insufficient SSL resources (stubs) were available

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

466

10.18.3 TCP Internal Members

Functions

Name Description

CloseSocket (see page
469)

Closes a TCP socket.

FindMatchingSocket (see
page 469)

Finds a suitable socket for a TCP segment.

HandleTCPSeg (see page
470)

Processes an incoming TCP segment.

SendTCP (see page 472) Transmits a TPC segment.

SwapTCPHeader (see
page 473)

Swaps endian-ness of a TCP header.

SyncTCB (see page 474) Flushes MyTCB cache and loads up the specified TCB. Does nothing on cache
hit.

Macros

Name Description

ACK (see page 469) Acknowledge Flag as defined in RFC

FIN (see page 469) FIN Flag as defined in RFC

LOCAL_PORT_END_NUMBER (see
page 471)

End port for client sockets

LOCAL_PORT_START_NUMBER (see
page 471)

Starting port for client sockets

PSH (see page 472) Push Flag as defined in RFC

RST (see page 472) Reset Flag as defined in RFC

SENDTCP_KEEP_ALIVE (see page
473)

Instead of transmitting normal data, a garbage octet is transmitted
according to RFC 1122 section 4.2.3.6

SENDTCP_RESET_TIMERS (see page
473)

Indicates if this packet is a retransmission (no reset) or a new
packet (reset required)

SYN (see page 473) SYN Flag as defined in RFC

SyncTCBStub (see page 474) Flushes MyTCBStub (see page 471) cache and loads up the
specified TCB_STUB (see page 461). Does nothing on cache
hit.

TCP_AUTO_TRANSMIT_TIMEOUT_VAL
(see page 475)

Timeout before automatically transmitting unflushed data

TCP_WINDOW_UPDATE_TIMEOUT_VAL
(see page 475)

Timeout before automatically transmitting a window update due to
a TCPGet (see page 447)() or TCPGetArray (see page 448)()
function call

TCP_CLOSE_WAIT_TIMEOUT (see
page 475)

Timeout for the CLOSE_WAIT state

TCP_DELAYED_ACK_TIMEOUT (see
page 475)

Timeout for delayed-acknowledgement algorithm

TCP_FIN_WAIT_2_TIMEOUT (see
page 476)

Timeout for FIN WAIT 2 state

TCP_KEEP_ALIVE_TIMEOUT (see
page 477)

Timeout for keep-alive messages when no traffic is sent

TCP_MAX_RETRIES (see page 477) Maximum number of retransmission attempts

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

467

TCP_MAX_SEG_SIZE_RX (see page
477)

TCP Maximum Segment Size for RX. This value is advirtised
during connection establishment and the remote node should
obey it. This should be set to 536 to avoid IP layer fragmentation
from causing packet loss. However, raising its value can enhance
performance at the (small) risk of introducing incompatibility with
certain special remote nodes (ex: ones connected via a slow dial
up modem).

TCP_MAX_SEG_SIZE_TX (see page
478)

TCP Maximum Segment Size for TX. The TX maximum segment
size is actually govered by the remote node's MSS option
advirtised during connection establishment. However, if the
remote node specifies an unhandlably large MSS (ex: > Ethernet
MTU), this define sets a hard limit so that we don't cause any TX
buffer overflows. If the remote node does not advirtise a MSS
option, all TX segments are fixed at 536 bytes maximum.

TCP_MAX_SYN_RETRIES (see page
478)

Smaller than all other retries to reduce SYN flood DoS duration

TCP_MAX_UNACKED_KEEP_ALIVES (
see page 478)

Maximum number of keep-alive messages that can be sent
without receiving a response before automatically closing the
connection

TCP_OPTIMIZE_FOR_SIZE (see page
478)

For smallest size and best throughput,
TCP_OPTIMIZE_FOR_SIZE should always be enabled on
PIC24/dsPIC products. On PIC32 products there is very little
difference and depnds on compiler optimization level

TCP_OPTIONS_END_OF_LIST (see
page 479)

End of List TCP Option Flag

TCP_OPTIONS_MAX_SEG_SIZE (see
page 479)

Maximum segment size TCP flag

TCP_OPTIONS_NO_OP (see page 479) No Op TCP Option

TCP_SOCKET_COUNT (see page 480) Determines the number of defined TCP sockets

TCP_START_TIMEOUT_VAL (see
page 480)

Timeout to retransmit unacked data

TCP_SYN_QUEUE_MAX_ENTRIES (
see page 481)

Number of TCP RX SYN packets to save if they cannot be
serviced immediately

TCP_SYN_QUEUE_TIMEOUT (see
page 481)

Timeout for when SYN queue entries are deleted if unserviceable

URG (see page 481) Urgent Flag as defined in RFC

Module

TCP (see page 435)

Structures

Name Description

TCP_HEADER (see page
476)

TCP Header Data Structure

TCP_OPTIONS (see page
479)

TCP Options data structure

TCP_SYN_QUEUE (see
page 480)

Structure containing all the important elements of an incomming SYN packet in
order to establish a connection at a future time if all sockets on the listening port
are already connected to someone

Variables

Name Description

hCurrentTCP (see page
470)

Current TCP socket

MyTCB (see page 471) Currently loaded TCB

MyTCBStub (see page 471) Alias to current TCP stub.

SYNQueue (see page 474) Array of saved incoming SYN requests that need to be serviced later

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

468

TCBStubs (see page 474) This is variable TCBStubs.

Description

The following functions and variables are designated as internal to the TCP module.

10.18.3.1 ACK Macro
File

TCP.c

C

#define ACK (0x10) // Acknowledge Flag as defined in RFC

Description

Acknowledge Flag as defined in RFC

10.18.3.2 CloseSocket Function
File

TCP.c

C

static void CloseSocket();

Returns

None

Description

This function closes a TCP socket. All socket state information is reset, and any buffered bytes are discarded. The socket is
no longer accessible by the application after this point.

Preconditions

The TCPStub corresponding to the socket to be closed is synced.

10.18.3.3 FIN Macro
File

TCP.c

C

#define FIN (0x01) // FIN Flag as defined in RFC

Description

FIN Flag as defined in RFC

10.18.3.4 FindMatchingSocket Function
File

TCP.c

C

static BOOL FindMatchingSocket(

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

469

 TCP_HEADER* h,
 NODE_INFO* remote
);

Description

This function searches through the sockets and attempts to match one with a given TCP header and NODE_INFO structure.
If a socket is found, its index is saved in hCurrentTCP (see page 470) and the associated MyTCBStub (see page 471)
and MyTCB are loaded. Otherwise, INVALID_SOCKET (see page 438) is placed in hCurrentTCP (see page 470).

Preconditions

TCP is initialized.

Parameters

Parameters Description

h TCP header to be matched against

remote The remote node who sent this header

Return Values

Return Values Description

TRUE A match was found and is loaded in hCurrentTCP (see page 470)

FALSE No suitable socket was found and hCurrentTCP (see page 470) is
INVALID_SOCKET (see page 438)

10.18.3.5 HandleTCPSeg Function
File

TCP.c

C

static void HandleTCPSeg(
 TCP_HEADER* h,
 WORD len
);

Returns

None

Description

Once an incoming segment has been matched to a socket, this function performs the necessary processing with the data.
Depending on the segment and the state, this may include copying data to the TCP buffer, re-assembling out-of order
packets, continuing an initialization or closing handshake, or closing the socket altogether.

Preconditions

TCP is initialized and the current TCP stub is already synced.

Parameters

Parameters Description

h The TCP header for this packet

len The total buffer length of this segment

10.18.3.6 hCurrentTCP Variable
File

TCP.c

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

470

C

TCP_SOCKET hCurrentTCP = INVALID_SOCKET;

Description

Current TCP socket

10.18.3.7 LOCAL_PORT_END_NUMBER Macro
File

TCP.c

C

#define LOCAL_PORT_END_NUMBER (5000u)

Description

End port for client sockets

10.18.3.8 LOCAL_PORT_START_NUMBER Macro
File

TCP.c

C

#define LOCAL_PORT_START_NUMBER (1024u)

Description

Starting port for client sockets

10.18.3.9 MyTCB Variable
File

TCP.c

C

TCB MyTCB;

Description

Currently loaded TCB

10.18.3.10 MyTCBStub Variable
File

TCP.c

C

TCB_STUB MyTCBStub;

Description

Alias to current TCP stub.

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

471

10.18.3.11 PSH Macro
File

TCP.c

C

#define PSH (0x08) // Push Flag as defined in RFC

Description

Push Flag as defined in RFC

10.18.3.12 RST Macro
File

TCP.c

C

#define RST (0x04) // Reset Flag as defined in RFC

Description

Reset Flag as defined in RFC

10.18.3.13 SendTCP Function
File

TCP.c

C

static void SendTCP(
 BYTE vTCPFlags,
 BYTE vSendFlags
);

Returns

None

Description

This function assembles and transmits a TCP segment, including any pending data. It also supports retransmissions,
keep-alives, and other packet types.

Preconditions

TCP is initialized.

Parameters

Parameters Description

vTCPFlags Additional TCP flags to include

vSendFlags Any combinations of SENDTCP_* constants to modify the transmit behavior or
contents.

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

472

10.18.3.14 SENDTCP_KEEP_ALIVE Macro
File

TCP.c

C

#define SENDTCP_KEEP_ALIVE 0x02

Description

Instead of transmitting normal data, a garbage octet is transmitted according to RFC 1122 section 4.2.3.6

10.18.3.15 SENDTCP_RESET_TIMERS Macro
File

TCP.c

C

#define SENDTCP_RESET_TIMERS 0x01

Description

Indicates if this packet is a retransmission (no reset) or a new packet (reset required)

10.18.3.16 SwapTCPHeader Function
File

TCP.c

C

static void SwapTCPHeader(
 TCP_HEADER* header
);

Returns

None

Description

This function swaps the endian-ness of a given TCP header for comparison.

Preconditions

None

Parameters

Parameters Description

header The TCP header that is to be swapped

10.18.3.17 SYN Macro
File

TCP.c

C

#define SYN (0x02) // SYN Flag as defined in RFC

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

473

Description

SYN Flag as defined in RFC

10.18.3.18 SyncTCB Function
File

TCP.c

C

static void SyncTCB();

Description

Flushes MyTCB cache and loads up the specified TCB. Does nothing on cache hit.

10.18.3.19 SyncTCBStub Macro
File

TCP.c

C

#define SyncTCBStub(a) hCurrentTCP = (a)

Description

Flushes MyTCBStub (see page 471) cache and loads up the specified TCB_STUB (see page 461). Does nothing on
cache hit.

10.18.3.20 SYNQueue Variable
File

TCP.c

C

TCP_SYN_QUEUE SYNQueue[TCP_SYN_QUEUE_MAX_ENTRIES];

Description

Array of saved incoming SYN requests that need to be serviced later

10.18.3.21 TCBStubs Variable
File

TCP.c

C

TCB_STUB TCBStubs[TCP_SOCKET_COUNT];

Description

This is variable TCBStubs.

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

474

10.18.3.22 TCP_AUTO_TRANSMIT_TIMEOUT_VAL Macro
File

TCP.c

C

#define TCP_AUTO_TRANSMIT_TIMEOUT_VAL (TICK_SECOND/25ull) // Timeout before
automatically transmitting unflushed data

Description

Timeout before automatically transmitting unflushed data

10.18.3.23 TCP_WINDOW_UPDATE_TIMEOUT_VAL Macro
File

TCP.c

C

#define TCP_WINDOW_UPDATE_TIMEOUT_VAL (TICK_SECOND/5ull) // Timeout before automatically
transmitting a window update due to a TCPGet() or TCPGetArray() function call

Description

Timeout before automatically transmitting a window update due to a TCPGet (see page 447)() or TCPGetArray (see
page 448)() function call

10.18.3.24 TCP_CLOSE_WAIT_TIMEOUT Macro
File

TCP.c

C

#define TCP_CLOSE_WAIT_TIMEOUT ((DWORD)TICK_SECOND/5) // Timeout for the CLOSE_WAIT state

Description

Timeout for the CLOSE_WAIT state

10.18.3.25 TCP_DELAYED_ACK_TIMEOUT Macro
File

TCP.c

C

#define TCP_DELAYED_ACK_TIMEOUT ((DWORD)TICK_SECOND/10) // Timeout for
delayed-acknowledgement algorithm

Description

Timeout for delayed-acknowledgement algorithm

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

475

10.18.3.26 TCP_FIN_WAIT_2_TIMEOUT Macro
File

TCP.c

C

#define TCP_FIN_WAIT_2_TIMEOUT ((DWORD)TICK_SECOND*5) // Timeout for FIN WAIT 2 state

Description

Timeout for FIN WAIT 2 state

10.18.3.27 TCP_HEADER Structure
File

TCP.c

C

typedef struct {
 WORD SourcePort;
 WORD DestPort;
 DWORD SeqNumber;
 DWORD AckNumber;
 struct {
 unsigned char Reserved3 : 4;
 unsigned char Val : 4;
 } DataOffset;
 union {
 struct {
 unsigned char flagFIN : 1;
 unsigned char flagSYN : 1;
 unsigned char flagRST : 1;
 unsigned char flagPSH : 1;
 unsigned char flagACK : 1;
 unsigned char flagURG : 1;
 unsigned char Reserved2 : 2;
 } bits;
 BYTE byte;
 } Flags;
 WORD Window;
 WORD Checksum;
 WORD UrgentPointer;
} TCP_HEADER;

Members

Members Description

WORD SourcePort; Local port number

WORD DestPort; Remote port number

DWORD SeqNumber; Local sequence number

DWORD AckNumber; Acknowledging remote sequence number

struct {
unsigned char Reserved3 : 4;
unsigned char Val : 4;
} DataOffset;

Data offset flags nibble

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

476

union {
struct {
unsigned char flagFIN : 1;
unsigned char flagSYN : 1;
unsigned char flagRST : 1;
unsigned char flagPSH : 1;
unsigned char flagACK : 1;
unsigned char flagURG : 1;
unsigned char Reserved2 : 2;
} bits;
BYTE byte;
} Flags;

TCP Flags as defined in RFC

WORD Window; Local free RX buffer window

WORD Checksum; Data payload checksum

WORD UrgentPointer; Urgent pointer

Description

TCP Header Data Structure

10.18.3.28 TCP_KEEP_ALIVE_TIMEOUT Macro
File

TCP.c

C

#define TCP_KEEP_ALIVE_TIMEOUT ((DWORD)TICK_SECOND*10) // Timeout for keep-alive
messages when no traffic is sent

Description

Timeout for keep-alive messages when no traffic is sent

10.18.3.29 TCP_MAX_RETRIES Macro
File

TCP.c

C

#define TCP_MAX_RETRIES (5u) // Maximum number of retransmission attempts

Description

Maximum number of retransmission attempts

10.18.3.30 TCP_MAX_SEG_SIZE_RX Macro
File

TCP.c

C

#define TCP_MAX_SEG_SIZE_RX (536u)

Description

TCP Maximum Segment Size for RX. This value is advirtised during connection establishment and the remote node should
obey it. This should be set to 536 to avoid IP layer fragmentation from causing packet loss. However, raising its value can

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

477

enhance performance at the (small) risk of introducing incompatibility with certain special remote nodes (ex: ones connected
via a slow dial up modem).

10.18.3.31 TCP_MAX_SEG_SIZE_TX Macro
File

TCP.c

C

#define TCP_MAX_SEG_SIZE_TX (1460u)

Description

TCP Maximum Segment Size for TX. The TX maximum segment size is actually govered by the remote node's MSS option
advirtised during connection establishment. However, if the remote node specifies an unhandlably large MSS (ex: > Ethernet
MTU), this define sets a hard limit so that we don't cause any TX buffer overflows. If the remote node does not advirtise a
MSS option, all TX segments are fixed at 536 bytes maximum.

10.18.3.32 TCP_MAX_SYN_RETRIES Macro
File

TCP.c

C

#define TCP_MAX_SYN_RETRIES (2u) // Smaller than all other retries to reduce SYN flood
DoS duration

Description

Smaller than all other retries to reduce SYN flood DoS duration

10.18.3.33 TCP_MAX_UNACKED_KEEP_ALIVES Macro
File

TCP.c

C

#define TCP_MAX_UNACKED_KEEP_ALIVES (6u) // Maximum number of keep-alive
messages that can be sent without receiving a response before automatically closing the
connection

Description

Maximum number of keep-alive messages that can be sent without receiving a response before automatically closing the
connection

10.18.3.34 TCP_OPTIMIZE_FOR_SIZE Macro
File

TCP.c

C

#define TCP_OPTIMIZE_FOR_SIZE

Description

For smallest size and best throughput, TCP_OPTIMIZE_FOR_SIZE should always be enabled on PIC24/dsPIC products.

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

478

On PIC32 products there is very little difference and depnds on compiler optimization level

10.18.3.35 TCP_OPTIONS Structure
File

TCP.c

C

typedef struct {
 BYTE Kind;
 BYTE Length;
 WORD_VAL MaxSegSize;
} TCP_OPTIONS;

Members

Members Description

BYTE Kind; Type of option

BYTE Length; Length

WORD_VAL MaxSegSize; Maximum segment size

Description

TCP Options data structure

10.18.3.36 TCP_OPTIONS_END_OF_LIST Macro
File

TCP.c

C

#define TCP_OPTIONS_END_OF_LIST (0x00u) // End of List TCP Option Flag

Description

End of List TCP Option Flag

10.18.3.37 TCP_OPTIONS_MAX_SEG_SIZE Macro
File

TCP.c

C

#define TCP_OPTIONS_MAX_SEG_SIZE (0x02u) // Maximum segment size TCP flag

Description

Maximum segment size TCP flag

10.18.3.38 TCP_OPTIONS_NO_OP Macro
File

TCP.c

C

#define TCP_OPTIONS_NO_OP (0x01u) // No Op TCP Option

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

479

Description

No Op TCP Option

10.18.3.39 TCP_SOCKET_COUNT Macro
File

TCP.c

C

#define TCP_SOCKET_COUNT (sizeof(TCPSocketInitializer)/sizeof(TCPSocketInitializer[0]))

Description

Determines the number of defined TCP sockets

10.18.3.40 TCP_START_TIMEOUT_VAL Macro
File

TCP.c

C

#define TCP_START_TIMEOUT_VAL ((DWORD)TICK_SECOND*1) // Timeout to retransmit unacked
data

Description

Timeout to retransmit unacked data

10.18.3.41 TCP_SYN_QUEUE Structure
File

TCP.c

C

typedef struct {
 NODE_INFO niSourceAddress;
 WORD wSourcePort;
 DWORD dwSourceSEQ;
 WORD wDestPort;
 WORD wTimestamp;
} TCP_SYN_QUEUE;

Members

Members Description

NODE_INFO niSourceAddress; Remote IP address and MAC address

WORD wSourcePort; Remote TCP port number that the response SYN needs to be sent to

DWORD dwSourceSEQ; Remote TCP SEQuence number that must be ACKnowledged when we send
our response SYN

WORD wDestPort; Local TCP port which the original SYN was destined for

WORD wTimestamp; Timer to expire old SYN packets that can't be serviced at all

Description

Structure containing all the important elements of an incomming SYN packet in order to establish a connection at a future
time if all sockets on the listening port are already connected to someone

10.18 TCP Microchip TCP/IP Stack Help TCP Internal Members

480

10.18.3.42 TCP_SYN_QUEUE_MAX_ENTRIES Macro
File

TCP.c

C

#define TCP_SYN_QUEUE_MAX_ENTRIES (3u) // Number of TCP RX SYN packets
to save if they cannot be serviced immediately

Description

Number of TCP RX SYN packets to save if they cannot be serviced immediately

10.18.3.43 TCP_SYN_QUEUE_TIMEOUT Macro
File

TCP.c

C

#define TCP_SYN_QUEUE_TIMEOUT ((DWORD)TICK_SECOND*3) // Timeout for when SYN queue
entries are deleted if unserviceable

Description

Timeout for when SYN queue entries are deleted if unserviceable

10.18.3.44 URG Macro
File

TCP.c

C

#define URG (0x20) // Urgent Flag as defined in RFC

Description

Urgent Flag as defined in RFC

10.18.4 Variables

Module

TCP (see page 435)

Variables

Name Description

NextPort (see page 481) Tracking variable for next local client port number

10.18.4.1 NextPort Variable
File

TCP.c

10.18 TCP Microchip TCP/IP Stack Help Variables

481

C

WORD NextPort;

Description

Tracking variable for next local client port number

10.19 Telnet
Telnet provides bidirectional, interactive communication between two nodes on the Internet or on a Local Area Network. The
Telnet code included with Microchip's TCP/IP stack is a demonstration of the structure of a Telnet application. This demo
begins by listening for a Telnet connection. When a client attempts to make one, the demo will prompt the client for a
username and password, and if the correct one is provided, will output and periodically refresh several values obtained from
the demo board.

There are several changes that you may need to make to Telnet.c and/or Telnet.h to suit your application. All of the
Telnet Public members can be re-defined in the application-specific section of TCPIPConfig.h. You may also wish to
change some of the Telnet Internal Member strings, located in Telnet.c, to more accurately reflect your application. You
will also need to modify the TelnetTask (see page 484) function to include the functionality you'd like. You may
insert or change states in TelnetTask (see page 484) as needed.

10.19.1 Telnet Public Members

Macros

Name Description

MAX_TELNET_CONNECTIONS
(see page 482)

Number of simultaneously allowed Telnet (see page 482) sessions. Note
that you must have an equal number of TCP_PURPOSE_TELNET type TCP
sockets declared in the TCPSocketInitializer[] array above for multiple
connections to work. If fewer sockets are available than this definition, then
the the lesser of the two quantities will be the actual limit.

TELNET_PASSWORD (see
page 483)

Default Telnet (see page 482) password

TELNET_PORT (see page
483)

Default local listening port for the Telnet (see page 482) server. Port 23 is
the protocol default.

TELNETS_PORT (see page
483)

Default local listening port for the Telnet (see page 482) server when SSL
secured. Port 992 is the telnets protocol default.

TELNET_USERNAME (see
page 483)

Default username and password required to login to the Telnet (see page
482) server.

Module

Telnet (see page 482)

Description

The following functions and variables are available to the stack application.

10.19.1.1 MAX_TELNET_CONNECTIONS Macro
File

TCPIP MRF24WB.h

10.19 Telnet Microchip TCP/IP Stack Help Telnet Public Members

482

C

#define MAX_TELNET_CONNECTIONS (1u)

Description

Number of simultaneously allowed Telnet (see page 482) sessions. Note that you must have an equal number of
TCP_PURPOSE_TELNET type TCP sockets declared in the TCPSocketInitializer[] array above for multiple connections to
work. If fewer sockets are available than this definition, then the the lesser of the two quantities will be the actual limit.

10.19.1.2 TELNET_PASSWORD Macro
File

TCPIP MRF24WB.h

C

#define TELNET_PASSWORD "microchip"

Description

Default Telnet (see page 482) password

10.19.1.3 TELNET_PORT Macro
File

TCPIP MRF24WB.h

C

#define TELNET_PORT 23

Description

Default local listening port for the Telnet (see page 482) server. Port 23 is the protocol default.

10.19.1.4 TELNETS_PORT Macro
File

TCPIP MRF24WB.h

C

#define TELNETS_PORT 992

Description

Default local listening port for the Telnet (see page 482) server when SSL secured. Port 992 is the telnets protocol default.

10.19.1.5 TELNET_USERNAME Macro
File

TCPIP MRF24WB.h

C

#define TELNET_USERNAME "admin"

Description

Default username and password required to login to the Telnet (see page 482) server.

10.19 Telnet Microchip TCP/IP Stack Help Telnet Stack Members

483

10.19.2 Telnet Stack Members

Functions

Name Description

TelnetTask (see page 484) Performs Telnet (see page 482) Server related tasks. Contains the Telnet (
see page 482) state machine and state tracking variables.

Module

Telnet (see page 482)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.19.2.1 TelnetTask Function
File

Telnet.h

C

void TelnetTask();

Side Effects

None

Returns

None

Description

Performs Telnet (see page 482) Server related tasks. Contains the Telnet (see page 482) state machine and state
tracking variables.

Remarks

None

Preconditions

Stack is initialized()

10.19.3 Telnet Internal Members

Module

Telnet (see page 482)

Variables

Name Description

strSpaces (see page 485) String with extra spaces, for Demo

strAuthenticated (see page
485)

Successful authentication message

strDisplay (see page 485) Demo output string

10.19 Telnet Microchip TCP/IP Stack Help Telnet Internal Members

484

strGoodBye (see page 485) Demo disconnection message

strPassword (see page
486)

DO Suppress Local Echo (stop telnet client from printing typed characters)
Access denied message

strTitle (see page 486) Demo title string

Description

The following functions and variables are designated as internal to the Telnet (see page 482) module.

10.19.3.1 strSpaces Variable
File

Telnet.c

C

ROM BYTE strSpaces[] = " ";

Description

String with extra spaces, for Demo

10.19.3.2 strAuthenticated Variable
File

Telnet.c

C

ROM BYTE strAuthenticated[] = "\r\nLogged in successfully\r\n\r\n" "\r\nPress 'q' to
quit\r\n";

Description

Successful authentication message

10.19.3.3 strDisplay Variable
File

Telnet.c

C

ROM BYTE strDisplay[] = "\r\nSNTP Time: (disabled)" "\r\nAnalog: 1023"
"\r\nButtons: 3 2 1 0" "\r\nLEDs: 7 6 5 4 3 2 1 0";

Description

Demo output string

10.19.3.4 strGoodBye Variable
File

Telnet.c

C

ROM BYTE strGoodBye[] = "\r\n\r\nGoodbye!\r\n";

10.19 Telnet Microchip TCP/IP Stack Help Telnet Internal Members

485

Description

Demo disconnection message

10.19.3.5 strPassword Variable
File

Telnet.c

C

ROM BYTE strPassword[] = "Password: \xff\xfd\x2d";

Description

DO Suppress Local Echo (stop telnet client from printing typed characters) Access denied message

10.19.3.6 strTitle Variable
File

Telnet.c

C

ROM BYTE strTitle[] = "\x1b[2J\x1b[31m\x1b[1m" "Microchip Telnet Server 1.1\x1b[0m\r\n"
"(for this demo, type 'admin' for the login and 'microchip' for the password.)\r\n" "Login:
";

Description

Demo title string

10.20 TFTP
The Trivial File Transfer Protocol provides unreliable upload and download services to applications connected to the
UDP-based TFTP server.

10.20 TFTP Microchip TCP/IP Stack Help

486

10.20.1 TFTP Public Members

Enumerations

Name Description

TFTP_ACCESS_ERROR (
see page 496)

Standard error codes as defined by TFTP spec. Use to decode value retuned
by TFTPGetError (see page 490)().

_TFTP_ACCESS_ERROR
(see page 496)

Standard error codes as defined by TFTP spec. Use to decode value retuned
by TFTPGetError (see page 490)().

TFTP_FILE_MODE (see
page 496)

File open mode as used by TFTPFileOpen().

_TFTP_FILE_MODE (see
page 496)

File open mode as used by TFTPFileOpen().

TFTP_RESULT (see page
497)

Enum. of results returned by most of the TFTP functions.

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

487

_TFTP_RESULT (see
page 497)

Enum. of results returned by most of the TFTP functions.

Functions

Name Description

TFTPCloseFile (see page 489) Sends file closing messages.

TFTPGet (see page 490) Gets a data byte from data that was read.

TFTPIsFileClosed (see page 491) Determines if the file was closed.

TFTPIsFileOpened (see page 491) Determines if file has been opened.

TFTPIsGetReady (see page 492) Determines if a data block is ready to be read.

TFTPIsOpened (see page 493) Determines if the TFTP connection is open.

TFTPIsPutReady (see page 493) Determines if data can be written to a file.

TFTPOpen (see page 494) Initializes TFTP module.

TFTPOpenFile (see page 495) Prepares and sends TFTP file name and mode packet.

TFTPOpenROMFile (see page 495) PIC18 ROM argument implementation of TFTPOpenFile (see
page 495)

TFTPPut (see page 496) Write a byte to a file.

TFTPGetUploadStatus (see page 497) Returns the TFTP file upload status started by calling the
TFTPUploadRAMFileToHost (see page 499)() or
TFTPUploadFragmentedRAMFileToHost (see page 498)()
functions.

TFTPUploadFragmentedRAMFileToHost
(see page 498)

Uploads an random, potentially non-contiguous, array of RAM bytes
as a file to a remote TFTP server.

TFTPUploadRAMFileToHost (see
page 499)

Uploads a contiguous array of RAM bytes as a file to a remote TFTP
server.

Macros

Name Description

TFTPClose (see page 489) Macro: void TFTPClose(void)
Closes TFTP client socket.

TFTPGetError (see page 490) Macro: WORD TFTPGetError(void)
Returns previously saved error code.

TFTPIsFileOpenReady (see page 492) Macro: BOOL TFTPIsFileOpenReady(void)
Checks to see if it is okay to send TFTP file open request to
remote server.

TFTP_UPLOAD_COMPLETE (see page
500)

Status codes for TFTPGetUploadStatus (see page 497)()
function. Zero means upload success, >0 means working and
<0 means fatal error.

TFTP_UPLOAD_CONNECT (see page 500) This is macro TFTP_UPLOAD_CONNECT.

TFTP_UPLOAD_CONNECT_TIMEOUT (
see page 500)

This is macro TFTP_UPLOAD_CONNECT_TIMEOUT.

TFTP_UPLOAD_GET_DNS (see page 500) This is macro TFTP_UPLOAD_GET_DNS.

TFTP_UPLOAD_HOST_RESOLVE_TIMEOUT
(see page 501)

This is macro TFTP_UPLOAD_HOST_RESOLVE_TIMEOUT.

TFTP_UPLOAD_RESOLVE_HOST (see
page 501)

This is macro TFTP_UPLOAD_RESOLVE_HOST.

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

488

TFTP_UPLOAD_SEND_DATA (see page
501)

This is macro TFTP_UPLOAD_SEND_DATA.

TFTP_UPLOAD_SEND_FILENAME (see
page 501)

This is macro TFTP_UPLOAD_SEND_FILENAME.

TFTP_UPLOAD_SERVER_ERROR (see
page 501)

This is macro TFTP_UPLOAD_SERVER_ERROR.

TFTP_UPLOAD_WAIT_FOR_CLOSURE (
see page 502)

This is macro TFTP_UPLOAD_WAIT_FOR_CLOSURE.

Module

TFTP (see page 486)

Structures

Name Description

TFTP_CHUNK_DESCRIPTOR
(see page 499)

This is type TFTP_CHUNK_DESCRIPTOR.

Description

The following functions and variables are available to the stack application.

10.20.1.1 TFTPClose Macro
File

TFTPc.h

C

#define TFTPClose(void) UDPClose(_tftpSocket)

Side Effects

None

Returns

None

Description

Macro: void TFTPClose(void)

Closes TFTP client socket.

Remarks

Once closed, application must do TFTPOpen (see page 494) to perform any new TFTP operations.

If TFTP server does not change during application life-time, one may not need to call TFTPClose and keep TFTP socket
open.

Preconditions

TFTPOpen (see page 494) is already called and TFTPIsOpened (see page 493)() returned TFTP_OK.

10.20.1.2 TFTPCloseFile Function
File

TFTPc.h

C

void TFTPCloseFile();

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

489

Side Effects

None

Returns

None

Description

If file is opened in read mode, it makes sure that last ACK is sent to server If file is opened in write mode, it makes sure that
last block is sent out to server and waits for server to respond with ACK.

Remarks

TFTPIsFileClosed (see page 491)() must be called to confirm if file was really closed.

Preconditions

TFTPOpenFile (see page 495)() was called and TFTPIsFileOpened (see page 491)() had returned with TFTP_OK.

10.20.1.3 TFTPGet Function
File

TFTPc.h

C

BYTE TFTPGet();

Side Effects

None

Returns

data byte as received from remote server.

Description

Fetches next data byte from TFTP socket. If end of data block is reached, it issues ack to server so that next data block can
be received.

Remarks

Use this function to read file from server.

Preconditions

TFTPOpenFile (see page 495)() is called with TFTP_FILE_MODE_READ and TFTPIsGetReady (see page 492)() =
TRUE

10.20.1.4 TFTPGetError Macro
File

TFTPc.h

C

#define TFTPGetError (_tftpError)

Side Effects

None

Returns

Error code as returned by remote server. Application may use TFTP_ACCESS_ERROR (see page 496) enum. to decode
standard error code.

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

490

Description

Macro: WORD TFTPGetError(void)

Returns previously saved error code.

Remarks

None

Preconditions

One of the TFTP function returned with TFTP_ERROR result.

10.20.1.5 TFTPIsFileClosed Function
File

TFTPc.h

C

TFTP_RESULT TFTPIsFileClosed();

Side Effects

None

Returns

TFTP_OK if file was successfully closdd

TFTP_RETRY if file mode was Write and remote server did not receive last packet. Application must retry with last block.

TFTP_TIMEOUT if all attempts were exhausted in closing file.

TFTP_ERROR if remote server sent an error in response to last block. Actual error code may be read by calling
TFTPGetError (see page 490)()

TFTP_NOT_READY if file is not closed yet.

Description

If file mode is Read, it simply makes that last block is acknowledged. If file mode is Write, it waits for server ack. If no ack
was received within specified timeout instructs appliaction to resend last block. It keeps track of retries and declares timeout
all attempts were exhausted.

Remarks

None

Preconditions

TFTPCloseFile (see page 489)() is already called.

10.20.1.6 TFTPIsFileOpened Function
File

TFTPc.h

C

TFTP_RESULT TFTPIsFileOpened();

Side Effects

None

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

491

Returns

TFTP_OK if file is ready to be read or written

TFTP_RETRY if previous attempt was timed out needs to be retried.

TFTP_TIMEOUT if all attempts were exhausted.

TFTP_ERROR if remote server responded with error

TFTP_NOT_READY if file is not yet opened.

Description

Waits for remote server response regarding previous attempt to open file. If no response is received within specified timeout,
fnction returns with TFTP_RETRY and application logic must issue another TFTPFileOpen().

Remarks

None

Preconditions

TFTPOpenFile (see page 495)() is called.

10.20.1.7 TFTPIsFileOpenReady Macro
File

TFTPc.h

C

#define TFTPIsFileOpenReady UDPIsPutReady(_tftpSocket)

Side Effects

None

Returns

TRUE, if it is ok to call TFTPOpenFile (see page 495)() FALSE, if otherwise.

Description

Macro: BOOL TFTPIsFileOpenReady(void)

Checks to see if it is okay to send TFTP file open request to remote server.

Remarks

None

Preconditions

TFTPOpen (see page 494) is already called and TFTPIsOpened (see page 493)() returned TFTP_OK.

10.20.1.8 TFTPIsGetReady Function
File

TFTPc.h

C

TFTP_RESULT TFTPIsGetReady();

Side Effects

None

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

492

Returns

TFTP_OK if it there is more data byte available to read

TFTP_TIMEOUT if timeout occurred waiting for new data.

TFTP_END_OF_FILE if end of file has reached.

TFTP_ERROR if remote server returned ERROR. Actual error code may be read by calling TFTPGetError (see page
490)()

TFTP_NOT_READY if still waiting for new data.

Description

Waits for data block. If data block does not arrive within specified timeout, it automatically sends out ack for previous block to
remind server to send next data block. If all attempts are exhausted, it returns with TFTP_TIMEOUT.

Remarks

By default, this funciton uses "octet" or binary mode of file transfer.

Preconditions

TFTPOpenFile (see page 495)() is called with TFTP_FILE_MODE_READ and TFTPIsFileOpened (see page 491)()
returned with TRUE.

10.20.1.9 TFTPIsOpened Function
File

TFTPc.h

C

TFTP_RESULT TFTPIsOpened();

Side Effects

None

Returns

TFTP_OK if previous call to TFTPOpen (see page 494) is complete

TFTP_TIMEOUT if remote host did not respond to previous ARP request.

TFTP_NOT_READY if remote has still not responded and timeout has not expired.

Description

Waits for ARP reply and opens a UDP socket to perform further TFTP operations.

Remarks

Once opened, application may keep TFTP socket open and future TFTP operations. If TFTPClose (see page 489)() is
called to close the connection TFTPOpen (see page 494)() must be called again before performing any other TFTP
operations.

Preconditions

TFTPOpen (see page 494)() is already called.

10.20.1.10 TFTPIsPutReady Function
File

TFTPc.h

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

493

C

TFTP_RESULT TFTPIsPutReady();

Side Effects

None

Returns

TFTP_OK if it is okay to write more data byte.

TFTP_TIMEOUT if timeout occurred waiting for ack from server

TFTP_RETRY if all server did not send ack on time and application needs to resend last block.

TFTP_ERROR if remote server returned ERROR. Actual error code may be read by calling TFTPGetError (see page
490)()

TFTP_NOT_READY if still waiting...

Description

Waits for ack from server. If ack does not arrive within specified timeout, it it instructs application to retry last block by
returning TFTP_RETRY.

If all attempts are exhausted, it returns with TFTP_TIMEOUT.

Remarks

None

Preconditions

TFTPOpenFile (see page 495)() is called with TFTP_FILE_MODE_WRITE and TFTPIsFileOpened (see page 491)()
returned with TRUE.

10.20.1.11 TFTPOpen Function
File

TFTPc.h

C

void TFTPOpen(
 IP_ADDR * host
);

Side Effects

None

Returns

None

Description

Initiates ARP for given host and prepares TFTP module for next sequence of function calls.

Remarks

Use TFTPIsOpened (see page 493)() to check if a connection was successfully opened or not.

Preconditions

UDP module is already initialized and at least one UDP socket is available.

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

494

Parameters

Parameters Description

host IP address of remote TFTP server

10.20.1.12 TFTPOpenFile Function
File

TFTPc.h

C

void TFTPOpenFile(
 BYTE * fileName,
 TFTP_FILE_MODE mode
);

Side Effects

None

Returns

None

Description

Prepares and sends TFTP file name and mode packet.

Remarks

By default, this funciton uses "octet" or binary mode of file transfer. Use TFTPIsFileOpened (see page 491)() to check if
file is ready to be read or written.

Preconditions

TFPTIsFileOpenReady() = TRUE

Parameters

Parameters Description

fileName File name that is to be opened.

mode Mode of file access Must be TFTP_FILE_MODE_READ for read
TFTP_FILE_MODE_WRITE for write

10.20.1.13 TFTPOpenROMFile Function
File

TFTPc.h

C

void TFTPOpenROMFile(
 ROM BYTE * fileName,
 TFTP_FILE_MODE mode
);

Description

PIC18 ROM argument implementation of TFTPOpenFile (see page 495)

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

495

10.20.1.14 TFTPPut Function
File

TFTPc.h

C

void TFTPPut(
 BYTE c
);

Side Effects

None

Returns

None

Description

Puts given data byte into TFTP socket. If end of data block is reached, it transmits entire block.

Remarks

Use this function to write file to server.

Preconditions

TFTPOpenFile (see page 495)() is called with TFTP_FILE_MODE_WRITE and TFTPIsPutReady (see page 493)() =
TRUE

Parameters

Parameters Description

c Data byte that is to be written

10.20.1.15 TFTP_ACCESS_ERROR Enumeration
File

TFTPc.h

C

typedef enum _TFTP_ACCESS_ERROR {
 TFTP_ERROR_NOT_DEFINED = 0,
 TFTP_ERROR_FILE_NOT_FOUND,
 TFTP_ERROR_ACCESS_VIOLATION,
 TFTP_ERROR_DISK_FULL,
 TFTP_ERROR_INVALID_OPERATION,
 TFTP_ERROR_UNKNOWN_TID,
 TFTP_ERROR_FILE_EXISTS,
 TFTP_ERROR_NO_SUCH_USE
} TFTP_ACCESS_ERROR;

Description

Standard error codes as defined by TFTP spec. Use to decode value retuned by TFTPGetError (see page 490)().

10.20.1.16 TFTP_FILE_MODE Enumeration
File

TFTPc.h

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

496

C

typedef enum _TFTP_FILE_MODE {
 TFTP_FILE_MODE_READ = 1,
 TFTP_FILE_MODE_WRITE = 2
} TFTP_FILE_MODE;

Description

File open mode as used by TFTPFileOpen().

10.20.1.17 TFTP_RESULT Enumeration
File

TFTPc.h

C

typedef enum _TFTP_RESULT {
 TFTP_OK = 0,
 TFTP_NOT_READY,
 TFTP_END_OF_FILE,
 TFTP_ERROR,
 TFTP_RETRY,
 TFTP_TIMEOUT
} TFTP_RESULT;

Description

Enum. of results returned by most of the TFTP functions.

10.20.1.18 TFTPGetUploadStatus Function
File

TFTPc.h

C

CHAR TFTPGetUploadStatus();

Returns

A status code. Negative results are fatal errors. Positive results indicate the TFTP upload operation is still being processed.
A zero result indicates successful file upload completion (TFTP API is now idle and available for further calls). Specific return
values are as follows: 0 (TFTP_UPLOAD_COMPLETE (see page 500)): Upload completed successfully 1
(TFTP_UPLOAD_GET_DNS (see page 500)): Attempting to obtain DNS client module 2
(TFTP_UPLOAD_RESOLVE_HOST (see page 501)): Attempting to resolve TFTP hostname 3
(TFTP_UPLOAD_CONNECT (see page 500)): Attempting to ARP and contact the TFTP server 4
(TFTP_UPLOAD_SEND_FILENAME (see page 501)): Attempting to send the filename and receive acknowledgement. 5
(TFTP_UPLOAD_SEND_DATA (see page 501)): Attempting to send the file contents and receive acknowledgement. 6
(TFTP_UPLOAD_WAIT_FOR_CLOSURE (see page 502)): Attempting to send the final packet of file contents and receive
acknowledgement. -1 (TFTP_UPLOAD_HOST_RESOLVE_TIMEOUT (see page 501)): Couldn't resolve hostname -2
(TFTP_UPLOAD_CONNECT_TIMEOUT (see page 500)): Couldn't finish ARP and reach server -3
(TFTP_UPLOAD_SERVER_ERROR (see page 501)): TFTP server returned an error (ex: access denial) or file upload
failed due to a timeout (partial file may have been uploaded).

Description

Returns the TFTP file upload status started by calling the TFTPUploadRAMFileToHost (see page 499)() or
TFTPUploadFragmentedRAMFileToHost (see page 498)() functions.

Remarks

The DNS client module must be enabled to use this function. i.e. STACK_USE_DNS must be defined in TCPIPConfig.h.

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

497

Preconditions

None

10.20.1.19 TFTPUploadFragmentedRAMFileToHost Function
File

TFTPc.h

C

void TFTPUploadFragmentedRAMFileToHost(
 ROM BYTE * vRemoteHost,
 ROM BYTE * vFilename,
 TFTP_CHUNK_DESCRIPTOR * vFirstChunkDescriptor
);

Returns

None

Description

Uploads an random, potentially non-contiguous, array of RAM bytes as a file to a remote TFTP server.

Remarks

The DNS client module must be enabled to use this function. i.e. STACK_USE_DNS must be defined in TCPIPConfig.h.

Call the TFTPGetUploadStatus (see page 497)() function to determine the status of the file upload.

It is only possible to have one TFTP operation active at any given time. After starting a TFTP operation by calling
TFTPUploadRAMFileToHost (see page 499)() or TFTPUploadFragmentedRAMFileToHost(), you must wait until
TFTPGetUploadStatus (see page 497)() returns a completion status code (<=0) before calling any other TFTP API
functions.

Preconditions

None

Parameters

Parameters Description

vRemoteHost ROM string of the remote TFTP server to upload to (ex: "www.myserver.com").
For device architectures that make no distinction between RAM and ROM
pointers (PIC24, dsPIC and PIC32), this string must remain allocated and
unmodified in RAM until the TFTP upload process completes (as indicated by
TFTPGetUploadStatus (see page 497)()).

vFilename ROM string of the remote file to create/overwrite (ex: "status.txt"). For device
architectures that make no distinction between RAM and ROM pointers (PIC24,
dsPIC and PIC32), this string must remain allocated and unmodified in RAM
until the TFTP upload process completes (as indicated by
TFTPGetUploadStatus (see page 497)()).

vFirstChunkDescriptor Pointer to a static or global (persistent) array of TFTP_CHUNK_DESCRIPTOR
(see page 499) structures describing what RAM memory addresses the file
contents should be obtained from. The
TFTP_CHUNK_DESCRIPTOR.vDataPointer field should be set to the memory
address of the data to transmit, and the
TFTP_CHUNK_DESCRIPTOR.wDataLength field should be set to the number
of bytes to transmit from the given pointer. The TFTP_CHUNK_DESCRIPTOR
(see page 499) array must be terminated by a dummy descriptor whos
TFTP_CHUNK_DESCRIPTOR.vDataPointer pointer is set to NULL. Refer to
the TFTPUploadRAMFileToHost (see page 499)() API for an example calling
sequence since it merely a wrapper to this
TFTPUploadFragmentedRAMFileToHost() function.

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

498

10.20.1.20 TFTPUploadRAMFileToHost Function
File

TFTPc.h

C

void TFTPUploadRAMFileToHost(
 ROM BYTE * vRemoteHost,
 ROM BYTE * vFilename,
 BYTE * vData,
 WORD wDataLength
);

Returns

None

Description

Uploads a contiguous array of RAM bytes as a file to a remote TFTP server.

Remarks

The DNS client module must be enabled to use this function. i.e. STACK_USE_DNS must be defined in TCPIPConfig.h.

Call the TFTPGetUploadStatus (see page 497)() function to determine the status of the file upload.

It is only possible to have one TFTP operation active at any given time. After starting a TFTP operation by calling
TFTPUploadRAMFileToHost() or TFTPUploadFragmentedRAMFileToHost (see page 498)(), you must wait until
TFTPGetUploadStatus (see page 497)() returns a completion status code (<=0) before calling any other TFTP API
functions.

Preconditions

None

Parameters

Parameters Description

vRemoteHost ROM string of the remote TFTP server to upload to (ex: "www.myserver.com").
For device architectures that make no distinction between RAM and ROM
pointers (PIC24, dsPIC and PIC32), this string must remain allocated and
unmodified in RAM until the TFTP upload process completes (as indicated by
TFTPGetUploadStatus (see page 497)()).

vFilename ROM string of the remote file to create/overwrite (ex: "status.txt"). For device
architectures that make no distinction between RAM and ROM pointers (PIC24,
dsPIC and PIC32), this string must remain allocated and unmodified in RAM
until the TFTP upload process completes (as indicated by
TFTPGetUploadStatus (see page 497)()).

vData Pointer to a RAM array of data to write to the file.

wDataLength Number of bytes pointed to by vData. This will be the final file size of the
uploaded file. Note that since this is defined as a WORD type, the maximum
possible file size is 65535 bytes. For longer files, call the
TFTPUploadFragmentedRAMFileToHost (see page 498)() function instead.

10.20.1.21 TFTP_CHUNK_DESCRIPTOR Structure
File

TFTPc.h

C

typedef struct {

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

499

 BYTE * vDataPointer;
 WORD wDataLength;
} TFTP_CHUNK_DESCRIPTOR;

Description

This is type TFTP_CHUNK_DESCRIPTOR.

10.20.1.22 TFTP_UPLOAD_COMPLETE Macro
File

TFTPc.h

C

#define TFTP_UPLOAD_COMPLETE 0

Description

Status codes for TFTPGetUploadStatus (see page 497)() function. Zero means upload success, >0 means working and
<0 means fatal error.

10.20.1.23 TFTP_UPLOAD_CONNECT Macro
File

TFTPc.h

C

#define TFTP_UPLOAD_CONNECT 3

Description

This is macro TFTP_UPLOAD_CONNECT.

10.20.1.24 TFTP_UPLOAD_CONNECT_TIMEOUT Macro
File

TFTPc.h

C

#define TFTP_UPLOAD_CONNECT_TIMEOUT -2

Description

This is macro TFTP_UPLOAD_CONNECT_TIMEOUT.

10.20.1.25 TFTP_UPLOAD_GET_DNS Macro
File

TFTPc.h

C

#define TFTP_UPLOAD_GET_DNS 1

Description

This is macro TFTP_UPLOAD_GET_DNS.

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

500

10.20.1.26 TFTP_UPLOAD_HOST_RESOLVE_TIMEOUT Macro
File

TFTPc.h

C

#define TFTP_UPLOAD_HOST_RESOLVE_TIMEOUT -1

Description

This is macro TFTP_UPLOAD_HOST_RESOLVE_TIMEOUT.

10.20.1.27 TFTP_UPLOAD_RESOLVE_HOST Macro
File

TFTPc.h

C

#define TFTP_UPLOAD_RESOLVE_HOST 2

Description

This is macro TFTP_UPLOAD_RESOLVE_HOST.

10.20.1.28 TFTP_UPLOAD_SEND_DATA Macro
File

TFTPc.h

C

#define TFTP_UPLOAD_SEND_DATA 5

Description

This is macro TFTP_UPLOAD_SEND_DATA.

10.20.1.29 TFTP_UPLOAD_SEND_FILENAME Macro
File

TFTPc.h

C

#define TFTP_UPLOAD_SEND_FILENAME 4

Description

This is macro TFTP_UPLOAD_SEND_FILENAME.

10.20.1.30 TFTP_UPLOAD_SERVER_ERROR Macro
File

TFTPc.h

10.20 TFTP Microchip TCP/IP Stack Help TFTP Public Members

501

C

#define TFTP_UPLOAD_SERVER_ERROR -3

Description

This is macro TFTP_UPLOAD_SERVER_ERROR.

10.20.1.31 TFTP_UPLOAD_WAIT_FOR_CLOSURE Macro
File

TFTPc.h

C

#define TFTP_UPLOAD_WAIT_FOR_CLOSURE 6

Description

This is macro TFTP_UPLOAD_WAIT_FOR_CLOSURE.

10.20.2 TFTP Stack Members

Macros

Name Description

TFTP_ARP_TIMEOUT_VAL
(see page 502)

Number of seconds to wait before declaring TIMEOUT error on Put

TFTP_GET_TIMEOUT_VAL
(see page 503)

Number of seconds to wait before declaring TIMEOUT error on Get.

TFTP_MAX_RETRIES (
see page 503)

Number of attempts before declaring TIMEOUT error.

Module

TFTP (see page 486)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.20.2.1 TFTP_ARP_TIMEOUT_VAL Macro
File

TFTPc.h

C

#define TFTP_ARP_TIMEOUT_VAL (3u * TICKS_PER_SECOND)

Description

Number of seconds to wait before declaring TIMEOUT error on Put

10.20 TFTP Microchip TCP/IP Stack Help TFTP Stack Members

502

10.20.2.2 TFTP_GET_TIMEOUT_VAL Macro
File

TFTPc.h

C

#define TFTP_GET_TIMEOUT_VAL (3u * TICKS_PER_SECOND)

Description

Number of seconds to wait before declaring TIMEOUT error on Get.

10.20.2.3 TFTP_MAX_RETRIES Macro
File

TFTPc.h

C

#define TFTP_MAX_RETRIES (3u)

Description

Number of attempts before declaring TIMEOUT error.

10.20.3 TFTP Internal Members

Enumerations

Name Description

TFTP_OPCODE (see page
505)

Enumeration of TFTP opcodes

TFTP_STATE (see page
506)

The TFTP state machine

Functions

Name Description

_TFTPSendAck (see page
507)

Private helper function

_TFTPSendFileName (see
page 507)

Private helper function

_TFTPSendROMFileName
(see page 508)

PIC18 ROM variable argument implementation of _TFTPSendFileName (see
page 507)

Macros

Name Description

TFTP_BLOCK_SIZE (see
page 505)

The size of a TFTP block - 512 bytes

TFTP_BLOCK_SIZE_MSB
(see page 505)

The MSB of the TFTP_BLOCK_SIZE (see page 505)

TFTP_CLIENT_PORT (
see page 505)

The TFTP Client port - a unique port on this device

TFTP_SERVER_PORT (
see page 506)

The TFTP Server Port

10.20 TFTP Microchip TCP/IP Stack Help TFTP Internal Members

503

Module

TFTP (see page 486)

Variables

Name Description

MutExVar (see page 504) Mutually Exclusive variable groups to conserve RAM.

_tftpError (see page 506) Variable to preserve error condition causes for later transmission

_tftpFlags (see page 506) TFTP status flags

_tftpRetries (see page 507) Tracker variable for the number of TFTP retries

_tftpSocket (see page 508) TFTP Socket for TFTP server link

_tftpStartTick (see page 508) Timing variable used to detect timeout conditions

_tftpState (see page 508) TFTP state machine tracker variable

smUpload (see page 508) This is variable smUpload.

uploadChunkDescriptor (see page
509)

This is variable uploadChunkDescriptor.

uploadChunkDescriptorForRetransmit
(see page 509)

This is variable uploadChunkDescriptorForRetransmit.

vUploadFilename (see page 509) This is variable vUploadFilename.

vUploadRemoteHost (see page
509)

TFTPUploadRAMFileToHost (see page 499)(),
TFTPUploadFragmentedRAMFileToHost (see page 498)() and
TFTPGetUploadStatus (see page 497)() functions require the DNS
client module to be enabled for them to work. The RAM and ROM
resources for these functions can be preserved if the DNS client
module isn't enabled.

wUploadChunkOffset (see page
510)

This is variable wUploadChunkOffset.

wUploadChunkOffsetForRetransmit
(see page 510)

This is variable wUploadChunkOffsetForRetransmit.

Description

The following functions and variables are designated as internal to the TFTP module.

10.20.3.1 MutExVar Variable
File

TFTPc.c

C

union {
 struct {
 NODE_INFO _hostInfo;
 } group1;
 struct {
 WORD_VAL _tftpBlockNumber;
 WORD_VAL _tftpDuplicateBlock;
 WORD_VAL _tftpBlockLength;
 } group2;
} MutExVar;

Description

Mutually Exclusive variable groups to conserve RAM.

10.20 TFTP Microchip TCP/IP Stack Help TFTP Internal Members

504

10.20.3.2 TFTP_BLOCK_SIZE Macro
File

TFTPc.c

C

#define TFTP_BLOCK_SIZE (0x200L)

Description

The size of a TFTP block - 512 bytes

10.20.3.3 TFTP_BLOCK_SIZE_MSB Macro
File

TFTPc.c

C

#define TFTP_BLOCK_SIZE_MSB (0x02u)

Description

The MSB of the TFTP_BLOCK_SIZE (see page 505)

10.20.3.4 TFTP_CLIENT_PORT Macro
File

TFTPc.c

C

#define TFTP_CLIENT_PORT 65352L

Description

The TFTP Client port - a unique port on this device

10.20.3.5 TFTP_OPCODE Enumeration
File

TFTPc.c

C

typedef enum {
 TFTP_OPCODE_RRQ = 1,
 TFTP_OPCODE_WRQ,
 TFTP_OPCODE_DATA,
 TFTP_OPCODE_ACK,
 TFTP_OPCODE_ERROR
} TFTP_OPCODE;

Members

Members Description

TFTP_OPCODE_RRQ = 1 Get

TFTP_OPCODE_WRQ Put

TFTP_OPCODE_DATA Actual data

10.20 TFTP Microchip TCP/IP Stack Help TFTP Internal Members

505

TFTP_OPCODE_ACK Ack for Get/Put

TFTP_OPCODE_ERROR Error

Description

Enumeration of TFTP opcodes

10.20.3.6 TFTP_SERVER_PORT Macro
File

TFTPc.c

C

#define TFTP_SERVER_PORT (69L)

Description

The TFTP Server Port

10.20.3.7 TFTP_STATE Enumeration
File

TFTPc.c

C

typedef enum {
 SM_TFTP_WAIT = 0,
 SM_TFTP_READY,
 SM_TFTP_WAIT_FOR_DATA,
 SM_TFTP_WAIT_FOR_ACK,
 SM_TFTP_DUPLICATE_ACK,
 SM_TFTP_SEND_ACK,
 SM_TFTP_SEND_LAST_ACK
} TFTP_STATE;

Description

The TFTP state machine

10.20.3.8 _tftpError Variable
File

TFTPc.c

C

WORD _tftpError;

Description

Variable to preserve error condition causes for later transmission

10.20.3.9 _tftpFlags Variable
File

TFTPc.c

10.20 TFTP Microchip TCP/IP Stack Help TFTP Internal Members

506

C

union {
 struct {
 unsigned int bIsFlushed : 1;
 unsigned int bIsAcked : 1;
 unsigned int bIsClosed : 1;
 unsigned int bIsClosing : 1;
 unsigned int bIsReading : 1;
 } bits;
 BYTE Val;
} _tftpFlags;

Description

TFTP status flags

10.20.3.10 _tftpRetries Variable
File

TFTPc.c

C

BYTE _tftpRetries;

Description

Tracker variable for the number of TFTP retries

10.20.3.11 _TFTPSendAck Function
File

TFTPc.c

C

static void _TFTPSendAck(
 WORD_VAL blockNumber
);

Description

Private helper function

10.20.3.12 _TFTPSendFileName Function
File

TFTPc.c

C

static void _TFTPSendFileName(
 TFTP_OPCODE command,
 BYTE * fileName
);

Description

Private helper function

10.20 TFTP Microchip TCP/IP Stack Help TFTP Internal Members

507

10.20.3.13 _TFTPSendROMFileName Function
File

TFTPc.c

C

static void _TFTPSendROMFileName(
 TFTP_OPCODE opcode,
 ROM BYTE * fileName
);

Description

PIC18 ROM variable argument implementation of _TFTPSendFileName (see page 507)

10.20.3.14 _tftpSocket Variable
File

TFTPc.c

C

UDP_SOCKET _tftpSocket;

Description

TFTP Socket for TFTP server link

10.20.3.15 _tftpStartTick Variable
File

TFTPc.c

C

DWORD _tftpStartTick;

Description

Timing variable used to detect timeout conditions

10.20.3.16 _tftpState Variable
File

TFTPc.c

C

TFTP_STATE _tftpState;

Description

TFTP state machine tracker variable

10.20.3.17 smUpload Variable
File

TFTPc.c

10.20 TFTP Microchip TCP/IP Stack Help TFTP Internal Members

508

C

CHAR smUpload = TFTP_UPLOAD_COMPLETE;

Description

This is variable smUpload.

10.20.3.18 uploadChunkDescriptor Variable
File

TFTPc.c

C

TFTP_CHUNK_DESCRIPTOR * uploadChunkDescriptor;

Description

This is variable uploadChunkDescriptor.

10.20.3.19 uploadChunkDescriptorForRetransmit Variable
File

TFTPc.c

C

TFTP_CHUNK_DESCRIPTOR * uploadChunkDescriptorForRetransmit;

Description

This is variable uploadChunkDescriptorForRetransmit.

10.20.3.20 vUploadFilename Variable
File

TFTPc.c

C

ROM BYTE * vUploadFilename;

Description

This is variable vUploadFilename.

10.20.3.21 vUploadRemoteHost Variable
File

TFTPc.c

C

ROM BYTE * vUploadRemoteHost;

Description

TFTPUploadRAMFileToHost (see page 499)(), TFTPUploadFragmentedRAMFileToHost (see page 498)() and
TFTPGetUploadStatus (see page 497)() functions require the DNS client module to be enabled for them to work. The
RAM and ROM resources for these functions can be preserved if the DNS client module isn't enabled.

10.20 TFTP Microchip TCP/IP Stack Help TFTP Internal Members

509

10.20.3.22 wUploadChunkOffset Variable
File

TFTPc.c

C

WORD wUploadChunkOffset;

Description

This is variable wUploadChunkOffset.

10.20.3.23 wUploadChunkOffsetForRetransmit Variable
File

TFTPc.c

C

WORD wUploadChunkOffsetForRetransmit;

Description

This is variable wUploadChunkOffsetForRetransmit.

10.21 Tick Module
The Tick module provides accurate time-keeping capabilities based on the hardware clock. By default, it uses Timer 0 on
8-bit parts and Timer 1 on 16- and 32-bit families. The module is interrupt driven, which makes the timing stable and
accurate. As such, it is also suitable for a real-time clock.

The Tick module exists to assist with the implementation of non-blocking delays and timeouts. Rather than using a loop to
count to a specific number, use the Tick module and compare a previous time with the current time. In this fashion
applications can return its unused cycles to the stack during long delays, which increases the overall efficiency of the system.

Tick works best in conjunction with a state machine. In general, call TickGet (see page 513) and store the result. Return to
the main stack application, and on future calls compare the current Tick value to the stored one. The constants
TICK_SECOND (see page 512), TICK_MINUTE (see page 512), and TICK_HOUR (see page 512) can be used to
compare against logical time increments.

The following example implements a delay of 0.5 seconds using the Tick module:

TICK startTime;

// ...state machine and other states

case SM_SET_DELAY:
 startTime = TickGet();
 sm = SM_DELAY_WAIT;
 return;

case SM_DELAY_WAIT:
 if((LONG)(TickGet() - startTime) < TICK_SECOND/2)
 return;

case SM_DELAY_DONE:
 // This state is entered only after 0.5 second elapses.

Ticks are stored internally as 48-bit integers. Using the various TickGet (see page 513), TickGetDiv256 (see page 513),

10.21 Tick Module Microchip TCP/IP Stack Help

510

and TickGetDiv64K (see page 514) functions the Tick is suitable for measuring time increments from a few microseconds
to a few years.

If absolute timestamps are required, the SNTP Client module may be more appropriate.

10.21.1 Tick Public Members

Functions

Name Description

TickConvertToMilliseconds
(see page 512)

Converts a Tick value or difference to milliseconds.

TickGet (see page 513) Obtains the current Tick value.

TickGetDiv256 (see page
513)

Obtains the current Tick value divided by 256.

TickGetDiv64K (see page
514)

Obtains the current Tick value divided by 64K.

Macros

Name Description

TICK_HOUR (see page
512)

Represents one hour in Ticks

TICK_MINUTE (see page
512)

Represents one minute in Ticks

TICK_SECOND (see page
512)

Represents one second in Ticks

Module

Tick Module (see page 510)

Types

Name Description

TICK (see page 511) All TICKS are stored as 32-bit unsigned integers. This is deprecated since it
conflicts with other TICK definitions used in other Microchip software libraries
and therefore poses a merge and maintence problem. Instead of using the
TICK data type, just use the base DWORD data type instead.

Description

The following functions and variables are available to the stack application.

10.21.1.1 TICK Type
File

Tick.h

C

typedef DWORD TICK;

Description

All TICKS are stored as 32-bit unsigned integers. This is deprecated since it conflicts with other TICK definitions used in
other Microchip software libraries and therefore poses a merge and maintence problem. Instead of using the TICK data type,
just use the base DWORD data type instead.

10.21 Tick Module Microchip TCP/IP Stack Help Tick Public Members

511

10.21.1.2 TICK_HOUR Macro
File

Tick.h

C

#define TICK_HOUR ((QWORD)TICKS_PER_SECOND*3600ull)

Description

Represents one hour in Ticks

10.21.1.3 TICK_MINUTE Macro
File

Tick.h

C

#define TICK_MINUTE ((QWORD)TICKS_PER_SECOND*60ull)

Description

Represents one minute in Ticks

10.21.1.4 TICK_SECOND Macro
File

Tick.h

C

#define TICK_SECOND ((QWORD)TICKS_PER_SECOND)

Description

Represents one second in Ticks

10.21.1.5 TickConvertToMilliseconds Function
File

Tick.h

C

DWORD TickConvertToMilliseconds(
 DWORD dwTickValue
);

Returns

Input value expressed in milliseconds.

Description

This function converts a Tick value or difference to milliseconds. For example, TickConvertToMilliseconds(32768) returns
1000 when a 32.768kHz clock with no prescaler drives the Tick module interrupt.

Remarks

This function performs division on DWORDs, which is slow. Avoid using it unless you absolutely must (such as displaying

10.21 Tick Module Microchip TCP/IP Stack Help Tick Public Members

512

data to a user). For timeout comparisons, compare the current value to a multiple or fraction of TICK_SECOND (see page
512), which will be calculated only once at compile time.

Preconditions

None

Parameters

Parameters Description

dwTickValue Value to convert to milliseconds

10.21.1.6 TickGet Function
File

Tick.h

C

DWORD TickGet();

Returns

Lower 32 bits of the current Tick value.

Description

This function retrieves the current Tick value, allowing timing and measurement code to be written in a non-blocking fashion.
This function retrieves the least significant 32 bits of the internal tick counter, and is useful for measuring time increments
ranging from a few microseconds to a few hours. Use TickGetDiv256 (see page 513) or TickGetDiv64K (see page 514)
for longer periods of time.

Preconditions

None

10.21.1.7 TickGetDiv256 Function
File

Tick.h

C

DWORD TickGetDiv256();

Returns

Middle 32 bits of the current Tick value.

Description

This function retrieves the current Tick value, allowing timing and measurement code to be written in a non-blocking fashion.
This function retrieves the middle 32 bits of the internal tick counter, and is useful for measuring time increments ranging
from a few minutes to a few weeks. Use TickGet (see page 513) for shorter periods or TickGetDiv64K (see page 514)
for longer ones.

Preconditions

None

10.21 Tick Module Microchip TCP/IP Stack Help Tick Public Members

513

10.21.1.8 TickGetDiv64K Function
File

Tick.h

C

DWORD TickGetDiv64K();

Returns

Upper 32 bits of the current Tick value.

Description

This function retrieves the current Tick value, allowing timing and measurement code to be written in a non-blocking fashion.
This function retrieves the most significant 32 bits of the internal tick counter, and is useful for measuring time increments
ranging from a few days to a few years, or for absolute time measurements. Use TickGet (see page 513) or
TickGetDiv256 (see page 513) for shorter periods of time.

Preconditions

None

10.21.2 Tick Stack Functions

Functions

Name Description

TickInit (see page 514) Initializes the Tick manager module.

TickUpdate (see page 515) Updates the tick value when an interrupt occurs.

Module

Tick Module (see page 510)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.21.2.1 TickInit Function
File

Tick.h

C

void TickInit();

Returns

None

Description

Configures the Tick module and any necessary hardware resources.

Remarks

This function is called only one during lifetime of the application.

10.21 Tick Module Microchip TCP/IP Stack Help Tick Stack Functions

514

Preconditions

None

10.21.2.2 TickUpdate Function
File

Tick.h

C

void TickUpdate();

Returns

None

Description

Updates the tick value when an interrupt occurs.

Preconditions

None

10.21.3 Tick Internal Members

Functions

Name Description

GetTickCopy (see page
516)

Reads the tick value.

Macros

Name Description

TICKS_PER_SECOND (
see page 516)

Internal core clock drives timer with 1:256 prescaler #define
TICKS_PER_SECOND (32768ul) // 32kHz crystal drives timer with no scalar

Module

Tick Module (see page 510)

Variables

Name Description

dwInternalTicks (see page
515)

Internal counter to store Ticks. This variable is incremented in an ISR and
therefore must be marked volatile to prevent the compiler optimizer from
reordering code to use this value in the main context while interrupts are
disabled.

vTickReading (see page
516)

6-byte value to store Ticks. Allows for use over longer periods of time.

Description

The following functions and variables are designated as internal to the Tick module.

10.21.3.1 dwInternalTicks Variable
File

Tick.c

10.21 Tick Module Microchip TCP/IP Stack Help Tick Internal Members

515

C

volatile DWORD dwInternalTicks = 0;

Description

Internal counter to store Ticks. This variable is incremented in an ISR and therefore must be marked volatile to prevent the
compiler optimizer from reordering code to use this value in the main context while interrupts are disabled.

10.21.3.2 GetTickCopy Function
File

Tick.c

C

static void GetTickCopy();

Returns

None

Description

This function performs an interrupt-safe and synchronized read of the 48-bit Tick value.

Preconditions

None

10.21.3.3 TICKS_PER_SECOND Macro
File

Tick.h

C

#define TICKS_PER_SECOND ((GetPeripheralClock()+128ull)/256ull) // Internal core clock
drives timer with 1:256 prescaler

Description

Internal core clock drives timer with 1:256 prescaler #define TICKS_PER_SECOND (32768ul) // 32kHz crystal drives timer
with no scalar

10.21.3.4 vTickReading Variable
File

Tick.c

C

BYTE vTickReading[6];

Description

6-byte value to store Ticks. Allows for use over longer periods of time.

10.22 UDP Microchip TCP/IP Stack Help

516

10.22 UDP
Types

Name Description

UDP_STATE (see page
537)

UDP States

Description

UDP is a standard transport layer protocol described in RFC 768. It provides fast but unreliable data-gram based transfers
over networks, and forms the foundation SNTP, SNMP, DNS, and many other protocol standards.

Connections over UDP should be thought of as data-gram based transfers. Each packet is a separate entity, the application
should expect some packets to arrive out-of-order or even fail to reach the destination node. This is in contrast to TCP, in
which the connection is thought of as a stream and network errors are automatically corrected. These tradeoffs in reliability
are made for an increase in throughput. In general, UDP transfers operate 2 to 3 times faster than those made over TCP.

Since UDP is packet-oriented, each packet must be dealt with in its entirety by your application before returning to the main
stack loop. When a packet is received, your application will be called to handle it. This packet will no longer be available the
next time your application is called, so you must either perform all necessary processing or copy the data elsewhere before
returning. When transmitting a packet, your application must build and transmit the complete packet in one cycle.

The UDP flow diagram below provides an overview for the use of the UDP module:

Sockets (see page 147) are opened using UDPOpen (see page 521). This function can either open a listening socket to
wait for incoming segments, or can make a client connection to a remote node. When making a client connection, you will
need to perform any required DNS and/or ARP resolution using those modules directly before invoking UDPOpen (see
page 521).

Once the socket is opened, you can immediately begin transmitting data. To transmit a segment, call UDPIsPutReady (
see page 525) to determine how many bytes can be written and to designate a currently active socket. Then, use any of the
UDPPut (see page 525) family of functions to write data to the socket. Once all data has been written, call UDPFlush (
see page 523) to build and transmit the packet. This sequence must be accomplished all in one step. If your application
returns to the main stack loop after calling UDPPut (see page 525) but before calling UDPFlush (see page 523), the
data may be lost or the module may behave unpredictably.

10.22 UDP Microchip TCP/IP Stack Help

517

To check for received segments, call UDPIsGetReady (see page 524). If the return value is non-zero, your application
must consume the segment by reading data with the UDPGet (see page 523) family. Once all data has been read, return
to the main stack loop to wait for an additional segment. UDP segments are only stored for one iteration of the cooperative
multi-tasking loop, so your application must complete its processing on a segment or copy it elsewhere before returning.
Note that this behavior differs from TCP, which buffers incoming data through multiple stack cycles.

When a socket is no longer needed, call UDPClose (see page 522) to release it back to the pool for future use.

10.22.1 UDP Public Members

Functions

Name Description

UDPOpenEx (see page
520)

Opens a UDP socket for a client.

UDPClose (see page 522) Closes a UDP socket and frees the handle.

UDPDiscard (see page
522)

Discards any remaining RX data from a UDP socket.

UDPFlush (see page 523) Transmits all pending data in a UDP socket.

UDPGet (see page 523) Reads a byte from the currently active socket.

UDPGetArray (see page
524)

Reads an array of bytes from the currently active socket.

UDPIsGetReady (see page
524)

Determines how many bytes can be read from the UDP socket.

UDPIsPutReady (see page
525)

Determines how many bytes can be written to the UDP socket.

UDPPut (see page 525) Writes a byte to the currently active socket.

UDPPutArray (see page
526)

Writes an array of bytes to the currently active socket.

UDPPutROMArray (see
page 526)

Writes an array of bytes from ROM to the currently active socket.

UDPPutROMString (see
page 527)

Writes null-terminated string from ROM to the currently active socket.

UDPPutString (see page
527)

Writes null-terminated string to the currently active socket.

UDPSetRxBuffer (see
page 528)

Moves the pointer within the RX buffer.

UDPSetTxBuffer (see page
528)

Moves the pointer within the TX buffer.

UDPIsOpened (see page
529)

Determines if a socket has an established connection.

Macros

Name Description

INVALID_UDP_PORT (see
page 519)

Indicates a UDP port that is not valid

INVALID_UDP_SOCKET (
see page 519)

Indicates a UDP socket that is not valid

UDPOpen (see page 521) Macro of the legacy version of UDPOpen.

UDP_OPEN_IP_ADDRESS
(see page 529)

Create a client socket and use dwRemoteHost as a literal IP address.

UDP_OPEN_NODE_INFO
(see page 529)

Create a client socket and use dwRemoteHost as a pointer to a NODE_INFO
structure containing the exact remote IP address and MAC address to use.

10.22 UDP Microchip TCP/IP Stack Help UDP Public Members

518

UDP_OPEN_RAM_HOST (
see page 530)

Emit an undeclared identifier diagnostic if code tries to use
UDP_OPEN_RAM_HOST while the DNS client module is not enabled.

UDP_OPEN_ROM_HOST (
see page 530)

Emit an undeclared identifier diagnostic if code tries to use
UDP_OPEN_ROM_HOST while the DNS client module is not enabled.

UDP_OPEN_SERVER (
see page 530)

Create a server socket and ignore dwRemoteHost.

Module

UDP (see page 517)

Types

Name Description

UDP_SOCKET (see page
519)

Provides a handle to a UDP Socket

Description

The following functions and variables are available to the stack application.

10.22.1.1 INVALID_UDP_PORT Macro
File

UDP.h

C

#define INVALID_UDP_PORT (0ul) // Indicates a UDP port that is not valid

Description

Indicates a UDP port that is not valid

10.22.1.2 INVALID_UDP_SOCKET Macro
File

UDP.h

C

#define INVALID_UDP_SOCKET (0xffu) // Indicates a UDP socket that is not valid

Description

Indicates a UDP socket that is not valid

10.22.1.3 UDP_SOCKET Type
File

UDP.h

C

typedef BYTE UDP_SOCKET;

Description

Provides a handle to a UDP Socket

10.22 UDP Microchip TCP/IP Stack Help UDP Public Members

519

10.22.1.4 UDPOpenEx Function
File

UDP.h

C

UDP_SOCKET UDPOpenEx(
 DWORD remoteHost,
 BYTE remoteHostType,
 UDP_PORT localPort,
 UDP_PORT remotePort
);

Description

Provides a unified method for opening UDP sockets. This function can open both client and server sockets. For client
sockets, it can accept (see page 164) a host name string to query in DNS, an IP address as a string, an IP address in
binary form, or a previously resolved NODE_INFO structure containing the remote IP address and associated MAC address.
When a host name or IP address only is provided, UDP module will internally perform the necessary DNSResolve (see
page 181) and/or ARP resolution steps before reporting that the UDP socket is connected (via a call to UDPISOpen
returning TRUE). Server sockets ignore this destination parameter and listen (see page 170) only on the indicated port.
Sockets (see page 147) are statically allocated on boot, but can be claimed with this function and freed using UDPClose
(see page 522) .

Remarks

When finished using the UDP socket handle, call the UDPClose (see page 522)() function to free the socket and delete
the handle.

Preconditions

UDPInit (see page 531) should be called.

Parameters

Parameters Description

remoteHost Pointer to remote node info (MAC and IP address) for this connection. If this is
a server socket (receives the first packet) or the destination is the broadcast
address, then this parameter should be NULL. For client sockets only. Provide
a pointer to a null-terminated string of the remote host name
(ex:"www.microchip.com" or "192.168.1.123"), a literal destination IP address
(ex: 0x7B01A8C0 or an IP_ADDR data type), or a pointer to a NODE_INFO
structure with the remote IP address and remote node or gateway MAC
address specified, If a string is provided.

10.22 UDP Microchip TCP/IP Stack Help UDP Public Members

520

remoteHostType Any one of the following flags to identify the meaning of the remoteHost
parameter:

• UDP_OPEN_SERVER (see page 530) = Open a server socket and
ignore the remoteHost parameter. (e.g. - SNMP agent, DHCP server,
Announce (see page 150))

• UDP_OPEN_IP_ADDRESS (see page 529) = Open a client socket and
connect (see page 166) it to a remote IP address. Ex: 0x7B01A8C0 for
192.168.1.123 (DWORD type). Note that the byte ordering is big endian.

• UDP_OPEN_NODE_INFO (see page 529) = Open a client socket and
connect (see page 166) it to a remote IP and MAC addresses pair stored
in a NODE_INFO structure.

• UDP_OPEN_RAM_HOST (see page 530) = Open a client socket and
connect (see page 166) it to a remote host who's name is stored as a
null terminated string in a RAM array. Ex:"www.microchip.com" or
"192.168.0.123"

• UDP_OPEN_ROM_HOST (see page 530) = Open a client socket and
connect (see page 166) it to a remote host who's name is stored as a
null terminated string in a literal string or ROM array. Ex:
"www.microchip.com" or "192.168.0.123"

localPort UDP port number to listen (see page 170) on. If 0, stack will dynamically
assign a unique port number to use.

remotePort For client sockets, the remote port number.

Return Values

Return Values Description

Success A UDP socket handle that can be used for subsequent UDP API calls.

Failure INVALID_UDP_SOCKET (see page 519). This function fails when no more
UDP socket handles are available. Increase MAX_UDP_SOCKETS to make
more sockets available.

10.22.1.5 UDPOpen Macro
File

UDP.h

C

#define UDPOpen(localPort,remoteNode,remotePort)
UDPOpenEx((DWORD)remoteNode,UDP_OPEN_NODE_INFO,localPort,remotePort)

Description

UDPOpen is a macro replacement of the legacy implementation of UDPOpen. Creates a UDP socket handle for transmiting
or receiving UDP packets. Call this function to obtain a handle required by other UDP function.

Remarks

When finished using the UDP socket handle, call the UDPClose (see page 522)() function to free the socket and delete
the handle.

Preconditions

UDPInit (see page 531)() must have been previously called.

Parameters

Parameters Description

localPort UDP port number to listen (see page 170) on. If 0, stack will dynamically
assign a unique port number to use.

10.22 UDP Microchip TCP/IP Stack Help UDP Public Members

521

remoteNode Pointer to remote node info (MAC and IP address) for this connection. If this is
a server socket (receives the first packet) or the destination is the broadcast
address, then this parameter should be NULL.

remotePort For client sockets, the remote port number.

Return Values

Return Values Description

Success A UDP socket handle that can be used for subsequent UDP API calls.

Failure INVALID_UDP_SOCKET (see page 519). This function fails when no more
UDP socket handles are available. Increase MAX_UDP_SOCKETS to make
more sockets available.

10.22.1.6 UDPClose Function
File

UDP.h

C

void UDPClose(
 UDP_SOCKET s
);

Returns

None

Description

UDP_SOCKET (see page 519) UDPOpen (see page 521)(UDP_PORT (see page 535) localPort, NODE_INFO
*remoteNode, UDP_PORT (see page 535) remotePort);

Closes a UDP socket and frees the handle. Call this function to release a socket and return it to the pool for use by future
communications.

Remarks

This function does not affect the previously designated active socket.

Preconditions

UDPInit (see page 531)() must have been previously called.

Parameters

Parameters Description

s The socket handle to be released. If an illegal handle value is provided, the
function safely does nothing.

10.22.1.7 UDPDiscard Function
File

UDP.h

C

void UDPDiscard();

Returns

None

Description

This function discards any remaining received data in the currently active UDP socket.

10.22 UDP Microchip TCP/IP Stack Help UDP Public Members

522

Remarks

It is safe to call this function more than is necessary. If no data is available, this function does nothing.

Preconditions

UDPIsGetReady (see page 524)() was previously called to select the currently active socket.

10.22.1.8 UDPFlush Function
File

UDP.h

C

void UDPFlush();

Returns

None

Description

This function builds a UDP packet with the pending TX data and marks it for transmission over the network interface. Since
UDP is a frame-based protocol, this function must be called before returning to the main stack loop whenever any data is
written.

Remarks

Note that unlike TCPFlush (see page 447), UDPFlush must be called before returning to the main stack loop. There is no
auto transmit for UDP segments.

Preconditions

UDPIsPutReady (see page 525)() was previously called to specify the current socket, and data has been written to the
socket using the UDPPut (see page 525) family of functions.

10.22.1.9 UDPGet Function
File

UDP.h

C

BOOL UDPGet(
 BYTE * v
);

Description

This function reads a single byte from the currently active UDP socket, while decrementing the remaining buffer length.
UDPIsGetReady (see page 524) should be used before calling this function to specify the currently active socket.

Preconditions

UDPIsGetReady (see page 524)() was previously called to specify the current socket.

Parameters

Parameters Description

v The buffer to receive the data being read.

Return Values

Return Values Description

TRUE A byte was successfully read

10.22 UDP Microchip TCP/IP Stack Help UDP Public Members

523

FALSE No data remained in the read buffer

10.22.1.10 UDPGetArray Function
File

UDP.h

C

WORD UDPGetArray(
 BYTE * cData,
 WORD wDataLen
);

Returns

The number of bytes successfully read from the UDP buffer. If this value is less than wDataLen, then the buffer was emptied
and no more data is available.

Description

This function reads an array of bytes from the currently active UDP socket, while decrementing the remaining bytes
available. UDPIsGetReady (see page 524) should be used before calling this function to specify the currently active socket.

Preconditions

UDPIsGetReady (see page 524)() was previously called to specify the current socket.

Parameters

Parameters Description

cData The buffer to receive the bytes being read. If NULL, the bytes are simply
discarded without being written anywhere (effectively skips over the bytes in the
RX buffer, although if you need to skip a lot of data, seeking using the
UDPSetRxBuffer (see page 528)() will be more efficient).

wDateLen Number of bytes to be read from the socket.

10.22.1.11 UDPIsGetReady Function
File

UDP.h

C

WORD UDPIsGetReady(
 UDP_SOCKET s
);

Returns

The number of bytes that can be read from this socket.

Description

This function determines if bytes can be read from the specified UDP socket. It also prepares the UDP module for reading by
setting the indicated socket as the currently active connection.

Preconditions

UDPInit (see page 531)() must have been previously called.

Parameters

Parameters Description

s The socket to be made active (which has already been opened or is listening)

10.22 UDP Microchip TCP/IP Stack Help UDP Public Members

524

10.22.1.12 UDPIsPutReady Function
File

UDP.h

C

WORD UDPIsPutReady(
 UDP_SOCKET s
);

Returns

The number of bytes that can be written to this socket.

Description

This function determines if bytes can be written to the specified UDP socket. It also prepares the UDP module for writing by
setting the indicated socket as the currently active connection.

Preconditions

UDPInit (see page 531)() must have been previously called.

Parameters

Parameters Description

s The socket to be made active

10.22.1.13 UDPPut Function
File

UDP.h

C

BOOL UDPPut(
 BYTE v
);

Description

This function writes a single byte to the currently active UDP socket, while incrementing the buffer length. UDPIsPutReady
(see page 525) should be used before calling this function to specify the currently active socket.

Preconditions

UDPIsPutReady (see page 525)() was previously called to specify the current socket.

Parameters

Parameters Description

v The byte to be loaded into the transmit buffer.

Return Values

Return Values Description

TRUE The byte was successfully written to the socket.

FALSE The transmit buffer is already full and so the write failed.

10.22 UDP Microchip TCP/IP Stack Help UDP Public Members

525

10.22.1.14 UDPPutArray Function
File

UDP.h

C

WORD UDPPutArray(
 BYTE * cData,
 WORD wDataLen
);

Returns

The number of bytes successfully placed in the UDP transmit buffer. If this value is less than wDataLen, then the buffer
became full and the input was truncated.

Description

This function writes an array of bytes to the currently active UDP socket, while incrementing the buffer length.
UDPIsPutReady (see page 525) should be used before calling this function to specify the currently active socket.

Preconditions

UDPIsPutReady (see page 525)() was previously called to specify the current socket.

Parameters

Parameters Description

cData The array to write to the socket.

wDateLen Number of bytes from cData to be written.

10.22.1.15 UDPPutROMArray Function
File

UDP.h

C

WORD UDPPutROMArray(
 ROM BYTE * cData,
 WORD wDataLen
);

Returns

The number of bytes successfully placed in the UDP transmit buffer. If this value is less than wDataLen, then the buffer
became full and the input was truncated.

Description

ROM function variants for PIC18

This function writes an array of bytes from ROM to the currently active UDP socket, while incrementing the buffer length.
UDPIsPutReady (see page 525) should be used before calling this function to specify the currently active socket.

Remarks

This function is aliased to UDPPutArray (see page 526) on non-PIC18 platforms.

Preconditions

UDPIsPutReady (see page 525)() was previously called to specify the current socket.

10.22 UDP Microchip TCP/IP Stack Help UDP Public Members

526

Parameters

Parameters Description

cData The array to write to the socket.

wDateLen Number of bytes from cData to be written.

10.22.1.16 UDPPutROMString Function
File

UDP.h

C

ROM BYTE* UDPPutROMString(
 ROM BYTE * strData
);

Returns

A pointer to the byte following the last byte written. Note that this is different than the UDPPutArray (see page 526)
functions. If this pointer does not dereference to a NULL byte, then the buffer became full and the input data was truncated.

Description

This function writes a null-terminated string from ROM to the currently active UDP socket, while incrementing the buffer
length. UDPIsPutReady (see page 525) should be used before calling this function to specify the currently active socket.

Remarks

This function is aliased to UDPPutString (see page 527) on non-PIC18 platforms.

Preconditions

UDPIsPutReady (see page 525)() was previously called to specify the current socket.

Parameters

Parameters Description

cData Pointer to the string to be written to the socket.

10.22.1.17 UDPPutString Function
File

UDP.h

C

BYTE* UDPPutString(
 BYTE * strData
);

Returns

A pointer to the byte following the last byte written. Note that this is different than the UDPPutArray (see page 526)
functions. If this pointer does not dereference to a NULL byte, then the buffer became full and the input data was truncated.

Description

This function writes a null-terminated string to the currently active UDP socket, while incrementing the buffer length.
UDPIsPutReady (see page 525) should be used before calling this function to specify the currently active socket.

Preconditions

UDPIsPutReady (see page 525)() was previously called to specify the current socket.

10.22 UDP Microchip TCP/IP Stack Help UDP Public Members

527

Parameters

Parameters Description

cData Pointer to the string to be written to the socket.

10.22.1.18 UDPSetRxBuffer Function
File

UDP.h

C

void UDPSetRxBuffer(
 WORD wOffset
);

Returns

None

Description

This function allows the read location within the RX buffer to be specified. Future calls to UDPGet (see page 523) and
UDPGetArray (see page 524) will read data from the indicated location forward.

Preconditions

UDPInit (see page 531)() must have been previously called and a socket is currently active.

Parameters

Parameters Description

wOffset Offset from beginning of UDP packet data payload to place the read pointer.

10.22.1.19 UDPSetTxBuffer Function
File

UDP.h

C

void UDPSetTxBuffer(
 WORD wOffset
);

Returns

None

Description

This function allows the write location within the TX buffer to be specified. Future calls to UDPPut (see page 525),
UDPPutArray (see page 526), UDPPutString (see page 527), etc will write data from the indicated location.

Preconditions

UDPInit (see page 531)() must have been previously called and a socket is currently active.

Parameters

Parameters Description

wOffset Offset from beginning of UDP packet data payload to place the write pointer.

10.22 UDP Microchip TCP/IP Stack Help UDP Public Members

528

10.22.1.20 UDPIsOpened Function
File

UDP.h

C

BOOL UDPIsOpened(
 UDP_SOCKET socket
);

Description

This function determines if a socket has an established connection to a remote node . Call this function after calling
UDPOpen (see page 521) to determine when the connection is set up and ready for use.

Remarks

None

Preconditions

UDP is initialized.

Parameters

Parameters Description

socket (see page 175) The socket to check.

Return Values

Return Values Description

TRUE The socket has been opened and ARP has been resolved.

FALSE The socket is not currently connected.

10.22.1.21 UDP_OPEN_IP_ADDRESS Macro
File

UDP.h

C

#define UDP_OPEN_IP_ADDRESS 3u

Description

Create a client socket and use dwRemoteHost as a literal IP address.

10.22.1.22 UDP_OPEN_NODE_INFO Macro
File

UDP.h

C

#define UDP_OPEN_NODE_INFO 4u

Description

Create a client socket and use dwRemoteHost as a pointer to a NODE_INFO structure containing the exact remote IP
address and MAC address to use.

10.22 UDP Microchip TCP/IP Stack Help UDP Public Members

529

10.22.1.23 UDP_OPEN_RAM_HOST Macro
File

UDP.h

C

#define UDP_OPEN_RAM_HOST You_need_to_enable_STACK_USE_DNS_to_use_UDP_OPEN_RAM_HOST

Description

Emit an undeclared identifier diagnostic if code tries to use UDP_OPEN_RAM_HOST while the DNS client module is not
enabled.

10.22.1.24 UDP_OPEN_ROM_HOST Macro
File

UDP.h

C

#define UDP_OPEN_ROM_HOST You_need_to_enable_STACK_USE_DNS_to_use_UDP_OPEN_ROM_HOST

Description

Emit an undeclared identifier diagnostic if code tries to use UDP_OPEN_ROM_HOST while the DNS client module is not
enabled.

10.22.1.25 UDP_OPEN_SERVER Macro
File

UDP.h

C

#define UDP_OPEN_SERVER 0u

Description

Create a server socket and ignore dwRemoteHost.

10.22.2 UDP Stack Members

Functions

Name Description

UDPInit (see page 531) Initializes the UDP module.

UDPProcess (see page
531)

Handles an incoming UDP segment.

UDPTask (see page 532) Performs state management and housekeeping for UDP.

Module

UDP (see page 517)

Description

The following functions and variables are public, but are intended only to be accessed by the stack itself. Applications should
generally not call these functions or modify these variables.

10.22 UDP Microchip TCP/IP Stack Help UDP Stack Members

530

10.22.2.1 UDPInit Function
File

UDP.h

C

void UDPInit();

Returns

None

Description

Initializes the UDP module. This function initializes all the UDP sockets to the closed state.

Remarks

This function is called only one during lifetime of the application.

Preconditions

None

Section

Function Prototypes

10.22.2.2 UDPProcess Function
File

UDP.h

C

BOOL UDPProcess(
 NODE_INFO * remoteNode,
 IP_ADDR * localIP,
 WORD len
);

Description

This function handles an incoming UDP segment to determine if it is acceptable and should be handed to one of the stack
applications for processing.

Preconditions

UDPInit (see page 531)() has been called an a UDP segment is ready in the MAC buffer.

Parameters

Parameters Description

remoteNode The remote node that sent this segment.

localIP The destination IP address for this segment.

len Total length of the UDP segment.

Return Values

Return Values Description

TRUE A valid packet is waiting and the stack applications should be called to handle it.

FALSE The packet was discarded.

10.22 UDP Microchip TCP/IP Stack Help UDP Stack Members

531

10.22.2.3 UDPTask Function
File

UDP.h

C

void UDPTask();

Description

Performs state management and housekeeping for UDP. This is an internal function meant to be called by StackTask() (not
a user API).

Remarks

UDPTask() is called once per StackTask() iteration to ensure that calls to UDPIsPutReady (see page 525)() always update
the Ethernet Write pointer location between StackTask() iterations.

Preconditions

None

10.22.3 UDP Internal Members

Functions

Name Description

FindMatchingSocket (see
page 533)

Matches an incoming UDP segment to a currently active socket.

Macros

Name Description

LOCAL_UDP_PORT_END_NUMBER
(see page 534)

Last port number for randomized local port number selection

LOCAL_UDP_PORT_START_NUMBER
(see page 534)

First port number for randomized local port number selection

Module

UDP (see page 517)

Structures

Name Description

UDP_HEADER (see page
535)

Stores the header of a UDP packet

UDP_SOCKET_INFO (see
page 535)

Stores information about a current UDP socket

Types

Name Description

UDP_PORT (see page
535)

Stores a UDP Port Number

Variables

Name Description

activeUDPSocket (see
page 533)

Indicates which UDP socket is currently active

10.22 UDP Microchip TCP/IP Stack Help UDP Internal Members

532

LastPutSocket (see page
534)

Indicates the last socket to which data was written

SocketWithRxData (see
page 534)

Indicates which socket has currently received data for this loop

UDPRxCount (see page
536)

Number of bytes read from this UDP segment

UDPSocketInfo (see page
536)

Stores an array of information pertaining to each UDP socket

UDPTxCount (see page
536)

Number of bytes written to this UDP segment

wGetOffset (see page 536) Offset from beginning of payload from where data is to be read.

wPutOffset (see page 537) Offset from beginning of payload where data is to be written.

Description

The following functions and variables are designated as internal to the UDP module.

10.22.3.1 activeUDPSocket Variable
File

UDP.c

C

UDP_SOCKET activeUDPSocket;

Description

Indicates which UDP socket is currently active

10.22.3.2 FindMatchingSocket Function
File

UDP.c

C

static UDP_SOCKET FindMatchingSocket(
 UDP_HEADER * h,
 NODE_INFO * remoteNode,
 IP_ADDR * localIP
);

Returns

A UDP_SOCKET (see page 519) handle of a matching socket, or INVALID_UDP_SOCKET (see page 519) when no
match could be made.

Description

This function attempts to match an incoming UDP segment to a currently active socket for processing.

Preconditions

UDP segment header and IP header have both been retrieved.

Parameters

Parameters Description

h The UDP header that was received.

remoteNode IP and MAC of the remote node that sent this segment.

localIP IP address that this segment was destined for.

10.22 UDP Microchip TCP/IP Stack Help UDP Internal Members

533

Section

Function Prototypes

10.22.3.3 LastPutSocket Variable
File

UDP.c

C

UDP_SOCKET LastPutSocket = INVALID_UDP_SOCKET;

Description

Indicates the last socket to which data was written

10.22.3.4 LOCAL_UDP_PORT_END_NUMBER Macro
File

UDP.c

C

#define LOCAL_UDP_PORT_END_NUMBER (8192u)

Description

Last port number for randomized local port number selection

10.22.3.5 LOCAL_UDP_PORT_START_NUMBER Macro
File

UDP.c

C

#define LOCAL_UDP_PORT_START_NUMBER (4096u)

Description

First port number for randomized local port number selection

10.22.3.6 SocketWithRxData Variable
File

UDP.c

C

UDP_SOCKET SocketWithRxData = INVALID_UDP_SOCKET;

Description

Indicates which socket has currently received data for this loop

10.22 UDP Microchip TCP/IP Stack Help UDP Internal Members

534

10.22.3.7 UDP_HEADER Structure
File

UDP.h

C

typedef struct {
 UDP_PORT SourcePort;
 UDP_PORT DestinationPort;
 WORD Length;
 WORD Checksum;
} UDP_HEADER;

Members

Members Description

UDP_PORT SourcePort; Source UDP port

UDP_PORT DestinationPort; Destination UDP port

WORD Length; Length of data

WORD Checksum; UDP checksum of the data

Description

Stores the header of a UDP packet

10.22.3.8 UDP_PORT Type
File

UDP.h

C

typedef WORD UDP_PORT;

Description

Stores a UDP Port Number

10.22.3.9 UDP_SOCKET_INFO Structure
File

UDP.h

C

typedef struct {
 union {
 NODE_INFO remoteNode;
 DWORD remoteHost;
 } remote;
 UDP_PORT remotePort;
 UDP_PORT localPort;
 UDP_STATE smState;
 DWORD retryInterval;
 BYTE retryCount;
 struct {
 unsigned char bRemoteHostIsROM : 1;
 } flags;
 WORD eventTime;
} UDP_SOCKET_INFO;

10.22 UDP Microchip TCP/IP Stack Help UDP Internal Members

535

Members

Members Description

NODE_INFO remoteNode; 10 bytes for MAC and IP address

DWORD remoteHost; RAM or ROM pointer to a hostname string (ex: "www.microchip.com")

UDP_PORT remotePort; Remote node's UDP port number

UDP_PORT localPort; Local UDP port number, or INVALID_UDP_PORT (see page 519) when free

UDP_STATE smState; State of this socket

unsigned char bRemoteHostIsROM : 1; Remote host is stored in ROM

Description

Stores information about a current UDP socket

10.22.3.10 UDPRxCount Variable
File

UDP.c

C

WORD UDPRxCount;

Description

Number of bytes read from this UDP segment

10.22.3.11 UDPSocketInfo Variable
File

UDP.c

C

UDP_SOCKET_INFO UDPSocketInfo[MAX_UDP_SOCKETS];

Description

Stores an array of information pertaining to each UDP socket

10.22.3.12 UDPTxCount Variable
File

UDP.c

C

WORD UDPTxCount;

Description

Number of bytes written to this UDP segment

10.22.3.13 wGetOffset Variable
File

UDP.c

10.22 UDP Microchip TCP/IP Stack Help UDP Internal Members

536

C

WORD wGetOffset;

Description

Offset from beginning of payload from where data is to be read.

10.22.3.14 wPutOffset Variable
File

UDP.c

C

WORD wPutOffset;

Description

Offset from beginning of payload where data is to be written.

10.22.4 Types

Enumerations

Name Description

UDP_STATE (see page
537)

UDP States

Module

UDP (see page 517)

10.22.4.1 UDP_STATE Enumeration
File

UDP.h

C

typedef enum {
 UDP_DNS_IS_RESOLVED,
 UDP_DNS_RESOLVE,
 UDP_GATEWAY_SEND_ARP,
 UDP_GATEWAY_GET_ARP,
 UDP_CLOSED,
 UDP_OPENED
} UDP_STATE;

Members

Members Description

UDP_DNS_IS_RESOLVED Special state for UDP client mode sockets

UDP_DNS_RESOLVE Special state for UDP client mode sockets

UDP_GATEWAY_SEND_ARP Special state for UDP client mode sockets

UDP_GATEWAY_GET_ARP Special state for UDP client mode sockets

UDP_CLOSED Socket is idle and unallocated

Description

UDP States

10.22 UDP Microchip TCP/IP Stack Help Types

537

11 Wi-Fi API

Modules

Name Description

Wi-Fi Connection Profile (see page 541) Functions to setup, use, and teardown connection profiles

Wi-Fi Connection Algorithm (see page
555)

Functions to alter the behavior of the connection process

Wi-Fi Connection Manager (see page
577)

Functions to manage the connection process

Wi-Fi Scan (see page 579) Functions to direct the MRF24WB0M to initiate a site survey

Wi-Fi Tx Power Control (see page 581) API to control the Tx power of the MRF24WB0M

Wi-Fi Power Save (see page 583) Functions to alter the power savings features of the MRF24WB0M

Wi-Fi Miscellaneous (see page 588) Functions for controlling miscellaneous features of the MRF24WB0M

Description

Unlike Ethernet, a WiFi application needs to initiate a connection to an access point or an ad hoc network) before data
communications can commence. In order to initiate an connection there is a sequence of steps that should be followed.

1) A connection profile must be created (see WF_CPCreate (see page 542)()). The connection profile contains information
directing the WiFi driver about the nature of the connection that will be established. The connection profile defines:

a. SSID (name of Access Point)

b. Security (open, WEP, WPA, etc.)

c. Network type (infrastructure or ad hoc).

The Connection Profile functions are used to create and define an connection profile. These functions all begin with
WF_CP…

2) The connection algorithm must be defined, and applies to all connection profiles. For most applications the defaults will be
sufficient. For example, the default connection algorithm channel list for scanning is 1, 6, and 11. However, if, in your
application you know the Access Point will always be on channel 6 you could change this setting, thus making the scan
process more efficient. Functions pertaining to the connection algorithm all begin with WF_CA…

3) Once a connection profile and the connection algorithm are customized for an application, the WF_CMConnect (see
page 577)() function must be called to initiate the connection process.

4) After WF_Connect() is called the host application will be notified when the MRF24WB0M has succeeded (or failed) in
establishing a connection via the event mechanism. The WF_Config.c file has a function, WF_ProcessEvent (see page
596)(), that is a template for processing MRF24WB0M events. In the WiFi demos it simply prints to the console (if the UART
is enabled) that the event occurred. This file can be modified to suit the needs of an application – for example, an application
could pend on a global flag that would be set in WF_ProcessEvent (see page 596)() when the connection succeeded.
Please refer to WF_ProcessEvent (see page 596) for more information on WiFi event handling.

The MRF2WB0M demos (under the Demo App, WiFi Console, and WiFi EZ Config demo directories) contain a function,
WF_Connect(), in MainDemo.c that executes the above steps and can be referred to as an example of how to initiate a WiFi

11 Microchip TCP/IP Stack Help

538

connection. The WF_Config.h file has several compile-time constants that can be customized (e.g.
MY_DEFAULT_SSID_NAME) as needed.

This help file book describes the host API to the MRF24WB0M on-chip connection manager which creates and maintains
Wi-Fi connections. The API is divided into these major sections:

API Section Description

Initialization (see page
133)

Functions to initialize the host API and MRF24WB0M

Connection Profile Functions to create and maintain one or more connection profiles

Connection Algorithm Functions to fine tune the connection algorithm

Connection Manager Functions to start and stop an 802.11 connection

Scan Functions to scan for wireless networks

Tx Power Control Functions to control the MRF24WB0M Tx power

Power Save Functions to save power consumption by the MRF24WB0M

Multicast Functions to create multicast filters

Miscellaneous Functions to set a custom MAC address, get device information, etc.

MRF24WB0M Events Functions to handle events from the MRF24WB0M

SPI

The WF_Spi.c file contains functions that the Wi-Fi Driver will use to initialize, send, and receive SPI messages between
the host CPU and the MRF24WB0M. To communicate with the MRF24WB0M, which is always an SPI slave, the host CPU
SPI controller needs to be configured as follows:

• Mode = 0

• CPOL (clock polarity) = 0

• CPHA (clock phase) = 0

• Host CPU set as master

• Clock idles high

• 8-bit transfer length

• Data changes on falling edge

• Data sampled on rising edge

Below is a list of functions in WF_Spi.c that must be customized for the specific host CPU architecture:

Function Description

WF_SpiInit() Initializes the host CPU SPI controller for usage by the Wi-Fi driver. Called by the
Wi-Fi driver during initialization.

WF_SpiTxRx() Transmits and/or receives SPI data from the MRF24WB0M.

WF_SpiEnableChipSelect() Set slave select line on MRF24WB0M low (start SPI transfer).

If SPI bus is shared with any other devices then this function also needs to save the
current SPI context and then configure the MRF24WB0M SPI context.

WF_SpiDisableChipSelect() Set slave select line on MRF24WB0M high (end SPI transfer).

If SPI bus is shared with any other devices then this function also needs to restore
the SPI context (saved during WF_SpiEnableChipSelect()).

11 Microchip TCP/IP Stack Help

539

External Interrupt

The WF_Eint.c file contains functions that the Wi-Fi Driver will use to enable and disable the MRF24WB0M external
interrupt as well as get interrupt status. The functions in this module need to be customized for the specific host CPU
architecture.

The MRF24WB0M asserts its EXINT (external interrupt) line (active low) when specific events occur, such as a data
message being received. Note that the host CPU has a choice to either configure the EXINT line to generate an actual
interrupt, or, it can be polled. Below is a list of the Wi-Fi Driver functions within WF_Eint.c that must be customized for the
specific Host CPU architecture.

Function Description

WF_EintInit() Configures the interrupt for use and leaves it in a disabled state. Will be called by the
Wi-Fi driver during initialization. If polling the EXINT pin then this function won’t have
any work to do except leave the interrupt in a logically disabled state.

WF_EintEnable() Enables the MRF24WB0M external interrupt. If using real interrupts then enable the
interrupt. If polling the EXINT pin then this function enables polling of the pin.

WF_EintDisable() Disables the MRF24WB0M external interrupt. If using real interrupts then disable the
interrupt. If polling the EXINT pin then this function disables polling of the pin.

WF_EintIsr() This is the interrupt service routine invoked when the EXINT line goes low. It should
perform any necessary housekeeping , such as clearing the interrupt. The interrupt
must remain disabled until the Wi-Fi Driver calls WF_EintEnable(). The Wi-Fi
driver function, WFEintHandler() must be called.

WF_EintIsDisabled() Returns true if the external interrupt is disabled, else returns false.

WFEintHandler() This function does not need to be customized – it is part of the Wi-Fi driver. However,
it is added to this list because it must be called each time the MRF24WB0M interrupt
service routine (ISR) occurs.

WF_Config

The WF_Config module (WF_Config.h/WF_Config.c) is used to control several aspects of the WiFi Driver behavior. Most
of the customization of the Wi-Fi module is done from the context of this module.

Removal of Unused Driver Functions

In WF_Customize.h there is a block of defines that can be commented out to remove those sections of the Wi-Fi host
driver that are not needed by the application. This allows the saving of code and data space.

#define Controlling Functions

WF_USE_SCAN_FUNCTIONS Scan API

WF_USE_TX_POWER_CONTROL_FUNCTIONS Tx power control API

WF_USE_POWER_SAVE_FUNCTIONS Power save API

WF_USE_MULTICAST_FUNCTIONS Multicast API

WF_USE_INDIVIDUAL_SET_GETS Affects all get and set functions, except the following:
WF_CPSetElements (see page 550)()

WF_CPGetElements (see page 545)()

WF_CASetElements (see page 567)()

WF_CAGetElements (see page 559)()

WF_USE_GROUP_SET_GETS Affects the following functions:
WF_CPSetElements (see page 550)()

WF_CPGetElements (see page 545)()

WF_CASetElements (see page 567)()

WF_CAGetElements (see page 559)()

11 Microchip TCP/IP Stack Help

540

WF_DEBUG

This define enables the WF_ASSERT macro in the Wi-Fi driver. Customer code is free to use this macro. The WF_ASSERT
macro can be compiled in or out via the WF_DEBUG define. See the comment above the WF_DEBUG define in
WF_Customize.h for details.

WF_CONSOLE

The Wi-Fi driver has a UART console application built in that allows one to type in command lines and has them parsed. If
this functionality is not needed than it can be compiled out by commenting out the WF_CONSOLE define.

WF_ProcessEvent()

This function is called by the Wi-Fi Driver when an event occurs that the host CPU needs to be notified of. There are several
Wi-Fi connection related events that the application can choose whether to be notified or not. And, there are several events
the application will always be notified of.

The function WF_ProcessEvent (see page 596)() can be customized to support desired handling of events.

11.1 Wi-Fi Connection Profile
Module

Wi-Fi API (see page 538)

Description

This section describes the API functions related to creating and using connection profiles. At least one connection profile
must be created. The connection profile defines elements required by the MRF24WB0M to establish a connection to a Wi-Fi
network.

Modifying Connection Profile after Connection is Established

A connection profile can be updated while it is being used for an active connection. However, the updates do not take effect
until one of the following occurs:

• Connection is disabled and re-enabled by the host application

• Connection algorithm loses the connection, exhausts all retries, and then reloads the connection profile.

To ensure that connection profile updates take place at a known point in time it is recommended that the host application call
WF_CMDisconnect (see page 578)(), update the connection profile, then call WF_CMConnect (see page

577)().

11.1.1 Connection Profile Public Members

Functions

Name Description

WF_CPCreate (see page 542) Creates a Connection Profile on the MRF24WB0M.

WF_CPDelete (see page 543) Deletes a Connection Profile on the MRF24WB0M.

WF_CPGetAdHocBehavior (
see page 543)

Gets the desired Ad Hoc behavior

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Public Members

541

WF_CPGetBssid (see page
544)

Gets the BSSID for the specified Connection Profile ID.

WF_CPGetDefaultWepKeyIndex
(see page 544)

Gets the value of the active WEP keys to use.

WF_CPGetElements (see
page 545)

Reads the Connection Profile elements for the specified ID.

WF_CPGetIds (see page 545) Retrieves the CP ID bit mask.

WF_CPGetNetworkType (see
page 546)

Gets the network for the specified Connection Profile ID.

WF_CPGetSecurity (see page
547)

Gets the security for the specified Connection Profile.

WF_CPGetSsid (see page
548)

Gets the SSID for the specified Connection Profile ID.

WF_CPSetAdHocBehavior (
see page 548)

Selects the desired Ad Hoc behavior

WF_CPSetBssid (see page
549)

Sets the BSSID for the specified Connection Profile ID.

WF_CPSetDefaultWepKeyIndex
(see page 549)

Selects one of the 4 WEP keys to use.

WF_CPSetElements (see
page 550)

Writes out data for a specific connection profile element.

WF_CPSetNetworkType (see
page 550)

Sets the network for the specified Connection Profile ID.

WF_CPSetSecurity (see page
551)

Sets the security for the specified Connection Profile.

WF_CPSetSsid (see page
552)

Sets the SSID for the specified Connection Profile ID.

Module

Wi-Fi Connection Profile (see page 541)

Structures

Name Description

WFCPElementsStruct (see
page 552)

Connection profile elements structure

Description

11.1.1.1 WF_CPCreate Function
File

WFApi.h

C

void WF_CPCreate(
 UINT8 * p_CpId
);

Returns

None.

Description

Connection Profile Functions

Requests the MRF24WB0M to create a Connection Profile (CP), assign it an ID, and set all the elements to default values.

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Public Members

542

The ID returned by this function is used in other connection profile functions. A maximum of 2 Connection Profiles can exist
on the MRF24WB0M.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_CpId Pointer to where Connection Profile ID will be written. If function fails, the CP ID
will be set to 0xff.

11.1.1.2 WF_CPDelete Function
File

WFApi.h

C

void WF_CPDelete(
 UINT8 CpId
);

Returns

None.

Description

Deletes the specified Connection Profile. If the Connection Profile was in FLASH it will be erased from FLASH.

Remarks

First release of this code will not support FLASH, only the two CP’s in memory.

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile to delete test case.

11.1.1.3 WF_CPGetAdHocBehavior Function
File

WFApi.h

C

void WF_CPGetAdHocBehavior(
 UINT8 CpId,
 UINT8 * p_adHocBehavior
);

Returns

None.

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Public Members

543

Description

Gets the AdHoc behavior within a Connection Profile. Allowable values are:

• WF_ADHOC_CONNECT_THEN_START

• WF_ADHOC_CONNECT_ONLY

• WF_ADHOC_START_ONLY

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile ID

adHocBehavior Pointer to location of the adhoc behavior value for this connection profile.

11.1.1.4 WF_CPGetBssid Function
File

WFApi.h

C

void WF_CPGetBssid(
 UINT8 CpId,
 UINT8 * p_bssid
);

Returns

None.

Description

Gets the BSSID element in a Connection Profile.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile ID

p_bssid Pointer to the BSSID

11.1.1.5 WF_CPGetDefaultWepKeyIndex Function
File

WFApi.h

C

void WF_CPGetDefaultWepKeyIndex(
 UINT8 CpId,
 UINT8 * p_defaultWepKeyIndex

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Public Members

544

);

Returns

None.

Description

Only applicable if the Connection Profile security type is either WF_SECURITY_WEP_40 or WF_SECURITY_WEP_104.
Selects which of the four WEP keys to use.

Remarks

Note that only key 0 amongst AP manufacturers is typically used. Using any of the other three keys may be unpredictable
from brand to brand.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile ID

p_defaultWepKeyIndex Pointer to index of WEP key to use (0 - 3)

11.1.1.6 WF_CPGetElements Function
File

WFApi.h

C

void WF_CPGetElements(
 UINT8 CpId,
 tWFCPElements * p_elements
);

Returns

None.

Description

Gets all Connection Profile elements for the specified CP ID. If the Host CPU does not have enough memory to create a
structure of this size then call the individual get functions.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connectino Profile ID.

p_elements Pointer to Connection Profile elements structure.

11.1.1.7 WF_CPGetIds Function
File

WFApi.h

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Public Members

545

C

void WF_CPGetIds(
 UINT8 * cpIdList
);

Returns

None.

Description

Returns a list of all Connection Profile ID’s that have been created on the MRF24WB0M. This is not to be confused with the
Connection Algorithm’s connectionProfileList. This function returns a bit mask corresponding to a list of all Connection
Profiles that have been created (whether they are in the connectionProfileList or not). Any Connection Profiles that have
been saved to FLASH will be included.

Remarks

the first release will only support two Connection Profiles in memory. Saving CP’s to FLASH will not be supported.

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_cpIdList Pointer to value representing the bit mask where each bit index (plus 1)
corresponds to a Connection Profile ID that has been created. For example, if
this value is 0x03, then Connection Profile ID’s 1 and and 2 have been created.

11.1.1.8 WF_CPGetNetworkType Function
File

WFApi.h

C

void WF_CPGetNetworkType(
 UINT8 CpId,
 UINT8 * p_networkType
);

Returns

None.

Description

Gets the Network Type element a Connection Profile. Allowable values are:

• WF_INFRASTRUCTURE

• WF_ADHOC

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile ID

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Public Members

546

networkType Type of network to create (infrastructure or adhoc)

11.1.1.9 WF_CPGetSecurity Function
File

WFApi.h

C

void WF_CPGetSecurity(
 UINT8 CpId,
 UINT8 * p_securityType,
 UINT8 * p_wepKeyIndex,
 UINT8 * p_securityKey,
 UINT8 * p_securityKeyLength
);

Returns

None.

Description

Configures security for a Connection Profile.

Security Key Length

WF_SECURITY_OPEN N/A N/A

WF_SECURITY_WEP_40 hex 4, 5 byte keys

WF_SECURITY_WEP_104 hex 4, 13 byte keys

WF_SECURITY_WPA_WITH_KEY hex 32 bytes

WF_SECURITY_WPA_WITH_PASS_PHRASE ascii 8-63 ascii characters

WF_SECURITY_WPA2_WITH_KEY hex 32 bytes

WF_SECURITY_WPA2_WITH_PASS_PHRASE ascii 8-63 ascii characters

WF_SECURITY_WPA_AUTO_WITH_KEY hex 32 bytes

WF_SECURITY_WPA_AUTO_WITH_PASS_PHRASE ascii 8-63 ascii characters

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile ID

securityType Value corresponding to the security type desired.

wepKeyIndex 0 thru 3 (only used if security type is WF_SECURITY_WEP_40 or
WF_SECURITY_WEP_104)

p_securityKey Binary key or passphrase (not used if security is WF_SECURITY_OPEN)

securityKeyLength Number of bytes in p_securityKey (not used if security is
WF_SECURITY_OPEN)

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Public Members

547

11.1.1.10 WF_CPGetSsid Function
File

WFApi.h

C

void WF_CPGetSsid(
 UINT8 CpId,
 UINT8 * p_ssid,
 UINT8 * p_ssidLength
);

Returns

None.

Description

Gets the SSID and SSID Length elements in the Connection Profile.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile ID

p_ssid Pointer to the SSID string

ssidLength Pumber of bytes in the SSID

11.1.1.11 WF_CPSetAdHocBehavior Function
File

WFApi.h

C

void WF_CPSetAdHocBehavior(
 UINT8 CpId,
 UINT8 adHocBehavior
);

Returns

None.

Description

Sets the AdHoc behavior within a Connection Profile. Allowable values are:

• WF_ADHOC_CONNECT_THEN_START

• WF_ADHOC_CONNECT_ONLY

• WF_ADHOC_START_ONLY

Remarks

None.

Preconditions

MACInit must be called first.

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Public Members

548

Parameters

Parameters Description

CpId Connection Profile ID

adHocBehavior Value of the adhoc behavior for this connection profile.

11.1.1.12 WF_CPSetBssid Function
File

WFApi.h

C

void WF_CPSetBssid(
 UINT8 CpId,
 UINT8 * p_bssid
);

Returns

None.

Description

Sets the BSSID element in a Connection Profile.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile ID

p_bssid Pointer to the BSSID

11.1.1.13 WF_CPSetDefaultWepKeyIndex Function
File

WFApi.h

C

void WF_CPSetDefaultWepKeyIndex(
 UINT8 CpId,
 UINT8 defaultWepKeyIndex
);

Returns

None.

Description

Only applicable if the Connection Profile security type is either WF_SECURITY_WEP_40 or WF_SECURITY_WEP_104.
Selects which of the four WEP keys to use.

Remarks

Note that only key 0 amongst AP manufacturers is typically used. Using any of the other three keys may be unpredictable
from brand to brand.

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Public Members

549

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile ID

defaultWepKeyIndex Index of WEP key to use (0 - 3)

11.1.1.14 WF_CPSetElements Function
File

WFApi.h

C

void WF_CPSetElements(
 UINT8 CpId,
 tWFCPElements * p_elements
);

Returns

None.

Description

Sets all Connection Profile elements. If the Host CPU does not have enough memory to create a structure of this size then
call the individual set functions.

Remarks

None.

Preconditions

MACInit must be called.

Parameters

Parameters Description

CpId Connectino Profile ID.

p_elements Pointer to Connection Profile elements structure.

11.1.1.15 WF_CPSetNetworkType Function
File

WFApi.h

C

void WF_CPSetNetworkType(
 UINT8 CpId,
 UINT8 networkType
);

Returns

None.

Description

Sets the Network Type element a Connection Profile. Allowable values are:

• WF_INFRASTRUCTURE

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Public Members

550

• WF_ADHOC

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile ID

networkType Type of network to create (infrastructure or adhoc)

11.1.1.16 WF_CPSetSecurity Function
File

WFApi.h

C

void WF_CPSetSecurity(
 UINT8 CpId,
 UINT8 securityType,
 UINT8 wepKeyIndex,
 UINT8 * p_securityKey,
 UINT8 securityKeyLength
);

Returns

None.

Description

Configures security for a Connection Profile.

Security Key Length

WF_SECURITY_OPEN N/A N/A

WF_SECURITY_WEP_40 hex 4, 5 byte keys

WF_SECURITY_WEP_104 hex 4, 13 byte keys

WF_SECURITY_WPA_WITH_KEY hex 32 bytes

WF_SECURITY_WPA_WITH_PASS_PHRASE ascii 8-63 ascii characters

WF_SECURITY_WPA2_WITH_KEY hex 32 bytes

WF_SECURITY_WPA2_WITH_PASS_PHRASE ascii 8-63 ascii characters

WF_SECURITY_WPA_AUTO_WITH_KEY hex 32 bytes

WF_SECURITY_WPA_AUTO_WITH_PASS_PHRASE ascii 8-63 ascii characters

Remarks

None.

Preconditions

MACInit must be called first.

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Public Members

551

Parameters

Parameters Description

CpId Connection Profile ID

securityType Value corresponding to the security type desired.

wepKeyIndex 0 thru 3 (only used if security type is WF_SECURITY_WEP_40 or
WF_SECURITY_WEP_104)

p_securityKey Binary key or passphrase (not used if security is WF_SECURITY_OPEN)

securityKeyLength Number of bytes in p_securityKey (not used if security is
WF_SECURITY_OPEN)

11.1.1.17 WF_CPSetSsid Function
File

WFApi.h

C

void WF_CPSetSsid(
 UINT8 CpId,
 UINT8 * p_ssid,
 UINT8 ssidLength
);

Returns

None.

Description

Sets the SSID and SSID Length elements in the Connection Profile. Note that if an Access Point can have either a visible or
hidden SSID. If an Access Point uses a hidden SSID then an active scan must be used (see scanType field in the
Connection Algorithm).

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile ID

p_ssid Pointer to the SSID string

ssidLength Number of bytes in the SSID

11.1.1.18 WFCPElementsStruct Structure
File

WFApi.h

C

struct WFCPElementsStruct {
 UINT8 ssid[WF_MAX_SSID_LENGTH];
 UINT8 bssid[WF_BSSID_LENGTH];
 UINT8 ssidLength;
 UINT8 securityType;
 UINT8 securityKey[WF_MAX_SECURITY_KEY_LENGTH];
 UINT8 securityKeyLength;

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Public Members

552

 UINT8 wepDefaultKeyId;
 UINT8 networkType;
 UINT8 adHocBehavior;
};

Members

Members Description

UINT8 ssid[WF_MAX_SSID_LENGTH]; SSID, which must be less than or equal to 32 characters. Set to all 0’s
if not being used. If ssidLength is 0 this field is ignored. If SSID is not
defined then the MRF24WB0M, when using this profile to connect (
see page 166), will scan all channels within its regional domain.
Default: SSID not used.

UINT8 bssid[WF_BSSID_LENGTH]; Basic Service Set Identifier, always 6 bytes. This is the 48-bit MAC of
the SSID. It is an optional field that can be used to specify a specific
SSID if more than one AP exists with the same SSID. This field can
also be used in lieu of the SSID.
Set each byte to 0xFF if BSSID is not going to be used. Default:
BSSID not used (all FF’s)

UINT8 ssidLength; Number of ASCII bytes in ssid. Set to 0 is SSID is not going to be
used.
Default: 0

UINT8 securityType; Designates the desired security level for the connection. Choices are:

UINT8
securityKey[WF_MAX_SECURITY_KEY_LENGTH];

Set to NULL if securityType is WF_SECURITY_OPEN. If
securityKeyLength is 0 this field is ignored.

UINT8 securityKeyLength; Number of bytes used in the securityKey. Set to 0 if securityType is
WF_SECURITY_OPEN.

UINT8 wepDefaultKeyId; This field is only used if securityType is WF_SECURITY_WEP. This
field designates which of the four WEP keys defined in securityKey to
use when connecting to a WiFi network. The range is 0 thru 3, with the
default being 0.

UINT8 networkType; WF_INFRASTRUCTURE or WF_ADHOC
Default: WF_INFRASTRUCTURE

UINT8 adHocBehavior; Only applicable if networkType is WF_ADHOC. Configures Adhoc
behavior. Choices are:

Description

Connection profile elements structure

11.1.2 Connection Profile Internal Members

Functions

Name Description

LowLevel_CPGetElement (
see page 554)

Get an element of the connection profile on the MRF24WB0M.

LowLevel_CPSetElement (
see page 554)

Set an element of the connection profile on the MRF24WB0M.

Module

Wi-Fi Connection Profile (see page 541)

Description

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Internal Members

553

11.1.2.1 LowLevel_CPGetElement Function
File

WFConnectionProfile.c

C

static void LowLevel_CPGetElement(
 UINT8 CpId,
 UINT8 elementId,
 UINT8 * p_elementData,
 UINT8 elementDataLength,
 UINT8 dataReadAction
);

Returns

None.

Description

All Connection Profile 'Get Element' functions call this function to construct the management message. The caller must fix up
any endian issues prior to calling this function.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile ID

elementId Element that is being read

p_elementData Pointer to where element data will be written

elementDataLength Number of element data bytes that will be read

dataReadAction If TRUE then read data per paramters and free mgmt response buffer. If FALSE
then return after response received, do not read any data as the caller will do
that, and don't free buffer, as caller will do that as well.

11.1.2.2 LowLevel_CPSetElement Function
File

WFConnectionProfile.c

C

static void LowLevel_CPSetElement(
 UINT8 CpId,
 UINT8 elementId,
 UINT8 * p_elementData,
 UINT8 elementDataLength
);

Returns

None.

Description

LOCAL FUNCTION PROTOTYPES

All Connection Profile 'Set Element' functions call this function to construct the management message. The caller must fix up

11.1 Wi-Fi Connection Profile Microchip TCP/IP Stack Help Connection Profile Internal Members

554

any endian issues prior to calling this function.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile ID

elementId Element that is being set

p_elementData Pointer to element data

elementDataLength Number of bytes pointed to by p_elementData

11.2 Wi-Fi Connection Algorithm
Module

Wi-Fi API (see page 538)

Description

The connection algorithm is used to fine-tune the MRF24WB0M algorithm used in the connection process. The connection
algorithm can only be changed when the MRF24WB0M is not connected to an 802.11 network.

11.2.1 Connection Algorithm Public Members

Functions

Name Description

WF_CAGetBeaconTimeout (see
page 556)

Reads the beacon timeout value.

WF_CAGetBeaconTimeoutAction
(see page 557)

Reads the Connection Algorithm beacon timeout action.

WF_CAGetChannelList (see
page 558)

Gets the channel list.

WF_CAGetConnectionProfileList
(see page 558)

Not currently supported

WF_CAGetDeauthAction (see
page 559)

Reads the Connection Algorithm deauth action.

WF_CAGetElements (see page
559)

Reads all Connection Algorithm elements.

WF_CAGetEventNotificationAction
(see page 560)

Reads the Connection Algorithm event notification action.

WF_CAGetListenInterval (see
page 560)

Gets the listen (see page 170) interval.

WF_CAGetListRetryCount (see
page 561)

Gets the list retry count

WF_CAGetMaxChannelTime (
see page 561)

Gets the Max Channel Time (in milliseconds)

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

555

WF_CAGetMinChannelTime (
see page 562)

Gets the current Connection Algorithm minimum channel time.

WF_CAGetProbeDelay (see
page 562)

Gets the Probe Delay (in microseconds)

WF_CAGetRssi (see page 563) Gets the RSSI threshold

WF_CAGetScanCount (see
page 563)

Gets the scan count

WF_CAGetScanType (see page
564)

Gets the Connection Algorithm scan type

WF_CASetBeaconTimeout (see
page 564)

Sets the beacon timeout value.

WF_CASetBeaconTimeoutAction
(see page 565)

Action to take if a connection is lost due to a beacon timeout.

WF_CASetChannelList (see
page 566)

Sets the channel list.

WF_CASetConnectionProfileList
(see page 566)

Not currently supported

WF_CASetDeauthAction (see
page 567)

Sets the DeauthAction used by the Connection Algorithm.

WF_CASetElements (see page
567)

Writes all Connection Algorithm elements.

WF_CASetEventNotificationAction
(see page 568)

Sets the WiFi events that the host wishes to be notified of.

WF_CASetListenInterval (see
page 568)

Sets the listen (see page 170) interval.

WF_CASetListRetryCount (see
page 569)

Sets the list retry count

WF_CASetMaxChannelTime (
see page 570)

Sets the maximum channel time (in milliseconds)

WF_CASetMinChannelTime (
see page 570)

Sets the minimum channel time (in milliseconds)

WF_CASetProbeDelay (see
page 571)

Sets the Probe Delay (in microseconds)

WF_CASetRssi (see page 571) Sets the RSSI threshold

WF_CASetScanCount (see
page 572)

Sets the scan count

WF_CASetScanType (see page
572)

Sets the Connection Algorith scan type

Module

Wi-Fi Connection Algorithm (see page 555)

Structures

Name Description

WFCAElementsStruct (see
page 573)

Connection Algorithm Elements

Description

The following functions and variables are available to the stack application.

11.2.1.1 WF_CAGetBeaconTimeout Function
File

WFApi.h

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

556

C

void WF_CAGetBeaconTimeout(
 UINT8 * p_beaconTimeout
);

Returns

None.

Description

Gets the Beacon Timeout used by the Connection Algorithm.

Value Description

0 No monitoring of the beacon timeout condition. The host will not be notified of this event.

1-255 Number of beacons missed before disconnect event occurs and beaconTimeoutAction occurs. If enabled, host will
receive an event message indicating connection temporarily or permanently lost, and if retrying, a connection
successful event.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_beaconTimeout Pointer where beacon timeout value is written

11.2.1.2 WF_CAGetBeaconTimeoutAction Function
File

WFApi.h

C

void WF_CAGetBeaconTimeoutAction(
 UINT8 * p_beaconTimeoutAction
);

Returns

None.

Description

Gets the Beacon Timeout Action used by the Connection Algorithm.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_beaconTimeoutAction Pointer where returned value is written. The value

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

557

will be either • WF_ATTEMPT_TO_RECONNECT

• WF_DO_NOT_ATTEMPT_TO_RECONNECT

11.2.1.3 WF_CAGetChannelList Function
File

WFApi.h

C

void WF_CAGetChannelList(
 UINT8 * p_channelList,
 UINT8 * p_numChannels
);

Returns

None.

Description

Gets the Channel List used by the Connection Algorithm.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_channelList Pointer to where channel list will be returned

p_numChannels Pointer to where number of channels in list will be returned

11.2.1.4 WF_CAGetConnectionProfileList Function
File

WFApi.h

C

void WF_CAGetConnectionProfileList(
 UINT8 cpList[WF_CP_LIST_LENGTH]
);

Returns

None

Description

Not currently supported

Remarks

Not currently supported. The list size is always WF_CP_LIST_SIZE.

Preconditions

MACInit must be called first.

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

558

Parameters

Parameters Description

cpList Array of connection profile ID's used to create CP list

11.2.1.5 WF_CAGetDeauthAction Function
File

WFApi.h

C

void WF_CAGetDeauthAction(
 UINT8 * p_deauthAction
);

Returns

None.

Description

Gets the DeauthAction used by the Connection Algorithm.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_deauthAction Pointer where returned value is written. The value will

be either • WF_ATTEMPT_TO_RECONNECT

• WF_DO_NOT_ATTEMPT_TO_RECONNECT

11.2.1.6 WF_CAGetElements Function
File

WFApi.h

C

void WF_CAGetElements(
 tWFCAElements * p_elements
);

Returns

None

Description

Sends a message to the MRF24WB0M which requests all the Connection Algorithm elements.

Remarks

None

Preconditions

MACInit must be called first.

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

559

Parameters

Parameters Description

p_elements Pointer to the output structure (tWFCAElements) where the connection
algorithm elements are written.

11.2.1.7 WF_CAGetEventNotificationAction Function
File

WFApi.h

C

void WF_CAGetEventNotificationAction(
 UINT8 * p_eventNotificationAction
);

Returns

None.

Description

Gets the Event Notification Action used by the Connection Algorithm. The value read back will be a bit mask that
corresponds to the following table:

Bit Event

0 WF_NOTIFY_CONNECTION_ATTEMPT_SUCCESSFUL

1 WF_NOTIFY_CONNECTION_ATTEMPT_FAILED

2 WF_NOTIFY_CONNECTION_TEMPORARILY_LOST

3 WF_NOTIFY_CONNECTION_PERMANENTLY_LOST

4 WF_NOTIFY_CONNECTION_REESTABLISHED

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_eventNotificationAction Pointer to where returned value is written.

11.2.1.8 WF_CAGetListenInterval Function
File

WFApi.h

C

void WF_CAGetListenInterval(
 UINT16 * p_listenInterval
);

Returns

None.

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

560

Description

Gets the Listen Interval used by the Connection Algorithm. This value is measured in 100ms intervals, the default beacon
period of APs.

Value Description

1 MRF24WB0M wakes up every 100ms to receive buffered messages.

2 MRF24WB0M wakes up every 200ms to receive buffered messages.

... ...

65535 MRF24WB0M wakes up every 6535.5 seconds (~109 minutes) to receive buffered messages.

Remarks

None.

Preconditions

MACInit must be called first. Only used when PS Poll mode is enabled.

Parameters

Parameters Description

p_listenInterval Pointer to where listen (see page 170) interval is returned

11.2.1.9 WF_CAGetListRetryCount Function
File

WFApi.h

C

void WF_CAGetListRetryCount(
 UINT8 * p_listRetryCount
);

Returns

None

Description

See description in WF_CASetListRetryCount (see page 569)()

Remarks

None

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_listRetryCount Pointer to where list retry count is written.

11.2.1.10 WF_CAGetMaxChannelTime Function
File

WFApi.h

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

561

C

void WF_CAGetMaxChannelTime(
 UINT16 * p_minChannelTime
);

Returns

None

Description

Gets the maximum time the connection manager waits for a probe response after sending a probe request.

Remarks

Default is 400ms

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_maxChannelTime Pointer where maximum channel time is written

11.2.1.11 WF_CAGetMinChannelTime Function
File

WFApi.h

C

void WF_CAGetMinChannelTime(
 UINT16 * p_minChannelTime
);

Returns

None

Description

Gets the minimum time the connection manager waits for a probe response after sending a probe request.

Remarks

None

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_minChannelTime Pointer where minimum time to wait for a probe response (in milliseconds) will
be written.

11.2.1.12 WF_CAGetProbeDelay Function
File

WFApi.h

C

void WF_CAGetProbeDelay(
 UINT16 * p_probeDelay

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

562

);

Returns

None

Description

The number of microseconds to delay before transmitting a probe request following the channel change event.

Remarks

Default is 20uS

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_probeDelay Pointer to where probe delay is written

11.2.1.13 WF_CAGetRssi Function
File

WFApi.h

C

void WF_CAGetRssi(
 UINT8 * p_rssi
);

Returns

None

Description

See WF_CASetRssi (see page 571). Note that this function only retrieves the RSSI threshold used during the connection
-- this is not the current RSSI of an existing connection. If it is desired to retrieve the current RSSI state then a scan must be
performed and the scan result will contain the current RSSI state.

Remarks

Default is 255

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_rssi Pointer to where RSSI value is written

11.2.1.14 WF_CAGetScanCount Function
File

WFApi.h

C

void WF_CAGetScanCount(
 UINT8 * p_scanCount
);

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

563

Returns

None

Description

The number of times the Connection Manager will scan a channel while attempting to find a particular WiFi network.

Remarks

Default is 1

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_scanCount Pointer to where scan count is written

11.2.1.15 WF_CAGetScanType Function
File

WFApi.h

C

void WF_CAGetScanType(
 UINT8 * p_scanType
);

Returns

None

Description

Reads the current Connection Algorithm scan type.

Remarks

Active scanning causes the MRF24WB0M to send probe requests. Passive scanning implies the MRF24wB0M only listens
for beacons. Default is WF_ACTIVE_SCAN.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_scanType Pointer where Connection Algorithm scan type is written.

11.2.1.16 WF_CASetBeaconTimeout Function
File

WFApi.h

C

void WF_CASetBeaconTimeout(
 UINT8 beaconTimeout
);

Returns

None.

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

564

Description

Sets the Beacon Timeout used by the Connection Algorithm.

Value Description

0 No monitoring of the beacon timeout condition. The host will not be notified of this event.

1-255 Number of beacons missed before disconnect event occurs and beaconTimeoutAction occurs. If enabled, host will
receive an event message indicating connection temporarily or permanently lost, and if retrying, a connection
successful event.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

beaconTimeout Number of beacons that can be missed before the action in
beaconTimeoutAction is taken.

11.2.1.17 WF_CASetBeaconTimeoutAction Function
File

WFApi.h

C

void WF_CASetBeaconTimeoutAction(
 UINT8 beaconTimeoutAction
);

Returns

None.

Description

Sets the Beacon Timeout Action used by the Connection Algorithm.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

beaconTimeoutAction Action to take if a connection is lost due

to a beacon timeout. Choices are either • WF_ATTEMPT_TO_RECONNECT

• WF_DO_NOT_ATTEMPT_TO_RECONNECT

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

565

11.2.1.18 WF_CASetChannelList Function
File

WFApi.h

C

void WF_CASetChannelList(
 UINT8 * p_channelList,
 UINT8 numChannels
);

Returns

None.

Description

Sets the Channel List used by the Connection Algorithm.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_channelList Pointer to channel list.

numChannels Number of channels in p_channelList. If set to 0, the MRF24WB0M will use all
valid channels for the current regional domain.

11.2.1.19 WF_CASetConnectionProfileList Function
File

WFApi.h

C

void WF_CASetConnectionProfileList(
 UINT8 cpList[WF_CP_LIST_LENGTH]
);

Returns

None

Description

Not currently supported

Remarks

Not currently supported. The list size is always WF_CP_LIST_SIZE. The list should start at index 0. Unused entries in the list
must be set to 0xff.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

cpList Array of connection profile ID's used to create CP list

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

566

11.2.1.20 WF_CASetDeauthAction Function
File

WFApi.h

C

void WF_CASetDeauthAction(
 UINT8 deauthAction
);

Returns

None.

Description

Action to take if a connection is lost due to receiving a deauthentification message from an AP.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

deauthAction Action to take in the event of a deauthentication.

Allowable values are • WF_ATTEMPT_TO_RECONNECT

• WF_DO_NOT_ATTEMPT_TO_RECONNECT

11.2.1.21 WF_CASetElements Function
File

WFApi.h

C

void WF_CASetElements(
 tWFCAElements * p_elements
);

Returns

None

Description

Connection Algorithm Functions

Sends a message to the MRF24WB0M which sets all the Connection Algorithm elements.

Remarks

None

Preconditions

MACInit must be called first.

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

567

Parameters

Parameters Description

p_elements Pointer to the input structure (tWFCAElements) containing the connection
algorithm elements.

11.2.1.22 WF_CASetEventNotificationAction Function
File

WFApi.h

C

void WF_CASetEventNotificationAction(
 UINT8 eventNotificationAction
);

Returns

None.

Description

Sets the Event Notification Action used by the Connection Algorithm. The bit mask for the allowable entries is as follows:

Bit Event

0 WF_NOTIFY_CONNECTION_ATTEMPT_SUCCESSFUL

1 WF_NOTIFY_CONNECTION_ATTEMPT_FAILED

2 WF_NOTIFY_CONNECTION_TEMPORARILY_LOST

3 WF_NOTIFY_CONNECTION_PERMANENTLY_LOST

4 WF_NOTIFY_CONNECTION_REESTABLISHED

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

eventNotificationAction Bit mask indicating which events the host wants to be notifed of.

11.2.1.23 WF_CASetListenInterval Function
File

WFApi.h

C

void WF_CASetListenInterval(
 UINT16 listenInterval
);

Returns

None.

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

568

Description

Sets the listen (see page 170) interval used by the Connection Algorithm. This value is measured in 100ms intervals, the
default beacon period of APs.

Value Description

1 MRF24WB0M wakes up every 100ms to receive buffered messages.

2 MRF24WB0M wakes up every 200ms to receive buffered messages.

... ...

65535 MRF24WB0M wakes up every 6535.5 seconds (~109 minutes) to receive buffered messages.

Remarks

None.

Preconditions

MACInit must be called first. Only used when PS Poll mode is enabled.

Parameters

Parameters Description

listenInterval Number of 100ms intervals between instances when the MRF24WB0M wakes
up to receive buffered messages from the network.

11.2.1.24 WF_CASetListRetryCount Function
File

WFApi.h

C

void WF_CASetListRetryCount(
 UINT8 listRetryCount
);

Returns

None

Description

Number of times to cycle through Connection Profile List before giving up on the connection attempt. Since lists are not yet
supported, this function actually sets the number of times the Connection Manager will try to connect (see page 166) with
the current Connection Profile before giving up.

Remarks

None

Preconditions

MACInit must be called first.

Parameters

Parameters Description

listRetryCount 0 to 254 or WF_RETRY_FOREVER (255)

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

569

11.2.1.25 WF_CASetMaxChannelTime Function
File

WFApi.h

C

void WF_CASetMaxChannelTime(
 UINT16 minChannelTime
);

Returns

None

Description

The maximum time (in milliseconds) the connection manager will wait for a probe response after sending a probe request. If
no probe responses are received in maxChannelTime then the connection manager will go on to the next channel, if any are
left to scan, or quit.

Remarks

Default is 400ms

Preconditions

MACInit must be called first.

Parameters

Parameters Description

maxChannelTime Maximum time to wait for a probe response (in milliseconds)

11.2.1.26 WF_CASetMinChannelTime Function
File

WFApi.h

C

void WF_CASetMinChannelTime(
 UINT16 minChannelTime
);

Returns

None

Description

The minimum time (in milliseconds) the connection manager will wait for a probe response after sending a probe request. If
no probe responses are received in minChannelTime then the connection manager will go on to the next channel, if any are
left to scan, or quit.

Remarks

Default is 200ms

Preconditions

MACInit must be called first.

Parameters

Parameters Description

minChannelTime Minimum time to wait for a probe response (in milliseconds)

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

570

11.2.1.27 WF_CASetProbeDelay Function
File

WFApi.h

C

void WF_CASetProbeDelay(
 UINT16 probeDelay
);

Returns

None

Description

The number of microseconds to delay before transmitting a probe request following the channel change event.

Remarks

Default is 20uS

Preconditions

MACInit must be called first.

Parameters

Parameters Description

probeDelay Desired probe delay

11.2.1.28 WF_CASetRssi Function
File

WFApi.h

C

void WF_CASetRssi(
 UINT8 rssi
);

Returns

None

Description

Specifies the RSSI behavior when connecting. This value is only used if 1) The current Connection Profile has not defined
an SSID or BSSID 2) An SSID is defined in the current Connection Profile and multiple access points are discovered with the
same SSID.

Values: 0 : Connect to the first network found 1 - 254: Only connect (see page 166) to a network if the RSSI is greater
than or equal to the specified value 255: Connect to the highest RSSI found

Note that RSSI is a relative value with no units -- it is not correlated to dBm.

Remarks

Default is 255

Preconditions

MACInit must be called first.

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

571

Parameters

Parameters Description

scanCount Desired scan count

11.2.1.29 WF_CASetScanCount Function
File

WFApi.h

C

void WF_CASetScanCount(
 UINT8 scanCount
);

Returns

None

Description

The number of times the Connection Manager will scan a channel while attempting to find a particular WiFi network.

Remarks

Default is 1

Preconditions

MACInit must be called first.

Parameters

Parameters Description

scanCount Desired scan count

11.2.1.30 WF_CASetScanType Function
File

WFApi.h

C

void WF_CASetScanType(
 UINT8 scanType
);

Returns

None

Description

Configures the Connection Algorithm for the desired scan type.

Remarks

Active scanning causes the MRF24WB0M to send probe requests. Passive scanning implies the MRF24WB0M only listens
for beacons. Default is WF_ACTIVE_SCAN.

Preconditions

MACInit must be called first.

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

572

Parameters

Parameters Description

scanType Desired scan type. Either WF_ACTIVE_SCAN or WF_PASSIVE_SCAN.

11.2.1.31 WFCAElementsStruct Structure
File

WFApi.h

C

struct WFCAElementsStruct {
 UINT16 listenInterval;
 UINT8 scanType;
 UINT8 rssi;
 UINT8 connectionProfileList[WF_CP_LIST_LENGTH];
 UINT8 listRetryCount;
 UINT8 eventNotificationAction;
 UINT8 beaconTimeoutAction;
 UINT8 deauthAction;
 UINT8 channelList[WF_CHANNEL_LIST_LENGTH];
 UINT8 numChannelsInList;
 UINT8 beaconTimeout;
 UINT8 scanCount;
 UINT8 pad1;
 UINT16 minChannelTime;
 UINT16 maxChannelTime;
 UINT16 probeDelay;
};

Members

Members Description

UINT16 listenInterval; This parameter is only used when PS Poll mode is enabled. See
WF_PsPollEnable (see page 586)(). Number of 100ms intervals between
instances when the MRF24WB0M wakes up to received buffered
messages from the network. Range is from 1 (100ms) to 6553.5 sec (~109
min).
Note that the 802.11 standard defines the listen (see page 170) interval
in terms of Beacon Periods, which are typically 100ms. If the MRF24WB0M
is communicating to a network with a network that has Beacon Periods that
is not 100ms it will round up (or down) as needed to match the actual
Beacon Period as closely as possible.
Important Note: If the listenInterval is modified while connected to a
network the MRF24WB0M will automatically reconnect to the network with
the new Beacon Period value. This may cause a temporary loss of data
packets.

UINT8 scanType; WF_ACTIVE_SCAN (Probe Requests sent out) or WF_PASSIVE_SCAN
(listen (see page 170) only)
Default: WF_ACTIVE_SCAN

UINT8 rssi; Specifies RSSI restrictions when connecting. This field is only used if:

1. The Connection Profile has not defined a SSID or BSSID, or

2. An SSID is defined in the Connection Profile and multiple AP’s are
discovered with the same SSID.

UINT8
connectionProfileList[WF_CP_LIST_LENGTH];

Note: Connection Profile lists are not yet supported. This array should
be set to all FF’s.

UINT8 listRetryCount; This field is used to specify the number of retries for the single connection
profile before taking the connection lost action.
Range 1 to 254 or WF_RETRY_FOREVER (255)
Default is 3

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Public Members

573

UINT8 eventNotificationAction; There are several connection-related events that can occur. The Host has
the option to be notified (or not) when some of these events occur. This
field controls event notification for connection-related events.

UINT8 beaconTimeoutAction; Specifies the action the Connection Manager should take if a Connection is
lost due to a Beacon Timeout. If this field is set to
WF_ATTEMPT_TO_RECONNECT then the number of attempts is limited
to the value in listRetryCount.
Choices are: WF_ATTEMPT_TO_RECONNECT or
WF_DO_NOT_ATTEMPT_TO_RECONNECT
Default: WF_ATTEMPT_TO_RECONNECT

UINT8 deauthAction; Designates what action the Connection Manager should take if it receives a
Deauthentication message from the AP.
If this field is set to WF_ATTEMPT_TO_RECONNECT then the number of
attempts is limited to the value in listRetryCount.
Choices are: WF_ATTEMPT_TO_RECONNECT or
WF_DO_NOT_ATTEMPT_TO_RECONNECT
Default: WF_ATTEMPT_TO_RECONNECT

UINT8
channelList[WF_CHANNEL_LIST_LENGTH];

List of one or more channels that the MRF24WB0M should utilize when
connecting or scanning. If numChannelsInList is set to 0 then this
parameter should be set to NULL.
Default: All valid channels for the regional domain of the MRF24WB0M (set
at manufacturing).

UINT8 numChannelsInList; Number of channels in channelList. If set to 0 then the MRF24WB0M will
populate the list with all valid channels for the regional domain.
Default: The number of valid channels for the regional domain of the
MRF24WB0M (set at manufacturing).

UINT8 beaconTimeout; Specifies the number of beacons that can be missed before the action
described in beaconTimeoutAction is taken.

UINT8 scanCount; The number of times to scan a channel while attempting to find a particular
access point.
Default: 1

UINT16 minChannelTime; The minimum time (in milliseconds) the connection manager will wait for a
probe response after sending a probe request. If no probe responses are
received in minChannelTime then the connection manager will go on to the
next channel, if any are left to scan, or quit.
Default: 200ms

UINT16 maxChannelTime; If a probe response is received within minChannelTime then the connection
manager will continue to collect any additional probe responses up to
maxChannelTime before going to the next channel in the channelList. Units
are in milliseconds.
Default: 400ms

UINT16 probeDelay; The number of microseconds to delay before transmitting a probe request
following the channel change event.
Default: 20us

Description

Connection Algorithm Elements

11.2.2 Connection Algorithm Internal Members

Functions

Name Description

LowLevel_CAGetElement (
see page 575)

Get an element of the connection algorithm on the MRF24WB0M.

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Internal Members

574

LowLevel_CASetElement (
see page 575)

Set an element of the connection algorithm on the MRF24WB0M.

SetEventNotificationMask (
see page 576)

Sets the event notification mask.

Module

Wi-Fi Connection Algorithm (see page 555)

Description

The following functions and variables are designated as internal to the module.

11.2.2.1 LowLevel_CAGetElement Function
File

WFConnectionAlgorithm.c

C

static void LowLevel_CAGetElement(
 UINT8 elementId,
 UINT8 * p_elementData,
 UINT8 elementDataLength,
 UINT8 dataReadAction
);

Returns

None.

Description

Low-level function to send the appropriate management message to the MRF24WB0M to get the Connection Algorithm
element.

Remarks

All Connection Algorithm 'Get Element' functions call this function to construct the management message. The caller must fix
up any endian issues after getting the data from this function.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

elementId Element that is being read

p_elementData Pointer to where element data will be written

elementDataLength Number of element data bytes that will be read

dataReadAction If TRUE then read data per paramters and free mgmt response buffer. If FALSE
then return after response received, do not read any data as the caller will do
that, and don't free buffer, as caller will do that as well.

11.2.2.2 LowLevel_CASetElement Function
File

WFConnectionAlgorithm.c

C

static void LowLevel_CASetElement(
 UINT8 elementId,
 UINT8 * p_elementData,

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Internal Members

575

 UINT8 elementDataLength
);

Returns

None.

Description

LOCAL FUNCTION PROTOTYPES

Low-level function to send the appropriate management message to the MRF24WB0M to set the Connection Algorithm
element.

Remarks

All Connection Algorithm 'Set Element' functions call this function to construct the management message. The caller must fix
up any endian issues prior to calling this function.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

elementId Element that is being set

p_elementData Pointer to element data

elementDataLength Number of bytes pointed to by p_elementData

11.2.2.3 SetEventNotificationMask Function
File

WFConnectionAlgorithm.c

C

static void SetEventNotificationMask(
 UINT8 eventNotificationBitMask
);

Returns

None.

Description

Sets the event notification mask for the Connection Algorithm. Allowable values are:

Value Event

0x01 WF_NOTIFY_CONNECTION_ATTEMPT_SUCCESSFUL

0x02 WF_NOTIFY_CONNECTION_ATTEMPT_FAILED

0x04 WF_NOTIFY_CONNECTION_TEMPORARILY_LOST

0x08 WF_NOTIFY_CONNECTION_PERMANENTLY_LOST

0x10 WF_NOTIFY_CONNECTION_REESTABLISHED

0x1f WF_NOTIFY_ALL_EVENTS

Remarks

None.

Preconditions

MACInit must be called first.

11.2 Wi-Fi Connection Algorithm Microchip TCP/IP Stack Help Connection Algorithm Internal Members

576

Parameters

Parameters Description

eventNotificationBitMask Bit mask defining which events the host will be notified of.

11.3 Wi-Fi Connection Manager
Module

Wi-Fi API (see page 538)

Description

The connection manager uses the connection algorithm and one or more connection profiles to connect (see page 166) to
a network.

11.3.1 Connection Manager Public Members

Functions

Name Description

WF_CMConnect (see page
577)

Commands the MRF24WB0M to start a connection.

WF_CMDisconnect (see
page 578)

Commands the MRF24WB0M to close any open connections and/or to cease
attempting to connect (see page 166).

WF_CMGetConnectionState
(see page 578)

Returns the current connection state.

WF_CMInfoGetFSMStats (
see page 579)

CM Info Functions

Module

Wi-Fi Connection Manager (see page 577)

Description

The following functions and variables are available to the stack application.

11.3.1.1 WF_CMConnect Function
File

WFApi.h

C

void WF_CMConnect(
 UINT8 CpId
);

Returns

None.

Description

Connection Manager Functions

Directs the Connection Manager to scan for and connect (see page 166) to a WiFi network. This function does not wait

11.3 Wi-Fi Connection Manager Microchip TCP/IP Stack Help Connection Manager Public Members

577

until the connection attempt is successful, but returns immediately. See WF_ProcessEvent (see page 596) for events that
can occur as a result of a connection attempt being successful or not.

Note that if the Connection Profile being used has WPA or WPA2 security enabled and is using a passphrase, the
connection manager will first calculate the PSK key, and then start the connection process. The key calculation can take up
to 30 seconds.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId If this value is equal to an existing Connection Profile’s ID than only that
Connection Profile will be used to attempt a connection to a WiFi network. If this
value is set to WF_CM_CONNECT_USING_LIST then the
connectionProfileList will be used to connect (see page 166), starting with the
first Connection Profile in the list.

11.3.1.2 WF_CMDisconnect Function
File

WFApi.h

C

void WF_CMDisconnect();

Returns

None.

Description

Directs the Connection Manager to close any open connection or connection attempt in progress. No further attempts to
connect (see page 166) are taken until WF_CMConnect (see page 577)() is called. Generates the event
WF_EVENT_CONNECTION_PERMANENTLY_LOST when the connection is successfully terminated.

Remarks

None.

Preconditions

MACInit must be called.

11.3.1.3 WF_CMGetConnectionState Function
File

WFApi.h

C

void WF_CMGetConnectionState(
 UINT8 * p_state,
 UINT8 * p_currentCpId
);

Returns

None.

11.3 Wi-Fi Connection Manager Microchip TCP/IP Stack Help Connection Manager Public Members

578

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_state Pointer to location where connection state will be written

p_currentCpId Pointer to location of current connection profile ID that is being queried.

11.3.1.4 WF_CMInfoGetFSMStats Function
File

WFApi.h

C

void WF_CMInfoGetFSMStats(
 tWFCMInfoFSMStats * p_info
);

Description

CM Info Functions

11.4 Wi-Fi Scan
Module

Wi-Fi API (see page 538)

Description

If the application already knows the network SSID that it wants to join than it can set up a connection profile with that
information and attempt to join the network. However, there are applications that first need to dynamically determine what
infrastructure and/or adhoc networks are in the area, and then decide which network to join. The scan API functions are
used to gather this information.

11.4.1 Scan Public Members

Functions

Name Description

WF_Scan (see page 580) Commands the MRF24WB0M to start a scan operation. This will generate the
WF_EVENT_SCAN_RESULTS_READY event.

WF_ScanGetResult (see
page 581)

Read scan results back from MRF24WB0M.

Module

Wi-Fi Scan (see page 579)

11.4 Wi-Fi Scan Microchip TCP/IP Stack Help Scan Public Members

579

Description

The following functions and variables are available to the stack application.

11.4.1.1 WF_Scan Function
File

WFApi.h

C

void WF_Scan(
 UINT8 CpId
);

Returns

None.

Description

Scan Functions

Directs the MRF24WB0M to initiate a scan operation utilizing the input Connection Profile ID. The Host Application will be
notified that the scan results are ready when it receives the WF_EVENT_SCAN_RESULTS_READY event. The eventInfo
field for this event will contain the number of scan results. Once the scan results are ready they can be retrieved with
WF_ScanGetResult (see page 581)().

Scan results are retained on the MRF24WB0M until:

1. Calling WF_Scan() again (after scan results returned from previous call).

2. MRF24WB0M reset.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

CpId Connection Profile to use. If the CpId is valid then the values from that
Connection Profile will be used for filtering scan results. If the CpId is set to
WF_SCAN_ALL (0xFF) then a default filter will be used.
Valid CpId

• If CP has a defined SSID only scan results with that SSID are retained.

• If CP does not have a defined SSID then all scanned SSID’s will be
retained

• Only scan results from Infrastructure or AdHoc networks are retained,
depending on the value of networkType in the Connection Profile

• The channel list that is scanned will be determined from channelList in the
Connection Algorithm (which must be defined before calling this function).

CpId is equal to WF_SCAN_ALL

• All scan results are retained (both Infrastructure and Ad Hoc networks).

• All channels within the MRF24WB0M’s regional domain will be scanned.

• No Connection Profiles need to be defined before calling this function.

• The Connection Algorithm does not need to be defined before calling this
function.

11.4 Wi-Fi Scan Microchip TCP/IP Stack Help Scan Public Members

580

11.4.1.2 WF_ScanGetResult Function
File

WFApi.h

C

void WF_ScanGetResult(
 UINT8 listIndex,
 tWFScanResult * p_scanResult
);

Returns

None.

Description

After a scan has completed this function is used to read one or more of the scan results from the MRF24WB0M. The scan
results will be written contiguously starting at p_scanResults (see tWFScanResult structure for format of scan result).

Remarks

None.

Preconditions

MACInit must be called first. WF_EVENT_SCAN_RESULTS_READY event must have already occurrerd.

Parameters

Parameters Description

listIndex Index (0-based list) of the scan entry to retrieve.

p_scanResult Pointer to location to store the scan result structure

Retrieve RSSI RSSI_MAX (200) , RSSI_MIN (106) p_scanResult->rssi

11.5 Wi-Fi Tx Power Control
Module

Wi-Fi API (see page 538)

Description

The API functions in this section are used to configure the MRF24WB0M Tx power control settings.

An application can control Tx power by modify the max Tx power via WF_TxPowerSetMinMax (see page 582)() to
something other than 10dBm.

11.5.1 Tx Power Control Public Members

Functions

Name Description

WF_TxPowerGetMinMax (
see page 582)

Gets the Tx min and max power on the MRF24WB0M.

WF_TxPowerSetMinMax (
see page 582)

Sets the Tx min and max power on the MRF24WB0M.

11.5 Wi-Fi Tx Power Control Microchip TCP/IP Stack Help Tx Power Control Public Members

581

WF_TxPowerGetFactoryMax
(see page 583)

Retrieves the factory-set max Tx power from the MRF24WB0M.

Module

Wi-Fi Tx Power Control (see page 581)

Description

The following functions and variables are available to the stack application.

11.5.1.1 WF_TxPowerGetMinMax Function
File

WFApi.h

C

void WF_TxPowerGetMinMax(
 INT8 * p_minTxPower,
 INT8 * p_maxTxPower
);

Returns

None.

Description

After initialization the MRF24WB0M max Tx power is determined by a factory-set value. This function can set a different
minimum and maximum Tx power levels. However, this function can never set a maximum Tx power greater than the
factory-set value, which can be read via WF_TxPowerGetFactoryMax (see page 583)().

Remarks

No conversion of units needed, input to MRF24WB0M is in dB.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_minTxPower Pointer to location to write the minTxPower

p_maxTxPower Pointer to location to write the maxTxPower

11.5.1.2 WF_TxPowerSetMinMax Function
File

WFApi.h

C

void WF_TxPowerSetMinMax(
 INT8 minTxPower,
 INT8 maxTxPower
);

Returns

None.

Description

Tx Power Control Functions

After initialization the MRF24WB0M max Tx power is determined by a factory-set value. This function can set a different

11.5 Wi-Fi Tx Power Control Microchip TCP/IP Stack Help Tx Power Control Public Members

582

minimum and maximum Tx power levels. However, this function can never set a maximum Tx power greater than the
factory-set value, which can be read via WF_TxPowerGetFactoryMax (see page 583)().

Remarks

No conversion of units needed, input to MRF24WB0M is in dB.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

minTxPower Desired minTxPower (-10 to 10dB)

maxTxPower Desired maxTxPower (-10 to 10dB)

11.5.1.3 WF_TxPowerGetFactoryMax Function
File

WFApi.h

C

void WF_TxPowerGetFactoryMax(
 INT8 * p_factoryMaxTxPower
);

Returns

None.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_factoryMaxTxPower Desired maxTxPower (-10 to 10dB), in 1dB steps

11.6 Wi-Fi Power Save
Module

Wi-Fi API (see page 538)

Description

The MRF24WB0M supports two power-saving modes – sleep and hibernate.

Mode Description

Sleep This mode is used when in PS Poll mode where the MRF24WB0M wakes itself up at periodic
intervals to query the network for receive messages buffered by an Access Point. See
listenInterval in the tWFCAElements structure.

When in sleep mode the MRF24WB0M transmitter receiver circuits are turned off along with other
circuitry to minimize power consumption.

Sleep mode is entered periodically as a result of the Host CPU enabling PS Poll mode.

11.6 Wi-Fi Power Save Microchip TCP/IP Stack Help

583

Hibernate This mode effectively turns the MRF24WB0M off for maximum power savings. MRF24WB0M
state is not retained, and when the MRF24WB0M is taken out of the Hibernate state it performs a
reboot.

Hibernate mode is controlled by toggling the XCEN33 pin on the MRF24WB0M module (high to
enter hibernate, low to exit).

This mode should be used when the application allows for the MRF24WB0M module to be off for
extended periods of time.

Power Save Functions

802.11 chipsets have two well known operational power modes. Active power mode is defined as the radio always on either
transmitting or receiving, meaning that when it isn't transmitting then it is trying to receive. Power save mode is defined as
operating with the radio turned off when there is nothing to transmit and only turning the radio receiver on when required.

The power save mode is a mode that requires interaction with an Access Point. The access point is notified via a packet
from the Station that it is entering into power save mode. As a result the access point is required to buffer any packets that
are destined for the Station until the Station announces that it is ready to once again receive packets. The duration that a
Station is allowed to remain in this mode is limited and is typically 10 times the beacon interval of the Access point.

If the host is expecting packets from the network it should operate in Active mode. If however power saving is critical and
packets are not expected then the host should consider operating in power save mode. Due to the nature of Access points
not all behaving the same, there is the possibility that an Access point will invalidate a Stations connection if it has not heard
from the Station over a given time period. For this reason power save mode should be used with caution.

The 802.11 name for power saving mode is PS-Poll (Power-Save Poll).

11.6.1 Power Save Public Members

Functions

Name Description

WF_GetPowerSaveState (
see page 584)

Returns current power-save state.

WF_HibernateEnable (see
page 585)

Puts the MRF24WB0M into hibernate mode.

WF_PsPollDisable (see
page 586)

Disables PS-Poll mode.

WF_PsPollEnable (see
page 586)

Enables PS Poll mode.

Module

Wi-Fi Power Save (see page 583)

Description

The following functions and variables are available to the stack application.

11.6.1.1 WF_GetPowerSaveState Function
File

WFApi.h

C

void WF_GetPowerSaveState(
 UINT8 * p_powerSaveState
);

11.6 Wi-Fi Power Save Microchip TCP/IP Stack Help Power Save Public Members

584

Returns

None.

Description

Returns the current MRF24WB0M power save state.

Value Definition

---- ---------

WF_PS_HIBERNATE MRF24WB0M in hibernate state

WF_PS_PS_POLL_DTIM_ENABLED MRF24WB0M in PS-Poll mode with DTIM enabled

WF_PS_PS_POLL_DTIM_DISABLED MRF24WB0M in PS-Poll mode with DTIM disabled

WF_PS_POLL_OFF MRF24WB0M is not in any power-save state

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_powerSaveState Pointer to where power state is written

11.6.1.2 WF_HibernateEnable Function
File

WFApi.h

C

void WF_HibernateEnable();

Returns

None.

Description

Enables Hibernate mode on the MRF24WB0M, which effectively turns off the device for maximum power savings.

MRF24WB0M state is not maintained when it transitions to hibernate mode. To remove the MRF24WB0M from hibernate
mode call WF_Init().

Remarks

Note that because the MRF24WB0M does not save state, there will be a disconnect between the TCP/IP stack and the
MRF24B0M state. If it is desired by the application to use hibernate, additional measures must be taken to save application
state. Then the host should be reset. This will ensure a clean connection between MRF24WB0M and TCP/IP stack

Future versions of the stack might have the ability to save stack context as well, ensuring a clean wake up for the
MRF24WB0M without needing a host reset.

Preconditions

MACInit must be called first.

11.6 Wi-Fi Power Save Microchip TCP/IP Stack Help Power Save Public Members

585

11.6.1.3 WF_PsPollDisable Function
File

WFApi.h

C

void WF_PsPollDisable();

Returns

None.

Description

Power Management Functions

Disables PS Poll mode. The MRF24WB0M will stay active and not go sleep.

Remarks

None.

Preconditions

MACInit must be called first.

11.6.1.4 WF_PsPollEnable Function
File

WFApi.h

C

void WF_PsPollEnable(
 BOOL rxDtim
);

Returns

None.

Description

Enables PS Poll mode. PS-Poll (Power-Save Poll) is a mode allowing for longer battery life. The MRF24WB0M coordinates
with the Access Point to go to sleep and wake up at periodic intervals to check for data messages, which the Access Point
will buffer. The listenInterval in the Connection Algorithm defines the sleep interval. By default, PS-Poll mode is disabled.

When PS Poll is enabled, the WF Host Driver will automatically force the MRF24WB0M to wake up each time the Host
sends Tx data or a control message to the MRF24WB0M. When the Host message transaction is complete the
MRF24WB0M driver will automatically re-enable PS Poll mode.

When the application is likely to experience a high volume of data traffic then PS-Poll mode should be disabled for two
reasons:

1. No power savings will be realized in the presence of heavy data traffic.

2. Performance will be impacted adversely as the WiFi Host Driver continually activates and deactivates PS-Poll mode via
SPI messages.

Remarks

None.

Preconditions

MACInit must be called first.

11.6 Wi-Fi Power Save Microchip TCP/IP Stack Help Power Save Public Members

586

Parameters

Parameters Description

rxDtim TRUE if MRF24WB0M should wake up periodically and check for buffered
broadcast messages, else FALSE

11.6.2 Power Save Internal Members

Functions

Name Description

SendPowerModeMsg (see
page 587)

Send power mode management message to the MRF24WB0M.

SetPowerSaveState (see
page 587)

Sets the desired power save state of the MRF24WB0M.

Module

Wi-Fi Power Save (see page 583)

Description

The following functions and variables are designated as internal to the module.

11.6.2.1 SendPowerModeMsg Function
File

WFPowerSave.c

C

static void SendPowerModeMsg(
 tWFPwrModeReq * p_powerMode
);

Returns

None.

Description

LOCAL FUNCTION PROTOTYPES

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_powerMode Pointer to tWFPwrModeReq structure to send to MRF24WB0M.

11.6.2.2 SetPowerSaveState Function
File

WFPowerSave.c

11.6 Wi-Fi Power Save Microchip TCP/IP Stack Help Power Save Internal Members

587

C

static void SetPowerSaveState(
 UINT8 powerSaveState
);

Returns

None.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

powerSaveState Value of the power save state desired.

11.7 Wi-Fi Miscellaneous
Module

Wi-Fi API (see page 538)

Description

11.7.1 Wi-Fi Miscellaneous Public Members

Functions

Name Description

WF_GetDeviceInfo (see
page 589)

Retrieves WF device information

WF_GetMacAddress (see
page 589)

Retrieves the MRF24WB0M MAC address

WF_GetMacStats (see
page 590)

Gets MAC statistics.

WF_GetMultiCastFilter (
see page 590)

Gets a multicast address filter from one of the two multicast filters.

WF_GetRegionalDomain (
see page 591)

Retrieves the MRF24WB0M Regional domain

WF_GetRtsThreshold (see
page 592)

Gets the RTS Threshold

WF_SetMacAddress (see
page 592)

Uses a different MAC address for the MRF24WB0M

WF_SetMultiCastFilter (
see page 593)

Sets a multicast address filter using one of the two multicast filters.

WF_SetRegionalDomain (
see page 593)

Enables or disables the MRF24WB0M Regional Domain.

WF_SetRtsThreshold (see
page 594)

Sets the RTS Threshold.

11.7 Wi-Fi Miscellaneous Microchip TCP/IP Stack Help Wi-Fi Miscellaneous Public Members

588

Module

Wi-Fi Miscellaneous (see page 588)

Structures

Name Description

tWFDeviceInfoStruct (see
page 594)

used in WF_GetDeviceInfo (see page 589)

WFMacStatsStruct (see
page 595)

This is record WFMacStatsStruct.

Description

The following functions and variables are available to the stack application.

11.7.1.1 WF_GetDeviceInfo Function
File

WFApi.h

C

void WF_GetDeviceInfo(
 tWFDeviceInfo * p_deviceInfo
);

Returns

None.

Description

Version functions

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_deviceInfo Pointer where device info will be written

11.7.1.2 WF_GetMacAddress Function
File

WFApi.h

C

void WF_GetMacAddress(
 UINT8 * p_mac
);

Returns

None.

Remarks

None.

11.7 Wi-Fi Miscellaneous Microchip TCP/IP Stack Help Wi-Fi Miscellaneous Public Members

589

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_mac Pointer where mac will be written (must point to a 6-byte buffer)

11.7.1.3 WF_GetMacStats Function
File

WFApi.h

C

void WF_GetMacStats(
 tWFMacStats * p_macStats
);

Returns

None.

Description

MAC Stats

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_macStats Pointer to where MAC statistics are written

11.7.1.4 WF_GetMultiCastFilter Function
File

WFApi.h

C

void WF_GetMultiCastFilter(
 UINT8 multicastFilterId,
 UINT8 multicastAddress[6]
);

Returns

None.

Description

Gets the current state of the specified Multicast Filter.

Normally would call SendGetParamMsg, but this GetParam returns all 6 address filters + 2 more bytes for a total of 48 bytes
plus header. So, doing this msg manually to not require a large stack allocation to hold all the data.

Exact format of returned message is: [0] -- always mgmt response (2) [1] -- always WF_GET_PARAM_SUBTYPE (16) [2] --
result (1 if successful) [3] -- mac state (not used) [4] -- data length (length of response data starting at index 6) [5] -- not used
[6-11] -- Compare Address (see page 142) 0 address [12] -- Compare Address (see page 142) 0 group [13] -- Compare

11.7 Wi-Fi Miscellaneous Microchip TCP/IP Stack Help Wi-Fi Miscellaneous Public Members

590

Address (see page 142) 0 type [14-19] -- Compare Address (see page 142) 1 address [20] -- Compare Address (see
page 142) 1 group [21] -- Compare Address (see page 142) 1 type [22-27] -- Compare Address (see page 142) 2
address [28] -- Compare Address (see page 142) 2 group [29] -- Compare Address (see page 142) 2 type [30-35] --
Compare Address (see page 142) 3 address [36] -- Compare Address (see page 142) 3 group [37] -- Compare Address
(see page 142) 3 type [38-43] -- Compare Address (see page 142) 4 address [44] -- Compare Address (see page
142) 4 group [45] -- Compare Address (see page 142) 4 type [46-51] -- Compare Address (see page 142) 5 address
[52] -- Compare Address (see page 142) 5 group [53] -- Compare Address (see page 142) 5 type

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

multicastFilterId WF_MULTICAST_FILTER_1 or WF_MULTICAST_FILTER_2

multicastAddress 6-byte address

11.7.1.5 WF_GetRegionalDomain Function
File

WFApi.h

C

void WF_GetRegionalDomain(
 UINT8 * p_regionalDomain
);

Returns

None.

Description

see tWFRegDomain enumerated types

Gets the regional domain on the MRF24WB0M. Allowable values are:

• WF_DOMAIN_FCC

• WF_DOMAIN_IC

• WF_DOMAIN_ETSI

• WF_DOMAIN_SPAIN

• WF_DOMAIN_FRANCE

• WF_DOMAIN_JAPAN_A

• WF_DOMAIN_JAPAN_B

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_regionalDomain Pointer where the regional domain value will be written

11.7 Wi-Fi Miscellaneous Microchip TCP/IP Stack Help Wi-Fi Miscellaneous Public Members

591

11.7.1.6 WF_GetRtsThreshold Function
File

WFApi.h

C

void WF_GetRtsThreshold(
 UINT16 * p_rtsThreshold
);

Returns

None.

Description

Gets the RTS/CTS packet size threshold.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

p_rtsThreshold Pointer to where RTS threshold is written

11.7.1.7 WF_SetMacAddress Function
File

WFApi.h

C

void WF_SetMacAddress(
 UINT8 * p_mac
);

Returns

None.

Description

MAC Address (see page 142) Functions

Directs the MRF24WB0M to use the input MAC address instead of its factory-default MAC address. This function does not
overwrite the factory default, which is in FLASH memory – it simply tells the MRF24WB0M to use a different MAC.

Remarks

None.

Preconditions

MACInit must be called first. Cannot be called when the MRF24WB0M is in a connected state.

Parameters

Parameters Description

p_mac Pointer to 6-byte MAC that will be sent to MRF24WB0M

11.7 Wi-Fi Miscellaneous Microchip TCP/IP Stack Help Wi-Fi Miscellaneous Public Members

592

11.7.1.8 WF_SetMultiCastFilter Function
File

WFApi.h

C

void WF_SetMultiCastFilter(
 UINT8 multicastFilterId,
 UINT8 multicastAddress[6]
);

Returns

None.

Description

Multicast Functions

This function allows the application to configure up to two Multicast Address (see page 142) Filters on the MRF24WB0M.
If two active multicast filters are set up they are OR’d together – the MRF24WB0M will receive and pass to the Host CPU
received packets from either multicast address. The allowable values for the multicast filter are:

• WF_MULTICAST_FILTER_1

• WF_MULTICAST_FILTER_2

By default, both Multicast Filters are inactive.

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

multicastFilterId WF_MULTICAST_FILTER_1 or WF_MULTICAST_FILTER_2

multicastAddress 6-byte address (all 0xFF will inactivate the filter)

11.7.1.9 WF_SetRegionalDomain Function
File

WFApi.h

C

void WF_SetRegionalDomain(
 UINT8 regionalDomain
);

Returns

None.

Description

see tWFRegDomain enumerated types

Sets the regional domain on the MRF24WB0M. Note that this function does not overwrite the factory-set regional domain in
FLASH. By default the MRF24WB0M will use the factory-set regional domain. It is invalid to call this function while in a
connected state.

Valid values for the regional domain are:

11.7 Wi-Fi Miscellaneous Microchip TCP/IP Stack Help Wi-Fi Miscellaneous Public Members

593

• WF_DOMAIN_FCC

• WF_DOMAIN_IC

• WF_DOMAIN_ETSI

• WF_DOMAIN_SPAIN

• WF_DOMAIN_FRANCE

• WF_DOMAIN_JAPAN_A

• WF_DOMAIN_JAPAN_B

Remarks

None.

Preconditions

MACInit must be called first. This function must not be called while in a connected state.

Parameters

Parameters Description

regionalDomain Value to set the regional domain to

11.7.1.10 WF_SetRtsThreshold Function
File

WFApi.h

C

void WF_SetRtsThreshold(
 UINT16 rtsThreshold
);

Returns

None.

Description

RTS Threshold Functions

Sets the RTS/CTS packet size threshold for when RTS/CTS frame will be sent. The default is 2347 bytes – the maximum for
802.11. It is recommended that the user leave the default at 2347 until they understand the performance and power
ramifications of setting it smaller. Valid values are from 0 to WF_RTS_THRESHOLD_MAX (2347).

Remarks

None.

Preconditions

MACInit must be called first.

Parameters

Parameters Description

rtsThreshold Value of the packet size threshold

11.7.1.11 tWFDeviceInfoStruct Structure
File

WFApi.h

11.7 Wi-Fi Miscellaneous Microchip TCP/IP Stack Help Wi-Fi Miscellaneous Public Members

594

C

struct tWFDeviceInfoStruct {
 UINT8 deviceType;
 UINT8 romVersion;
 UINT8 patchVersion;
};

Members

Members Description

UINT8 deviceType; MRF24WB0M_DEVICE_TYPE

UINT8 romVersion; ROM version number

UINT8 patchVersion; Patch version number

Description

used in WF_GetDeviceInfo (see page 589)

11.7.1.12 WFMacStatsStruct Structure
File

WFApi.h

C

struct WFMacStatsStruct {
 UINT32 MibWEPExcludeCtr;
 UINT32 MibTxBytesCtr;
 UINT32 MibTxMulticastCtr;
 UINT32 MibTxFailedCtr;
 UINT32 MibTxRtryCtr;
 UINT32 MibTxMultRtryCtr;
 UINT32 MibTxSuccessCtr;
 UINT32 MibRxDupCtr;
 UINT32 MibRxCtsSuccCtr;
 UINT32 MibRxCtsFailCtr;
 UINT32 MibRxAckFailCtr;
 UINT32 MibRxBytesCtr;
 UINT32 MibRxFragCtr;
 UINT32 MibRxMultCtr;
 UINT32 MibRxFCSErrCtr;
 UINT32 MibRxWEPUndecryptCtr;
 UINT32 MibRxFragAgedCtr;
 UINT32 MibRxMICFailureCtr;
};

Members

Members Description

UINT32 MibWEPExcludeCtr; Number of frames received with the Protected Frame subfield of the Frame
Control field set to zero and the value of dot11ExcludeUnencrypted causes that
frame to be discarded.

UINT32 MibTxBytesCtr; Total number of Tx bytes that have been transmitted

UINT32 MibTxMulticastCtr; Number of frames successfully transmitted that had the multicast bit set in the
destination MAC address.

UINT32 MibTxFailedCtr; Number of Tx frames that failed due to the number of transmits exceeding the
retry count.

UINT32 MibTxRtryCtr; Number of times a transmitted frame needed to be retried

UINT32 MibTxMultRtryCtr; Number of times a frame was successfully transmitted after more than one
retransmission.

UINT32 MibTxSuccessCtr; Number of Tx frames successfully transmitted.

UINT32 MibRxDupCtr; Number of frames received where the Sequence Control field indicates a
duplicate.

11.7 Wi-Fi Miscellaneous Microchip TCP/IP Stack Help Wi-Fi Miscellaneous Public Members

595

UINT32 MibRxCtsSuccCtr; Number of CTS frames received in response to an RTS frame.

UINT32 MibRxCtsFailCtr; Number of times an RTS frame was not received in response to a CTS frame.

UINT32 MibRxAckFailCtr; Number of times an Ack was not received in response to a Tx frame.

UINT32 MibRxBytesCtr; Total number of Rx bytes received.

UINT32 MibRxFragCtr; Number of successful received frames (management or data)

UINT32 MibRxMultCtr; Number of frames received with the multicast bit set in the destination MAC
address.

UINT32 MibRxFCSErrCtr; Number of frames received with an invalid Frame Checksum (FCS).

UINT32 MibRxWEPUndecryptCtr; Number of frames received where the Protected Frame subfield of the Frame
Control Field is set to one and the WEPOn value for the key mapped to the
transmitter’s MAC address indicates the frame should not have been encrypted.

UINT32 MibRxFragAgedCtr; Number of times that fragments ‘aged out’, or were not received in the
allowable time.

UINT32 MibRxMICFailureCtr; Number of MIC failures that have occurred.

Description

This is record WFMacStatsStruct.

11.8 WF_ProcessEvent
Module

Wi-Fi API (see page 538)

Description

There are several events that can occur on the MRF24WB0M that the host CPU may want to know about. All MRF24WB0M
events go through the WF_ProcessEvent() function described in the next section.

Event Processing

The WF_ProcessEvent() function is how the host application is notified of events. This function will be called by the Wi-Fi
host driver when an event occurs. This function should not be called directly by the host application. This function, located in
WF_Customize.c, should be modified by the user as needed. Since this function is called from the WiFi driver there are
some restrictions – namely, one cannot call any Wi-Fi driver functions when inside WFProcessEvent. It is recommended that
that customer simply set a flag for a specific event and handle it in the main loop. The framework for this function is shown
below.

The prototype for this function is:

UINT16 WF_ProcessEvent(UINT8 event, UINT16 eventinfo);

There are two inputs to the function:

event The event that occurred.

eventInfo Additional information about the event. This is not applicable to all events.

The table below shows possible values that the event and eventInfo parameters can have. Note that event notification of
some events can be optionally disabled via:

1. Bit mask eventNotificationAction in the tWFCAElements structure (see Wi-Fi Connection Algorithm (see page 555)), or

2. Function WF_CASetEventNotificationAction() (see page 568).

11.8 WF_ProcessEvent Microchip TCP/IP Stack Help

596

event eventInfo

WF_EVENT_CONNECTION_SUCCESSFUL The connection attempt was successful.

eventInfo:

• Always WF_NO_ADDITIONAL_INFO

(Optional event)

WF_EVENT_CONNECTION_FAILED The connection attempt failed

eventInfo:

• WF_JOIN_FAILURE

• WF_AUTHENTICATION_FAILURE

• WF_ASSOCIATION_FAILURE

• WF_WEP_HANDSHAKE_FAILURE

• WF_PSK_CALCULATION_FAILURE

• WF_PSK_HANDSHAKE_FAILURE

• WF_ADHOC_JOIN_FAILURE

• WF_SECURITY_MISMATCH_FAILURE

• WF_NO_SUITABLE_AP_FOUND_FAILURE

• WF_RETRY_FOREVER_NOT_SUPPORTED_FAILURE

(Optional event)

WF_EVENT_CONNECTION_TEMPORARILY_LOST An established connection was temporarily lost – the connection
algorithm is attempting to reconnect. The eventInfo field indicates why
the connection was lost.

eventInfo:

• WF_BEACON_TIMEOUT

• WF_DEAUTH_RECEIVED

• WF_DISASSOCIATE_RECEIVED

(Optional event)

WF_EVENT_CONNECTION_PERMANENTLY_LOST An established connection was permanently lost – the connection
algorithm either ran out of retries or was configured not to retry. The
eventInfo field indicates why the connection was lost.

eventInfo:

• WF_BEACON_TIMEOUT

• WF_DEAUTH_RECEIVED

• WF_DISASSOCIATE_RECEIVED

This event can also be generated when WF_CMDisconnect (see

page 578)() is called, in which case the eventInfo field has no
meaning.

(Optional event)

WF_EVENT_CONNECTION_REESTABLISHED A connection that was temporarily lost has been restablished

Always WF_NO_ADDITIONAL_INFO

(Optional event)

WF_EVENT_SCAN_RESULTS_READY The scan request initiated by calling WF_Scan (see page 580)()
has completed and results can be read from the MRF24WB0M.

eventInfo: Number of scan results

11.8 WF_ProcessEvent Microchip TCP/IP Stack Help

597

12.2 WF_ProcessEvent() Framework

Below is the framework for WF_ProcessEvent(). Each case statement should be modified as needed to handle events the
application is interested in.

void WF_ProcessEvent(UINT8 event, UINT16 eventInfo)
{
 switch (event)
 {
 case WF_EVENT_CONNECTION_SUCCESSFUL:
 /* Application code here */
 break;

 case WF_EVENT_CONNECTION_FAILED:
 /* Application code here */
 break;

 case WF_EVENT_CONNECTION_TEMPORARILY_LOST:
 /* Application code here */
 break;

 case WF_EVENT_CONNECTION_PERMANENTLY_LOST:
 /* Application code here */
 break;

 case WF_EVENT_FLASH_UPDATE_SUCCESSFUL:
 /* Application code here */
 break;

 case WF_EVENT_FLASH_UPDATE_FAILED:
 /* Application code here */
 break;

 case WF_EVENT_KEY_CALCULATION_COMPLETE:
 /* Application code here */
 break;

 case WF_EVENT_SCAN_RESULTS_READY:
 /* Application code here */
 break;

 case WF_EVENT_IE_RESULTS_READY:
 /* Application code here */
 break;

 default:
 WF_ASSERT(FALSE);
 break;
 }
}

11.9 Access Point Compatibility
Module

Wi-Fi API (see page 538)

Description

Introduction

The MRF24WB0M has passed through Wi-Fi.org certification testing. Not all routers pass through Wi-Fi.org certification, and
some are pre-configured in Greenfield modes. Further, users can set configurations that severely limit performance or
prevent communications. This app note is intended to provide an on-going compatibility snapshot among a few of the most
popular and market leading access points as well as a larger group of worldwide units. The test results will show the usability

11.9 Access Point Compatibility Microchip TCP/IP Stack Help

598

of the Microchip Wi-Fi modules operating with the latest release of the Microchip TCPIP stack.

Wi-Fi Alliance Testing

To carry the Wi-Fi Alliance logo, Wi-Fi products must successfully pass numerous tests, including compatibility testing. Wi-Fi
compatibility testing is performed against 4 representative access points, with a subset of tests run against each of the
access points. Devices are tested against these access points for characteristics such as connectivity, security, throughput,
and a breadth of other specifications. Microchip Wi-Fi modules have successfully passed the Wi-Fi Alliance testing. The
report is titled WFA7150 and is available at http://certifications.wi-fi.org/pdf_certificate.php?cid=WFA7150

Additional Wi-Fi Compatibility Testing

Wi-Fi technology is dramatically expanding the reach and applications of the internet to embedded devices. In many cases,
Wi-Fi is new to the markets and applications it is reaching. As a result, Microchip feels it is important to raise the bar on
compatibility testing, and education of the developer.

Microchip has thus adopted the Wi-Fi.org test bench for more generic Access Point testing. The goal of these tests is to
ensure basic connectivity in multiple non-secure and secure scenarios with a global representation of top selling access
points.

Pass Criteria

The following tests are part of the current testing suite and must pass for the Access Point to be considered compatible.

• Following in conditions of no security, WEP40 and WEP104, WPA-PSK (TKIP), WPA2-PSK (AES)

• AP association, Iperf UDP upload/download, Iperf TCP upload/download, DHCP, ICMP ping

In many cases there are other modes that can be run with the Access Points and the user must take caution that if the mode
is not listed, then compatibility is not necessarily guaranteed. These modes are usually Greenfield use, modes being
deprecated by Wi-Fi.org, or cases of limiting the use of the Access Point for more private networking purposes and not for
true Wi-Fi compatibility.

Examples of special modes not necessarily part of the results:

• WPA-PSK(AES) security: WPA-PSK security is defined as using TKIP. This is a mixed mode. This mode works if the AP
just auto-detects and does not mix.

• WPA2-PSK (TKIP) security: WPA2-PSK security is defined as using 802.11i with AES. This is a mixed mode. This mode
works if the AP just auto-detects and does not mix.

• 802.11g only, 802.11n only, 802.11g/n only: these are private network modes (cutting out mandatory support for 802.11b).
These modes may work if basic rates are limited to 1&2mbps per 802.11.

List of compatible Access Points:

• 2Wire 1701HG

• 2Wire 2701HG-B

• 3COM 3CRWER100-75

• 3COM WL-524

• Actiontec GT704-WG

• AirLink AR690W

• Belkin N1

• Belkin F5D7231-4

11.9 Access Point Compatibility Microchip TCP/IP Stack Help

599

http://certifications.wi-fi.org/pdf_certificate.php?cid=WFA7150

• Buffalo WHR-G125

• Buffalo WHR-HP-G54

• Corega CG-WLAPGMN

• Corega CG-WLBARGO

• D-Link DIR-655

• D-Link WBR-1310

• Dynex DX-WGRTR

• Level1 WBR-3408

• Linksys WRT150Nv1.1

• Linksys WRT310N

• Microsoft MN-700

• Netgear WGR614v9

• Netgear WGT624v3

• Netgear WNDR3300

• Netgear WPN824v2

• Proxim AP-700

• SMC Networks SMCWBR14T-G

• TP-Link TL-WR541G

• Westell B90-327W15-06

*Note Tests Performed:

• Basic association with the AP (no security)

• Association with WEP security

• Association with WPA/WPA2-PSK security

• Ping test validation.

11.10 WiFi Tips and Tricks
Module

Wi-Fi API (see page 538)

Description

Tips for Setting up Routers for 802.11b Use

The purpose of this section is to describe the settings for the most typical AP configurable parameters to enable compatibility
with the Microchip MRF24WB0Mx devices :

1. DHCP Settings - For DHCP on LAN side (where AP is DHCP server), set Router to Enable DHCP server. Set Client
Lease time to be longer than the typical off time of the station to ensure that the IP address provided doesn’t change each
time the station is powered up. If an option for Always Broadcast is present for DHCP setup (broadcasts all DHCP
responses to all clients), it should be disabled.

2. Data Rate Settings - Ensure that service rates include 802.11b. 802.11g or 802.11n only rates (green field) should be
avoided, but mixed settings are usually acceptable. If a Basic Rate setting is defined, it should be set to 1 and 2MBPS
only.

3. SSID Broadcast - Should typically be enabled so that the AP sends beacon frames containing the SSID. If disabled,
ensure that Microchip Stack is set for Active Scanning.

11.10 WiFi Tips and Tricks Microchip TCP/IP Stack Help

600

4. Channel Selection - For debug purposes, it is typical to use a fixed channel instead of Auto Channel Selection. If a fixed
channel has been selected for the MRF24 Station, select the corresponding channel for the AP.

5. Multicast Passthrough - If using multicast features (ZeroConfig for instance) ensure that the Router is configured to
enable forwarding of Multicast packets.

6. Beacon Interval - Set the value for the time interval between AP beacons, typical is 100msec. For lower power, this can
be set to a smaller value, say 30mS, if the DTIM interval is correspondingly increased.

7. RTS Threshold - Set the value for the frame size above which RTS/CTS will be used, typical is 2347.

8. Fragmentation Threshold - Set the value for the frame size above which packets will be fragmented, typical is 2346.

9. DTIM Interval - Set the value for Delivery Traffic Indication Message Interval, typical is 3 if the Beacon Interval is set for
100mSec. For lower power with the MRF24WB0M, if the Beacon Interval is set to 30mS, then the DTIM should be set to
100 to allow 300mS DTIM Interval.

10. WLAN Partition (or AP Isolation)- Prevents AP clients from communicating to each other, typically disabled.

11. WMM Enable - Allows wireless multimedia traffic, disable unless necessary for other AP services.

12. Short Guard Interval (GI) - Lowers the guard interval between frames, disable unless necessary for other AP services.

13. WiFi Protected Setup (WPS) - Enables WPS device discovery, disable unless necessary for other AP services.

14. Frame Burst - Enables higher wireless packet throughput, disable unless necessary for other AP services. This may be
called turbo, or other marketing terms.

15. CTS Protection Mode – Improves reliability of 802.11g traffic, disable unless necessary for other AP services.

16. Key Entry – Security can be entered with either a numerical key or an ASCII passphrase. Ensure you enter what the AP
expects. If just starting, it is best to have another station like a laptop to validate what the AP is expecting.

11.11 Hot Topics
Module

Wi-Fi API (see page 538)

Description

Host Controlled Connection Manager Clarifications

The following clarifications are to be noted for use of the device with Microchip TCPIP Stack versions unless otherwise noted.

1. Null String ESSID

It is possible to call WF_CMConnect (see page 577)(cpId) with a cpId of zero. If this happens, the connection manager
can use erroneous values for the SSID, Network Mode, Security configuration, etc. which will cause the module to connect
(see page 166) to a wrong AP or not connect (see page 166) at all. The only valid values that can be used for
connection profile references are 1 and 2 (assuming that the WF_CPCreate (see page 542)(&cpId) succeeded in creating
these profile references prior to the attempted connection).

Work around:

When creating a connection profile, verify that the profile number returned is always either 1 or 2. If the returned value is 0,
delete the profile and recreate it. When connecting with WF_CMConnect (see page 577)(cpId), ensure that only a valid
profile number previously returned from WF_CPCreate (see page 542)(&cpId) is used.

2. Management scan message conflict

Management messages must always return successful or it causes an assert in the host driver. An unsuccessful

11.11 Hot Topics Microchip TCP/IP Stack Help

601

management message can occur when the connection retry is enabled (MY_DEFAULT_LIST_RETRY_COUNT>0) causing
the device to be scanning due to a dropped connection, and then a disconnect, or connect (see page 166), or scan
command is sent.

Work around:

If you are controlling connect (see page 166)/reconnect from the host actively, then disable all firmware retry by using “no
scan retry” and “no de-authorization action”.

a. To disable Scan Retry

WF_CASetListRetryCount (see page 569)(MY_DEFAULT_LIST_RETRY_COUNT); should be 0

b. To disable De-authorization action

WF_CASetDeauthAction (see page 567)(WF_DO_NOT_ATTEMPT_TO_RECONNECT);

c. To disable De-authentication action

WF_CASetBeaconTimeoutAction (see page 565)(WF DO NOT ATTEMPT TO RECONNECT);

d. Use “Connect” only on “permanent loss” or “connection failure”.

e. To do a Scan, first check the firmware state first by using WF_CMGetConnectionState (see page 578)()

i. If the return state is WF_CSTATE_NOT_CONNECTED (or WF_CSTATE_CONNECTION_PERMANENTLY_LOST), then
this means firmware is in IDLE, so host can issue host scan safely

ii. If the return state is WF_CSTATE_CONNECTED_INFRASTRUCTURE, then this means firmware is in CONNECTED. In
this case a scan command can be issued but a watchdog timer must be used to time for conflict. Also, ensure the
management timer is set for at least 0.4seconds per channel scanned to prevent queued Tx buffer requests from timing out.

iii. If return state is WF_CSTATE_CONNECTION_IN_PROGRESS (or WF_CSTATE_RECONNECTION_IN_PROGRESS),
then this means firmware is in the middle of connection process and a scan must not be initiated.

f. If “Disconnect” function is desired, a watchdog timer needs to be used to address the case where a conflict occurs with an
over the air disassociate or deauthorize.

g. For watchdog timing, advised timing is 2x the management packet timeout (that is, use 4seconds unless the management
timeout has been increased).

b. If you are only using the firmware retry and not doing ANY connection management (scan, connect (see page 166),
idle, etc.) then you can use MY_DEFAULT_LIST_RETRY_COUNT>0 or retry forever
(MY_DEFAULT_LIST_RETRY_COUNT=255). If you lose connection, you can reconnect using the “connect (see page
166)” API. Do not use “Disconnect”.

a. If “Disconnect” function is desired, a watchdog timer needs to be used to address the case where a conflict occurs with an
over the air disassociate or deauthorize.

11.11 Hot Topics Microchip TCP/IP Stack Help

602

Index

_
_checkIpSrvrResponse variable 196

_LoadFATRecord function 283

_MD5_k variable 205

_MD5_r variable 205

_NBNS_HEADER structure 288

_SNMPDuplexInit function 331

_SNMPGet function 331

_SNMPGetTxOffset macro 331

_SNMPPut function 331

_SNMPSetTxOffset macro 332

_TFTP_ACCESS_ERROR enumeration 496

_TFTP_FILE_MODE enumeration 496

_TFTP_RESULT enumeration 497

_tftpError variable 506

_tftpFlags variable 506

_tftpRetries variable 507

_TFTPSendAck function 507

_TFTPSendFileName function 507

_TFTPSendROMFileName function 508

_tftpSocket variable 508

_tftpStartTick variable 508

_tftpState variable 508

_updateIpSrvrResponse variable 196

_Validate function 284

A
accept function 164

Access Point Compatibility 598

Accessing the Demo Application 74

ACK macro 469

activeUDPSocket variable 533

Additional Features 146

Address 142

Advanced MPFS2 Settings 60

AF_INET macro 165

AGENT_NOTIFY_PORT macro 332

Announce 150

Announce Stack Members 151

AnnounceIP function 151

APP_CONFIG Structure 133

appendZeroToOID variable 332

ARP 152

Types 161

ARP Internal Members 158

ARP Public Members 152

ARP Stack Members 157

arp_app_callbacks structure 156

ARP_IP macro 160

ARP_OPERATION_REQ macro 160

ARP_OPERATION_RESP macro 160

ARP_PACKET structure 161

ARP_REQ macro 156

ARP_RESP macro 156

ARPDeRegisterCallbacks function 154

ARPInit function 157

ARPIsResolved function 154

ARPProcess function 157

ARPPut function 159

ARPRegisterCallbacks function 155

ARPResolve function 153

ARPSendPkt function 155

ASN_INT macro 332

ASN_NULL macro 333

ASN_OID macro 333

Authentication 85

Available Demos 82

B
Base64Decode function 209

Base64Encode function 209

Berkeley (BSD) Sockets 162

BerkeleySocketInit function 176

bForceUpdate variable 195

bind function 165

Bootloader Design 116

BSD Sockets 149

BSD Wrapper Internal Members 177

BSD Wrapper Public Members 163

BSD Wrapper Stack Members 176

BSD_SCK_STATE enumeration 177

12 Microchip TCP/IP Stack Help

a

BSDSocket structure 165

BSDSocketArray variable 178

btohexa_high function 210

btohexa_low function 210

Building MPFS2 Images 59

C
Cache variable 160

CalcIPBufferChecksum function 211

CalcIPChecksum function 211

CalculateFinishedHash function 393

Clock Frequency 137

closesocket function 166

CloseSocket function 469

COMMUNITY_TYPE enumeration 318

Configure your WiFi Access Point 71

Configuring the Stack 137

Configuring WiFi Security 75

connect function 166

Connecting to the Network 73

Connection Algorithm Internal Members 574

Connection Algorithm Public Members 555

Connection Manager Public Members 577

Connection Profile Internal Members 553

Connection Profile Public Members 541

Cookies 87

Cooperative Multitasking 134

CRPeriod variable 306

curHTTP variable 235

curHTTPID variable 247

D
DATA_TYPE enumeration 333

DATA_TYPE_INFO structure 334

DATA_TYPE_TABLE_SIZE macro 334

dataTypeTable variable 334

Daughter Boards 63

DDNS_CHECKIP_SERVER macro 196

DDNS_DEFAULT_PORT macro 197

DDNS_POINTERS structure 189

DDNS_SERVICES enumeration 190

DDNS_STATUS enumeration 190

DDNSClient variable 191

DDNSData variable 91

DDNSForceUpdate function 191

DDNSGetLastIP function 192

DDNSGetLastStatus function 192

DDNSInit function 193

ddnsServiceHosts variable 195

ddnsServicePorts variable 195

DDNSSetService function 192

DDNSTask function 193

Demo App 82

Demo App MDD 131

Demo Compatibility Table 78

Demo Information 78

Demo Modules 83

Directory Structure 1

DiscoveryTask function 151

DNS Client 179

DNS Internal Members 183

DNS Public Members 179

DNS_HEADER structure 187

DNS_PORT macro 185

DNS_TIMEOUT macro 185

DNS_TYPE_A macro 182

DNS_TYPE_MX macro 183

DNSBeginUsage function 180

DNSDiscardName function 187

DNSEndUsage function 180

DNSHostName variable 185

DNSHostNameROM variable 185

DNSIsResolved function 182

DNSPutROMString function 184

DNSPutString function 184

DNSResolve function 181

DNSResolveROM function 181

dwInternalTicks variable 515

dwLastUpdateTick variable 371

dwLFSRRandSeed variable 225

dwSNTPSeconds variable 372

dwUpdateAt variable 195

Dynamic DNS Client 188

Dynamic DNS Internal Members 194

12 Microchip TCP/IP Stack Help

b

Dynamic DNS Public Members 188

Dynamic DNS Stack Members 193

Dynamic Variables 84

E
E-mail (SMTP) Demo 92

ENC28J60 Config 138

ENCX24J600 Config 139

Energy Monitoring 131

Explorer 16 and PIC32 Starter Kit 67

External Storage 137

ExtractURLFields function 212

F
fatCache variable 284

fatCacheID variable 285

FIN macro 469

FindEmailAddress function 306

FindMatchingSocket function 469, 533

FindOIDsInRequest function 335

FindROMEmailAddress function 307

Flags variable 186

FormatNetBIOSName function 215

Forms using GET 85

Forms using POST 86

G
gAutoPortNumber variable 178

GenerateHashRounds function 393

GenerateRandomDWORD function 215

GenerateSessionKeys function 394

Generating Server Certificates 374

Generic TCP Client 93

Variables 95

Generic TCP Server 96

Macros 97

GENERIC_TRAP_NOTIFICATION_TYPE enumeration 317

GenericTCPClient function 94

GenericTCPServer function 97

GET_BULK_REQUEST macro 335

GET_NEXT_REQUEST macro 335

GET_REQUEST macro 335

GET_RESPONSE macro 335

GetDataTypeInfo function 338, 349

gethostname function 167

GetNextLeaf function 349

GetOIDStringByAddr function 350

GetOIDStringByID function 350

getSnmpV2GenTrapOid function 357

GetTickCopy function 516

Getting Help 1

Getting Started 63

getZeroInstance variable 366

gGenericTrapNotification variable 320

gOIDCorrespondingSnmpMibID variable 320

Google PowerMeter 131

gSendTrapFlag variable 319

gSendTrapSMstate variable 112

gSetTrapSendFlag variable 319

gSnmpNonMibRecInfo variable 113

gSNMPv3ScopedPduDataPos variable 366

gSNMPv3ScopedPduRequestBuf variable 366

gSNMPv3ScopedPduResponseBuf variable 366

gSnmpv3UserSecurityName variable 113

gSpecificTrapNotification variable 320

H
HandlePossibleTCPDisconnection function 178

HandleTCPSeg function 470

Hardware Configuration 137

Hardware Setup 63

Hash Table Filter Entry Calculator 61

HASH_SUM structure 201

HASH_TYPE enumeration 205

HashAddData function 198

HashAddROMData function 198

Hashes 197

Hashes Internal Members 204

Hashes Public Members 197

Hashes Stack Members 202

hCurrentTCP variable 470

Helpers 207

Functions 223

Variables 225

12 Microchip TCP/IP Stack Help

c

Helpers Public Members 208

hexatob function 216

hMPFS variable 336

HOST_TO_PING macro 99

Hot Topics 601

How the Stack Works 132

HSEnd function 394

HSGet function 395

HSGetArray function 395

HSGetWord function 396

HSPut function 396

HSPutArray function 397

HSPutROMArray function 398

HSPutWord function 398

HSStart function 398

HTTP Configuration 110

HTTP_CACHE_LEN macro 248

HTTP_CONN structure 235

HTTP_FILE_TYPE enumeration 248

HTTP_IO_RESULT enumeration 236

HTTP_MAX_DATA_LEN macro 249

HTTP_MAX_HEADER_LEN macro 249

HTTP_MIN_CALLBACK_FREE macro 249

HTTP_PORT macro 249

HTTP_READ_STATUS enumeration 236

HTTP_STATUS enumeration 249

HTTP_STUB structure 250

HTTP_TIMEOUT macro 251

HTTP2 Authentication 231

HTTP2 Compression 233

HTTP2 Cookies 233

HTTP2 Dynamic Variables 226

HTTP2 Features 226

HTTP2 Form Processing 228

HTTP2 Internal Members 246

HTTP2 Public Members 234

HTTP2 Server 225

HTTP2 Stack Members 245

HTTPCheckAuth function 236

httpContentTypes variable 251

HTTPExecuteGet function 237

HTTPExecutePost function 238

httpFileExtensions variable 251

HTTPGetArg function 239

HTTPGetROMArg function 240

HTTPHeaderParseAuthorization function 251

HTTPHeaderParseContentLength function 252

HTTPHeaderParseCookie function 252

HTTPHeaderParseLookup function 253

HTTPIncFile function 253

HTTPInit function 245

HTTPLoadConn function 254

HTTPMPFSUpload function 254

HTTPNeedsAuth function 240

HTTPPostConfig function 89

HTTPPostDDNSConfig function 89

HTTPPostEmail function 90

HTTPPostLCD function 90

HTTPPostMD5 function 91

HTTPPostSNMPCommunity function 88

HTTPPrint_varname function 241

HTTPProcess function 255

HTTPReadPostName function 242

HTTPReadPostPair macro 243

HTTPReadPostValue function 243

HTTPReadTo function 255

HTTPRequestHeaders variable 256

HTTPResponseHeaders variable 256

HTTPS_PORT macro 256

HTTPSendFile function 257

HTTPServer function 246

httpStubs variable 257

HTTPURLDecode function 244

HW_ETHERNET macro 160

I
ICMP 258

ICMP Internal Members 263

ICMP Public Members 259

ICMP_PACKET structure 264

ICMP_TIMEOUT macro 265

ICMPBeginUsage function 259

ICMPEndUsage function 262

ICMPFlags variable 264

12 Microchip TCP/IP Stack Help

d

ICMPGetReply function 261

ICMPProcess function 263

ICMPSendPing function 260

ICMPSendPingToHost function 260

ICMPSendPingToHostROM function 261

ICMPSendPingToHostROM macro 262

ICMPState variable 264

ICMPTimer variable 265

ifconfig Commands 125

in_addr structure 168

INADDR_ANY macro 168

INDEX_INFO union 336

Initialization 133

Initialization Structure 148

INOUT_SNMP_PDU enumeration 364

Internet Bootloader 116

Internet Radio 122

Introduction 1

INVALID_SOCKET macro 438

INVALID_TCP_PORT macro 169

INVALID_UDP_PORT macro 519

INVALID_UDP_SOCKET macro 519

IP Address 143

IP_ADDR_ANY macro 169

iperf Example 127

IPPROTO_IP macro 169

IPPROTO_TCP macro 169

IPPROTO_UDP macro 169

IS_AGENT_PDU macro 336

IS_ASN_INT macro 337

IS_ASN_NULL macro 337

IS_GET_NEXT_REQUEST macro 337

IS_GET_REQUEST macro 337

IS_GET_RESPONSE macro 337

IS_OCTET_STRING macro 338

IS_OID macro 338

IS_SET_REQUEST macro 338

IS_SNMPV3_AUTH_STRUCTURE macro 367

IS_STRUCTURE macro 339

IS_TRAP macro 339

IsASNNull function 339

isBufferUsed variable 399

isHashUsed variable 399

isMPFSLocked variable 280

isStubUsed variable 399

IsValidCommunity function 350

IsValidInt function 350

IsValidLength function 346, 351

IsValidOID function 351

IsValidPDU function 351

IsValidStructure function 351

iwconfig Commands 123

iwpriv Commands 126

L
lastBlock variable 205

lastFailure variable 92

lastKnownIP variable 195

LastPutSocket variable 534

lastRead variable 281

lastStatus variable 196

lastSuccess variable 92

leftRotateDWORD function 216

leftRotateDWORD macro 217

LFSRRand function 223

LFSRSeedRand function 224

listen function 170

LoadOffChip function 400

LOCAL_PORT_END_NUMBER macro 471

LOCAL_PORT_START_NUMBER macro 471

LOCAL_UDP_PORT_END_NUMBER macro 534

LOCAL_UDP_PORT_START_NUMBER macro 534

LowLevel_CAGetElement function 575

LowLevel_CASetElement function 575

LowLevel_CPGetElement function 554

LowLevel_CPSetElement function 554

M
MAC Address 142

Main File 133

Main Loop 133

masks variable 400

MAX_FILE_NAME_LEN macro 281

MAX_REG_APPS macro 156

12 Microchip TCP/IP Stack Help

e

MAX_TELNET_CONNECTIONS macro 482

MAX_TRY_TO_SEND_TRAP macro 113

MD5AddData function 204

MD5AddROMData function 202

MD5Calculate function 199

MD5HashBlock function 207

MD5Initialize function 200

Memory Allocation 147

Memory Usage 55

MIB Browsers 101

MIB Files 100

MIB_INFO union 339

Microchip TCP/IP Discoverer 61

MPFS_FAT_RECORD structure 284

MPFS_HANDLE type 268

MPFS_INVALID macro 268

MPFS_INVALID_FAT macro 285

MPFS_INVALID_HANDLE macro 268

MPFS_PTR type 281

MPFS_SEEK_MODE enumeration 268

MPFS_STUB structure 281

MPFS_WRITE_PAGE_SIZE macro 282

MPFS2 266

MPFS2 Command Line Options 60

MPFS2 Internal Members 279

MPFS2 Public Members 267

MPFS2 Stack Members 279

MPFS2 Utility 58

MPFS2_FLAG_HASINDEX macro 282

MPFS2_FLAG_ISZIPPED macro 282

MPFSClose function 269

MPFSFormat function 269

MPFSGet function 270

MPFSGetArray function 270

MPFSGetBytesRem function 271

MPFSGetEndAddr function 271

MPFSGetFilename function 272

MPFSGetFlags function 272

MPFSGetID function 273

MPFSGetLong function 273

MPFSGetMicrotime function 274

MPFSGetPosition function 274

MPFSGetSize function 274

MPFSGetStartAddr function 275

MPFSGetTimestamp function 275

MPFSInit function 279

MPFSOpen function 276

MPFSOpenID function 276

MPFSOpenROM function 277

MPFSPutArray function 277

MPFSPutEnd function 278

MPFSSeek function 278

MPFSStubs variable 282

MPFSTell macro 283

msgSecrtyParamLenOffset variable 367

MutExVar variable 504

MySocket variable 307

MyTCB variable 471

MyTCBStub variable 471

N
NBNS 285

NBNS Stack Members 286

NBNS_HEADER structure 288

NBNS_PORT macro 288

NBNSGetName function 286

NBNSPutName function 287

NBNSTask function 287

Network Management (SNMP) Server 99

Functions 111

Macros 113

Variables 112

NextPort variable 481

NOTIFY_COMMUNITY_LEN macro 327

NTP_EPOCH macro 372

NTP_FAST_QUERY_INTERVAL macro 372

NTP_PACKET structure 370

NTP_QUERY_INTERVAL macro 372

NTP_REPLY_TIMEOUT macro 373

NTP_SERVER macro 373

NTP_SERVER_PORT macro 373

numFiles variable 285

12 Microchip TCP/IP Stack Help

f

O
OCTET_STRING macro 340

OID_INFO structure 340

OID_MAX_LEN macro 326

OIDLookup function 352

P
PDU_INFO structure 341

Performance Test Internal Members 290

Performance Test Stack Members 288

Performance Tests 288

PERFORMANCE_PORT macro 291

Peripheral Usage 55

PIC18 Explorer 66

PIC18F97J60 Config 141

PIC24FJ256DA210 Dev Board 70

PIC32MX7XX Config 141

PICDEM.net 2 64

Ping (ICMP) Demo 97

Macros 99

PingDemo function 98

Power Save Internal Members 587

Power Save Public Members 584

ProcessGetBulkVar function 357

ProcessGetNextVar function 358

ProcessGetSetHeader function 352

ProcessGetVar function 358

ProcessHeader function 353

ProcessSetVar function 353

ProcessSnmpv3MsgData function 358

ProcessVariables function 353

Programming and First Run 70

Protocol Configuration 144

Protocol Macros and Files 145

PSH macro 472

ptrHS variable 400

PutHeadersState variable 307

R
ReadMIBRecord function 354

ReadProgramMemory function 283

Reboot 312

Reboot Stack Members 312

REBOOT_PORT macro 313

REBOOT_SAME_SUBNET_ONLY macro 313

RebootTask function 312

RecordType variable 186

recv function 170

recvfrom function 171

reg_apps variable 161

Release Notes 6

RemoteURL variable 95

Replace function 217

REPORT_RESPONSE macro 367

Required Files 132

reqVarErrStatus structure 341

RESERVED_HTTP_MEMORY macro 258

RESERVED_SSL_MEMORY macro 400

ResolvedInfo variable 186

ResponseCode variable 308

ROMStringToIPAddress function 218

ROMStringToIPAddress macro 219

RST macro 472

RTOS 136

RX_PERFORMANCE_PORT macro 291

RXParserState variable 308

S
SaveOffChip function 401

Scan Public Members 579

send function 172

SendNotification function 111

SendPowerModeMsg function 587

SendTCP function 472

SENDTCP_KEEP_ALIVE macro 473

SENDTCP_RESET_TIMERS macro 473

sendto function 172

SERVER_PORT macro 97

ServerName variable 95

ServerPort variable 95

SET_REQUEST macro 342

SetErrorStatus function 342

12 Microchip TCP/IP Stack Help

g

SetEventNotificationMask function 576

SetPowerSaveState function 587

SHA1AddData function 203

SHA1AddROMData function 203

SHA1Calculate function 200

SHA1HashBlock function 206

SHA1Initialize function 200

Silicon Solutions 57

sktHTTP macro 245

SM_HTTP2 enumeration 257

SM_SSL_RX_SERVER_HELLO enumeration 401

smDNS variable 186

smHTTP macro 258

SMTP Client 292

SMTP Client Examples 292

SMTP Client Internal Members 305

SMTP Client Long Message Example 293

SMTP Client Public Members 295

SMTP Client Short Message Example 292

SMTP Client Stack Members 304

SMTP_CONNECT_ERROR macro 296

SMTP_POINTERS structure 296

SMTP_PORT macro 309

SMTP_RESOLVE_ERROR macro 298

SMTP_SERVER_REPLY_TIMEOUT macro 309

SMTP_SUCCESS macro 298

SMTPBeginUsage function 298

SMTPClient variable 299

SMTPDemo function 93

SMTPEndUsage function 299

SMTPFlags variable 309

SMTPFlush function 299

SMTPIsBusy function 300

SMTPIsPutReady function 300

SMTPPut function 301

SMTPPutArray function 301

SMTPPutDone function 302

SMTPPutROMArray function 302

SMTPPutROMString function 303

SMTPPutString function 303

SMTPSendMail function 304

SMTPServer variable 309

SMTPState variable 310

SMTPTask function 305

smUpload variable 508

SNMP 313

Functions 356

Macros 367

Types 364

Variables 365

SNMP Internal Members 328

SNMP Operations 105

SNMP Public Members 315

SNMP Stack Members 355

SNMP Traps 107

SNMP_ACTION enumeration 317

SNMP_AGENT_PORT macro 342

SNMP_BIB_FILE_NAME macro 343

SNMP_COMMUNITY_MAX_LEN macro 326

SNMP_COUNTER32 macro 343

SNMP_END_OF_VAR macro 326

SNMP_ERR_STATUS enumeration 343

SNMP_GAUGE32 macro 344

SNMP_ID type 325

SNMP_INDEX type 325

SNMP_INDEX_INVALID macro 327

SNMP_IP_ADDR macro 344

SNMP_MAX_MSG_SIZE macro 368

SNMP_MAX_NON_REC_ID_OID macro 114

SNMP_NMS_PORT macro 345

SNMP_NOTIFY_INFO structure 345

SNMP_NSAP_ADDR macro 345

SNMP_OPAQUE macro 346

SNMP_START_OF_VAR macro 326

SNMP_STATUS union 346

SNMP_TIME_TICKS macro 346

SNMP_V1 macro 347

SNMP_V2C macro 347

SNMP_V3 macro 368

SNMP_VAL union 318

SNMPAgentSocket variable 347

SNMPCheckIfPvtMibObjRequested function 354

SNMPGetExactIndex function 358

SNMPGetNextIndex function 325

12 Microchip TCP/IP Stack Help

h

SNMPGetTimeStamp function 112

SNMPGetVar function 323

SNMPIdRecrdValidation function 359

SNMPInit function 355

SNMPIsNotifyReady function 323

SNMPIsValidSetLen function 360

SNMPNONMIBRECDINFO structure 365

SNMPNotify function 321

SNMPNotifyInfo variable 347

SNMPNotifyPrepare function 324

snmpReqVarErrStatus variable 348

SNMPRxOffset variable 348

SNMPSendTrap function 320

SNMPSetVar function 322

SNMPStatus variable 348

SNMPTask function 355

SNMPTxOffset variable 348

Snmpv3AESDecryptRxedScopedPdu function 360

Snmpv3BufferPut function 360

Snmpv3FormulateEngineID function 361

Snmpv3GetAuthEngineTime function 361

Snmpv3GetBufferData function 361

Snmpv3InitializeUserDataBase function 361

SNMPV3MSGDATA structure 365

Snmpv3MsgProcessingModelProcessPDU function 362

Snmpv3Notify function 362

Snmpv3ScopedPduProcessing function 362

Snmpv3TrapScopedpdu function 362

Snmpv3UserSecurityModelProcessPDU function 363

Snmpv3UsmAesEncryptDecryptInitVector function 363

Snmpv3UsmOutMsgAuthenticationParam function 363

Snmpv3ValidateEngineId function 363

Snmpv3ValidateSecNameAndSecLvl function 364

Snmpv3ValidateSecurityName function 364

SNMPValidateCommunity function 321

SNTP Client 368

SNTP Client Internal Members 370

SNTP Client Public Members 368

SNTP Client Stack Members 369

SNTPClient function 369

SNTPGetUTCSeconds function 369

SOCK_DGRAM macro 173

SOCK_STREAM macro 173

sockaddr structure 173

SOCKADDR type 174

sockaddr_in structure 174

SOCKADDR_IN type 174

socket function 175

SOCKET type 175

Socket Types 147

SOCKET_CNXN_IN_PROGRESS macro 175

SOCKET_DISCONNECTED macro 176

SOCKET_ERROR macro 176

SOCKET_INFO structure 460

Sockets 147

SocketWithRxData variable 534

Software 58

SSL 373

SSL Internal Members 387

SSL Public Members 377

SSL Stack Members 381

SSL_ALERT macro 402

SSL_ALERT_LEVEL enumeration 402

SSL_APPLICATION macro 402

SSL_BASE_BUFFER_ADDR macro 403

SSL_BASE_HASH_ADDR macro 403

SSL_BASE_KEYS_ADDR macro 403

SSL_BASE_SESSION_ADDR macro 403

SSL_BASE_STUB_ADDR macro 403

SSL_BUFFER union 404

SSL_BUFFER_SIZE macro 404

SSL_BUFFER_SPACE macro 404

SSL_CERT variable 405

SSL_CERT_LEN variable 405

SSL_CHANGE_CIPHER_SPEC macro 405

SSL_HANDSHAKE macro 405

SSL_HASH_SIZE macro 405

SSL_HASH_SPACE macro 406

SSL_INVALID_ID macro 378

SSL_KEYS structure 406

SSL_KEYS_SIZE macro 407

SSL_KEYS_SPACE macro 407

SSL_MESSAGES enumeration 407

SSL_MIN_SESSION_LIFETIME macro 387

12 Microchip TCP/IP Stack Help

i

SSL_PKEY_INFO structure 381

SSL_RSA_EXPORT_WITH_ARCFOUR_40_MD5 macro 408

SSL_RSA_LIFETIME_EXTENSION macro 387

SSL_RSA_WITH_ARCFOUR_128_MD5 macro 408

SSL_SESSION structure 408

SSL_SESSION_SIZE macro 409

SSL_SESSION_SPACE macro 409

SSL_SESSION_STUB structure 409

SSL_SESSION_TYPE enumeration 410

SSL_STATE enumeration 382

SSL_STUB structure 410

SSL_STUB_SIZE macro 411

SSL_STUB_SPACE macro 411

SSL_SUPPLEMENTARY_DATA_TYPES enumeration 381

SSL_VERSION macro 412

SSL_VERSION_HI macro 412

SSL_VERSION_LO macro 412

SSLBufferAlloc function 412

SSLBufferFree function 413

sslBufferID variable 413

SSLBufferSync function 414

SSLFinishPartialRecord macro 414

SSLFlushPartialRecord macro 414

sslHash variable 415

SSLHashAlloc function 415

SSLHashFree function 415

sslHashID variable 416

SSLHashSync function 416

SSLInit function 382

sslKeys variable 417

sslKeysID variable 417

SSLKeysSync function 417

SSLMACAdd function 418

SSLMACBegin function 418

SSLMACCalc function 418

SSLPeriodic function 383

SSLRSAOperation function 418

sslRSAStubID variable 419

SSLRxAlert function 419

SSLRxAntiqueClientHello function 420

SSLRxCCS function 420

SSLRxClientHello function 421

SSLRxClientKeyExchange function 421

SSLRxFinished function 422

SSLRxHandshake function 422

SSLRxRecord function 423

SSLRxServerCertificate function 423

SSLRxServerHello function 424

sslSession variable 424

sslSessionID variable 425

SSLSessionMatchID function 425

SSLSessionMatchIP function 425

SSLSessionNew function 426

sslSessionStubs variable 426

SSLSessionSync function 427

SSLSessionUpdated macro 427

sslSessionUpdated variable 427

SSLStartPartialRecord function 428

SSLStartSession function 380

sslStub variable 428

SSLStubAlloc function 429

SSLStubFree function 429

sslStubID variable 430

SSLStubSync function 430

SSLTerminate function 430

SSLTxCCSFin function 431

SSLTxClientHello function 431

SSLTxClientKeyExchange function 432

SSLTxMessage function 432

SSLTxRecord function 433

SSLTxServerCertificate function 433

SSLTxServerHello function 434

SSLTxServerHelloDone function 435

Stack API 150

Stack Architecture 132

Stack Performance 55

STACK_USE_SMIV2 macro 114

Standalone Commands 123

StaticVars variable 265

strAuthenticated variable 485

strDisplay variable 485

strGoodBye variable 485

stricmppgm2ram function 219

StringToIPAddress function 219

12 Microchip TCP/IP Stack Help

j

strnchr function 220

strPassword variable 486

strSpaces variable 485

strTitle variable 486

STRUCTURE macro 348

strupr function 220

SW License Agreement 3

SwapARPPacket function 159

swapl function 221

swaps function 221

SwapTCPHeader function 473

SYN macro 473

SyncTCB function 474

SyncTCBStub macro 474

SYNQueue variable 474

T
TCB structure 460

TCB_STUB structure 461

TCBStubs variable 474

TCP 435

Variables 481

TCP Internal Members 467

TCP Public Members 436

TCP Stack Members 459

TCP/IP Configuration Wizard 58

TCP_ADJUST_GIVE_REST_TO_RX macro 439

TCP_ADJUST_GIVE_REST_TO_TX macro 439

TCP_ADJUST_PRESERVE_RX macro 439

TCP_ADJUST_PRESERVE_TX macro 439

TCP_AUTO_TRANSMIT_TIMEOUT_VAL macro 475

TCP_CLOSE_WAIT_TIMEOUT macro 475

TCP_DELAYED_ACK_TIMEOUT macro 475

TCP_FIN_WAIT_2_TIMEOUT macro 476

TCP_HEADER structure 476

TCP_KEEP_ALIVE_TIMEOUT macro 477

TCP_MAX_RETRIES macro 477

TCP_MAX_SEG_SIZE_RX macro 477

TCP_MAX_SEG_SIZE_TX macro 478

TCP_MAX_SYN_RETRIES macro 478

TCP_MAX_UNACKED_KEEP_ALIVES macro 478

TCP_OPEN_IP_ADDRESS macro 439

TCP_OPEN_NODE_INFO macro 440

TCP_OPEN_RAM_HOST macro 440

TCP_OPEN_ROM_HOST macro 440

TCP_OPEN_SERVER macro 440

TCP_OPTIMIZE_FOR_SIZE macro 478

TCP_OPTIONS structure 479

TCP_OPTIONS_END_OF_LIST macro 479

TCP_OPTIONS_MAX_SEG_SIZE macro 479

TCP_OPTIONS_NO_OP macro 479

TCP_SOCKET type 463

TCP_SOCKET_COUNT macro 480

TCP_START_TIMEOUT_VAL macro 480

TCP_STATE enumeration 463

TCP_SYN_QUEUE structure 480

TCP_SYN_QUEUE_MAX_ENTRIES macro 481

TCP_SYN_QUEUE_TIMEOUT macro 481

TCP_WINDOW_UPDATE_TIMEOUT_VAL macro 475

TCPAddSSLListener function 378

TCPAdjustFIFOSize function 441

TCPClose function 442

TCPConnect macro 442

TCPDiscard function 442

TCPDisconnect function 443

TCPFind macro 443

TCPFindArray macro 444

TCPFindArrayEx function 444

TCPFindEx function 445

TCPFindROMArray macro 446

TCPFindROMArrayEx function 446

TCPFlush function 447

TCPGet function 447

TCPGetArray function 448

TCPGetRemoteInfo function 448

TCPGetRxFIFOFree function 449

TCPGetRxFIFOFull macro 449

TCPGetTxFIFOFree macro 449

TCPGetTxFIFOFull function 450

TCPInit function 464

TCPIP Demo App Features by Hardware Platform 82

TCPIsConnected function 450

TCPIsGetReady function 451

TCPIsPutReady function 451

12 Microchip TCP/IP Stack Help

k

TCPIsSSL function 380

TCPListen macro 451

TCPOpen function 452

TCPPeek function 453

TCPPeekArray function 454

TCPPerformanceTask function 289

TCPProcess function 464

TCPPut function 454

TCPPutArray function 455

TCPPutROMArray function 455

TCPPutROMString function 456

TCPPutString function 457

TCPRAMCopy function 457

TCPRAMCopyROM function 458

TCPRequestSSLMessage function 383

TCPRXPerformanceTask function 290

TCPSSLDecryptMAC function 465

TCPSSLGetPendingTxSize function 384

TCPSSLHandleIncoming function 384

TCPSSLHandshakeComplete function 385

TCPSSLInPlaceMACEncrypt function 385

TCPSSLIsHandshaking function 378

TCPSSLPutRecordHeader function 386

TCPStartSSLClient function 379

TCPStartSSLClientEx function 466

TCPStartSSLServer function 386

TCPTick function 465

TCPTXPerformanceTask function 291

TCPWasReset function 458

Telnet 482

Telnet Internal Members 484

Telnet Public Members 482

Telnet Stack Members 484

TELNET_PASSWORD macro 483

TELNET_PORT macro 483

TELNET_USERNAME macro 483

TELNETS_PORT macro 483

TelnetTask function 484

TFTP 486

TFTP Internal Members 503

TFTP Public Members 487

TFTP Stack Members 502

TFTP_ACCESS_ERROR enumeration 496

TFTP_ARP_TIMEOUT_VAL macro 502

TFTP_BLOCK_SIZE macro 505

TFTP_BLOCK_SIZE_MSB macro 505

TFTP_CHUNK_DESCRIPTOR structure 499

TFTP_CLIENT_PORT macro 505

TFTP_END_OF_FILE enumeration member 497

TFTP_ERROR enumeration member 497

TFTP_ERROR_ACCESS_VIOLATION enumeration member
496

TFTP_ERROR_DISK_FULL enumeration member 496

TFTP_ERROR_FILE_EXISTS enumeration member 496

TFTP_ERROR_FILE_NOT_FOUND enumeration member
496

TFTP_ERROR_INVALID_OPERATION enumeration member
496

TFTP_ERROR_NO_SUCH_USE enumeration member 496

TFTP_ERROR_NOT_DEFINED enumeration member 496

TFTP_ERROR_UNKNOWN_TID enumeration member 496

TFTP_FILE_MODE enumeration 496

TFTP_FILE_MODE_READ enumeration member 496

TFTP_FILE_MODE_WRITE enumeration member 496

TFTP_GET_TIMEOUT_VAL macro 503

TFTP_MAX_RETRIES macro 503

TFTP_NOT_READY enumeration member 497

TFTP_OK enumeration member 497

TFTP_OPCODE enumeration 505

TFTP_RESULT enumeration 497

TFTP_RETRY enumeration member 497

TFTP_SERVER_PORT macro 506

TFTP_STATE enumeration 506

TFTP_TIMEOUT enumeration member 497

TFTP_UPLOAD_COMPLETE macro 500

TFTP_UPLOAD_CONNECT macro 500

TFTP_UPLOAD_CONNECT_TIMEOUT macro 500

TFTP_UPLOAD_GET_DNS macro 500

TFTP_UPLOAD_HOST_RESOLVE_TIMEOUT macro 501

TFTP_UPLOAD_RESOLVE_HOST macro 501

TFTP_UPLOAD_SEND_DATA macro 501

TFTP_UPLOAD_SEND_FILENAME macro 501

TFTP_UPLOAD_SERVER_ERROR macro 501

TFTP_UPLOAD_WAIT_FOR_CLOSURE macro 502

TFTPClose macro 489

12 Microchip TCP/IP Stack Help

l

TFTPCloseFile function 489

TFTPGet function 490

TFTPGetError macro 490

TFTPGetUploadStatus function 497

TFTPIsFileClosed function 491

TFTPIsFileOpened function 491

TFTPIsFileOpenReady macro 492

TFTPIsGetReady function 492

TFTPIsOpened function 493

TFTPIsPutReady function 493

TFTPOpen function 494

TFTPOpenFile function 495

TFTPOpenROMFile function 495

TFTPPut function 496

TFTPUploadFragmentedRAMFileToHost function 498

TFTPUploadRAMFileToHost function 499

Tick Internal Members 515

Tick Module 510

Tick Public Members 511

Tick Stack Functions 514

TICK type 511

TICK_HOUR macro 512

TICK_MINUTE macro 512

TICK_SECOND macro 512

TickConvertToMilliseconds function 512

TickGet function 513

TickGetDiv256 function 513

TickGetDiv64K function 514

TickInit function 514

TICKS_PER_SECOND macro 516

TickUpdate function 515

TransportState variable 311

TRAP macro 349

TRAP_COMMUNITY_MAX_LEN macro 327

TRAP_INFO structure 319

TRAP_TABLE_SIZE macro 327

trapInfo variable 349

tWFDeviceInfoStruct structure 594

Tx Power Control Public Members 581

TX_PERFORMANCE_PORT macro 292

U
UART-to-TCP Bridge 114

UDP 517

Types 537

UDP Internal Members 532

UDP Public Members 518

UDP Sockets 149

UDP Stack Members 530

UDP_HEADER structure 535

UDP_OPEN_IP_ADDRESS macro 529

UDP_OPEN_NODE_INFO macro 529

UDP_OPEN_RAM_HOST macro 530

UDP_OPEN_ROM_HOST macro 530

UDP_OPEN_SERVER macro 530

UDP_PORT type 535

UDP_SOCKET type 519

UDP_SOCKET_INFO structure 535

UDP_STATE enumeration 537

UDPClose function 522

UDPDiscard function 522

UDPFlush function 523

UDPGet function 523

UDPGetArray function 524

UDPInit function 531

UDPIsGetReady function 524

UDPIsOpened function 529

UDPIsPutReady function 525

UDPOpen macro 521

UDPOpenEx function 520

UDPPerformanceTask function 289

UDPProcess function 531

UDPPut function 525

UDPPutArray function 526

UDPPutROMArray function 526

UDPPutROMString function 527

UDPPutString function 527

UDPRxCount variable 536

UDPSetRxBuffer function 528

UDPSetTxBuffer function 528

UDPSocketInfo variable 536

UDPTask function 532

12 Microchip TCP/IP Stack Help

m

UDPTxCount variable 536

uitoa function 222

ultoa function 222

UnencodeURL function 223

UNKNOWN_SOCKET macro 438

uploadChunkDescriptor variable 509

uploadChunkDescriptorForRetransmit variable 509

Uploading Pre-built MPFS2 Images 59

Uploading Web Pages 73

URG macro 481

Using the Bootloader 119

Using the Stack 132

V
VENDOR_SPECIFIC_TRAP_NOTIFICATION_TYPE
enumeration 317

vTickReading variable 516

vUploadFilename variable 509

vUploadRemoteHost variable 509

W
Web Page Demos 83

Functions 88

Variables 91

WebVend 121

WF_CAGetBeaconTimeout function 556

WF_CAGetBeaconTimeoutAction function 557

WF_CAGetChannelList function 558

WF_CAGetConnectionProfileList function 558

WF_CAGetDeauthAction function 559

WF_CAGetElements function 559

WF_CAGetEventNotificationAction function 560

WF_CAGetListenInterval function 560

WF_CAGetListRetryCount function 561

WF_CAGetMaxChannelTime function 561

WF_CAGetMinChannelTime function 562

WF_CAGetProbeDelay function 562

WF_CAGetRssi function 563

WF_CAGetScanCount function 563

WF_CAGetScanType function 564

WF_CASetBeaconTimeout function 564

WF_CASetBeaconTimeoutAction function 565

WF_CASetChannelList function 566

WF_CASetConnectionProfileList function 566

WF_CASetDeauthAction function 567

WF_CASetElements function 567

WF_CASetEventNotificationAction function 568

WF_CASetListenInterval function 568

WF_CASetListRetryCount function 569

WF_CASetMaxChannelTime function 570

WF_CASetMinChannelTime function 570

WF_CASetProbeDelay function 571

WF_CASetRssi function 571

WF_CASetScanCount function 572

WF_CASetScanType function 572

WF_CMConnect function 577

WF_CMDisconnect function 578

WF_CMGetConnectionState function 578

WF_CMInfoGetFSMStats function 579

WF_CPCreate function 542

WF_CPDelete function 543

WF_CPGetAdHocBehavior function 543

WF_CPGetBssid function 544

WF_CPGetDefaultWepKeyIndex function 544

WF_CPGetElements function 545

WF_CPGetIds function 545

WF_CPGetNetworkType function 546

WF_CPGetSecurity function 547

WF_CPGetSsid function 548

WF_CPSetAdHocBehavior function 548

WF_CPSetBssid function 549

WF_CPSetDefaultWepKeyIndex function 549

WF_CPSetElements function 550

WF_CPSetNetworkType function 550

WF_CPSetSecurity function 551

WF_CPSetSsid function 552

WF_GetDeviceInfo function 589

WF_GetMacAddress function 589

WF_GetMacStats function 590

WF_GetMultiCastFilter function 590

WF_GetPowerSaveState function 584

WF_GetRegionalDomain function 591

WF_GetRtsThreshold function 592

WF_HibernateEnable function 585

12 Microchip TCP/IP Stack Help

n

WF_ProcessEvent 596

WF_PsPollDisable function 586

WF_PsPollEnable function 586

WF_Scan function 580

WF_ScanGetResult function 581

WF_SetMacAddress function 592

WF_SetMultiCastFilter function 593

WF_SetRegionalDomain function 593

WF_SetRtsThreshold function 594

WF_TxPowerGetFactoryMax function 583

WF_TxPowerGetMinMax function 582

WF_TxPowerSetMinMax function 582

WFCAElementsStruct structure 573

WFCPElementsStruct structure 552

WFMacStatsStruct structure 595

wGetOffset variable 536

wICMPSequenceNumber variable 266

Wi-Fi API 538

Wi-Fi Connection Algorithm 555

Wi-Fi Connection Manager 577

Wi-Fi Connection Profile 541

WiFi Console 123

WiFi EZConfig 129

Wi-Fi Miscellaneous 588

Wi-Fi Miscellaneous Public Members 588

Wi-Fi Power Save 583

Wi-Fi Scan 579

WiFi Tips and Tricks 600

Wi-Fi Tx Power Control 581

wPutOffset variable 537

wUploadChunkOffset variable 510

wUploadChunkOffsetForRetransmit variable 510

Z
Zero Configuration (ZeroConf) 115

12 Microchip TCP/IP Stack Help

o

	Microchip TCP/IP Stack Help
	Table of Contents
	Introduction
	Getting Help
	Directory Structure

	SW License Agreement
	Release Notes
	Stack Performance
	Memory Usage
	Peripheral Usage

	Silicon Solutions
	Software
	TCP/IP Configuration Wizard
	MPFS2 Utility
	Building MPFS2 Images
	Uploading Pre-built MPFS2 Images
	Advanced MPFS2 Settings
	MPFS2 Command Line Options

	Hash Table Filter Entry Calculator
	Microchip TCP/IP Discoverer

	Getting Started
	Hardware Setup
	Daughter Boards
	PICDEM.net 2
	PIC18 Explorer
	Explorer 16 and PIC32 Starter Kit
	PIC24FJ256DA210 Dev Board

	Programming and First Run
	Configure your WiFi Access Point
	Connecting to the Network
	Uploading Web Pages
	Accessing the Demo Application
	Configuring WiFi Security

	Demo Information
	Demo Compatibility Table
	Available Demos
	Demo App
	TCPIP Demo App Features by Hardware Platform
	Demo Modules
	Web Page Demos
	E-mail (SMTP) Demo
	Generic TCP Client
	Generic TCP Server
	Ping (ICMP) Demo
	Network Management (SNMP) Server
	UART-to-TCP Bridge
	Zero Configuration (ZeroConf)

	Internet Bootloader
	Bootloader Design
	Using the Bootloader

	WebVend
	Internet Radio
	WiFi Console
	Standalone Commands
	iwconfig Commands
	ifconfig Commands
	iwpriv Commands
	iperf Example

	WiFi EZConfig
	Demo App MDD
	Google PowerMeter
	Energy Monitoring

	Using the Stack
	Stack Architecture
	How the Stack Works
	Required Files
	APP_CONFIG Structure
	Main File
	Initialization
	Main Loop

	Cooperative Multitasking
	RTOS

	Configuring the Stack
	Hardware Configuration
	Clock Frequency
	External Storage
	ENC28J60 Config
	ENCX24J600 Config
	PIC18F97J60 Config
	PIC32MX7XX Config

	Address
	MAC Address
	IP Address

	Protocol Configuration
	Protocol Macros and Files
	Additional Features
	Sockets
	Memory Allocation
	Socket Types
	Initialization Structure
	UDP Sockets
	BSD Sockets

	Stack API
	Announce
	Stack Members
	AnnounceIP Function
	DiscoveryTask Function

	ARP
	Public Members
	ARPResolve Function
	ARPIsResolved Function
	ARPDeRegisterCallbacks Function
	ARPRegisterCallbacks Function
	ARPSendPkt Function
	arp_app_callbacks Structure
	ARP_REQ Macro
	ARP_RESP Macro
	MAX_REG_APPS Macro

	Stack Members
	ARPInit Function
	ARPProcess Function

	Internal Members
	ARPPut Function
	SwapARPPacket Function
	ARP_OPERATION_REQ Macro
	ARP_OPERATION_RESP Macro
	HW_ETHERNET Macro
	ARP_IP Macro
	Cache Variable
	reg_apps Variable

	Types
	ARP_PACKET Structure

	BSD Sockets
	Public Members
	accept Function
	AF_INET Macro
	bind Function
	BSDSocket Structure
	closesocket Function
	connect Function
	gethostname Function
	in_addr Structure
	INADDR_ANY Macro
	INVALID_TCP_PORT Macro
	IP_ADDR_ANY Macro
	IPPROTO_IP Macro
	IPPROTO_TCP Macro
	IPPROTO_UDP Macro
	listen Function
	recv Function
	recvfrom Function
	send Function
	sendto Function
	SOCK_DGRAM Macro
	SOCK_STREAM Macro
	sockaddr Structure
	SOCKADDR Type
	sockaddr_in Structure
	SOCKADDR_IN Type
	socket Function
	SOCKET Type
	SOCKET_CNXN_IN_PROGRESS Macro
	SOCKET_DISCONNECTED Macro
	SOCKET_ERROR Macro

	Stack Members
	BerkeleySocketInit Function

	Internal Members
	BSD_SCK_STATE Enumeration
	BSDSocketArray Variable
	gAutoPortNumber Variable
	HandlePossibleTCPDisconnection Function

	DNS
	Public Members
	DNSBeginUsage Function
	DNSEndUsage Function
	DNSResolve Function
	DNSResolveROM Function
	DNSIsResolved Function
	DNS_TYPE_A Macro
	DNS_TYPE_MX Macro

	Internal Members
	DNSPutString Function
	DNSPutROMString Function
	DNS_PORT Macro
	DNS_TIMEOUT Macro
	DNSHostName Variable
	DNSHostNameROM Variable
	Flags Variable
	RecordType Variable
	ResolvedInfo Variable
	smDNS Variable
	DNS_HEADER Structure
	DNSDiscardName Function

	Dynamic DNS Client
	Public Members
	DDNS_POINTERS Structure
	DDNS_SERVICES Enumeration
	DDNS_STATUS Enumeration
	DDNSClient Variable
	DDNSForceUpdate Function
	DDNSGetLastIP Function
	DDNSGetLastStatus Function
	DDNSSetService Function

	Stack Members
	DDNSInit Function
	DDNSTask Function

	Internal Members
	bForceUpdate Variable
	ddnsServiceHosts Variable
	ddnsServicePorts Variable
	dwUpdateAt Variable
	lastKnownIP Variable
	lastStatus Variable
	_checkIpSrvrResponse Variable
	_updateIpSrvrResponse Variable
	DDNS_CHECKIP_SERVER Macro
	DDNS_DEFAULT_PORT Macro

	Hashes
	Public Members
	HashAddData Function
	HashAddROMData Function
	MD5Calculate Function
	MD5Initialize Function
	SHA1Calculate Function
	SHA1Initialize Function
	HASH_SUM Structure

	Stack Members
	MD5AddROMData Function
	SHA1AddROMData Function
	SHA1AddData Function
	MD5AddData Function

	Internal Members
	_MD5_k Variable
	_MD5_r Variable
	lastBlock Variable
	HASH_TYPE Enumeration
	SHA1HashBlock Function
	MD5HashBlock Function

	Helpers
	Public Members
	Base64Decode Function
	Base64Encode Function
	btohexa_high Function
	btohexa_low Function
	CalcIPBufferChecksum Function
	CalcIPChecksum Function
	ExtractURLFields Function
	FormatNetBIOSName Function
	GenerateRandomDWORD Function
	hexatob Function
	leftRotateDWORD Function
	leftRotateDWORD Macro
	Replace Function
	ROMStringToIPAddress Function
	ROMStringToIPAddress Macro
	stricmppgm2ram Function
	StringToIPAddress Function
	strupr Function
	strnchr Function
	swapl Function
	swaps Function
	uitoa Function
	ultoa Function
	UnencodeURL Function

	Functions
	LFSRRand Function
	LFSRSeedRand Function

	Variables
	dwLFSRRandSeed Variable

	HTTP2 Server
	Features
	Dynamic Variables
	Form Processing
	Authentication
	Cookies
	Compression

	Public Members
	curHTTP Variable
	HTTP_CONN Structure
	HTTP_IO_RESULT Enumeration
	HTTP_READ_STATUS Enumeration
	HTTPCheckAuth Function
	HTTPExecuteGet Function
	HTTPExecutePost Function
	HTTPGetArg Function
	HTTPGetROMArg Function
	HTTPNeedsAuth Function
	HTTPPrint_varname Function
	HTTPReadPostName Function
	HTTPReadPostPair Macro
	HTTPReadPostValue Function
	HTTPURLDecode Function
	sktHTTP Macro

	Stack Members
	HTTPInit Function
	HTTPServer Function

	Internal Members
	curHTTPID Variable
	HTTP_CACHE_LEN Macro
	HTTP_FILE_TYPE Enumeration
	HTTP_MAX_DATA_LEN Macro
	HTTP_MAX_HEADER_LEN Macro
	HTTP_MIN_CALLBACK_FREE Macro
	HTTP_PORT Macro
	HTTP_STATUS Enumeration
	HTTP_STUB Structure
	HTTP_TIMEOUT Macro
	httpContentTypes Variable
	httpFileExtensions Variable
	HTTPHeaderParseAuthorization Function
	HTTPHeaderParseContentLength Function
	HTTPHeaderParseCookie Function
	HTTPHeaderParseLookup Function
	HTTPIncFile Function
	HTTPLoadConn Function
	HTTPMPFSUpload Function
	HTTPProcess Function
	HTTPReadTo Function
	HTTPRequestHeaders Variable
	HTTPResponseHeaders Variable
	HTTPS_PORT Macro
	HTTPSendFile Function
	httpStubs Variable
	SM_HTTP2 Enumeration
	smHTTP Macro
	RESERVED_HTTP_MEMORY Macro

	ICMP
	Public Members
	ICMPBeginUsage Function
	ICMPSendPing Function
	ICMPSendPingToHost Function
	ICMPSendPingToHostROM Function
	ICMPGetReply Function
	ICMPEndUsage Function
	ICMPSendPingToHostROM Macro

	Internal Members
	ICMPProcess Function
	ICMPFlags Variable
	ICMP_PACKET Structure
	ICMPState Variable
	ICMP_TIMEOUT Macro
	ICMPTimer Variable
	StaticVars Variable
	wICMPSequenceNumber Variable

	MPFS2
	Public Members
	MPFS_HANDLE Type
	MPFS_INVALID Macro
	MPFS_INVALID_HANDLE Macro
	MPFS_SEEK_MODE Enumeration
	MPFSClose Function
	MPFSFormat Function
	MPFSGet Function
	MPFSGetArray Function
	MPFSGetBytesRem Function
	MPFSGetEndAddr Function
	MPFSGetFilename Function
	MPFSGetFlags Function
	MPFSGetID Function
	MPFSGetLong Function
	MPFSGetMicrotime Function
	MPFSGetPosition Function
	MPFSGetSize Function
	MPFSGetStartAddr Function
	MPFSGetTimestamp Function
	MPFSOpen Function
	MPFSOpenID Function
	MPFSOpenROM Function
	MPFSPutArray Function
	MPFSSeek Function
	MPFSPutEnd Function

	Stack Members
	MPFSInit Function

	Internal Members
	isMPFSLocked Variable
	lastRead Variable
	MAX_FILE_NAME_LEN Macro
	MPFS_PTR Type
	MPFS_STUB Structure
	MPFS_WRITE_PAGE_SIZE Macro
	MPFS2_FLAG_HASINDEX Macro
	MPFS2_FLAG_ISZIPPED Macro
	MPFSStubs Variable
	MPFSTell Macro
	ReadProgramMemory Function
	_LoadFATRecord Function
	_Validate Function
	MPFS_FAT_RECORD Structure
	fatCache Variable
	fatCacheID Variable
	numFiles Variable
	MPFS_INVALID_FAT Macro

	NBNS
	Stack Members
	NBNSGetName Function
	NBNSPutName Function
	NBNSTask Function
	NBNS_HEADER Structure
	NBNS_PORT Macro

	Performance Tests
	Stack Members
	TCPPerformanceTask Function
	UDPPerformanceTask Function

	Internal Members
	TCPRXPerformanceTask Function
	TCPTXPerformanceTask Function
	PERFORMANCE_PORT Macro
	RX_PERFORMANCE_PORT Macro
	TX_PERFORMANCE_PORT Macro

	SMTP Client
	Examples
	Short Message
	Long Message

	Public Members
	SMTP_CONNECT_ERROR Macro
	SMTP_POINTERS Structure
	SMTP_RESOLVE_ERROR Macro
	SMTP_SUCCESS Macro
	SMTPBeginUsage Function
	SMTPClient Variable
	SMTPEndUsage Function
	SMTPFlush Function
	SMTPIsBusy Function
	SMTPIsPutReady Function
	SMTPPut Function
	SMTPPutArray Function
	SMTPPutDone Function
	SMTPPutROMArray Function
	SMTPPutROMString Function
	SMTPPutString Function
	SMTPSendMail Function

	Stack Members
	SMTPTask Function

	Internal Members
	CRPeriod Variable
	FindEmailAddress Function
	FindROMEmailAddress Function
	MySocket Variable
	PutHeadersState Variable
	ResponseCode Variable
	RXParserState Variable
	SMTP_PORT Macro
	SMTP_SERVER_REPLY_TIMEOUT Macro
	SMTPFlags Variable
	SMTPServer Variable
	SMTPState Variable
	TransportState Variable

	Reboot
	Stack Members
	RebootTask Function
	REBOOT_PORT Macro
	REBOOT_SAME_SUBNET_ONLY Macro

	SNMP
	Public Members
	GENERIC_TRAP_NOTIFICATION_TYPE Enumeration
	VENDOR_SPECIFIC_TRAP_NOTIFICATION_TYPE Enumeration
	SNMP_ACTION Enumeration
	COMMUNITY_TYPE Enumeration
	SNMP_VAL Union
	TRAP_INFO Structure
	gSendTrapFlag Variable
	gSetTrapSendFlag Variable
	gGenericTrapNotification Variable
	gSpecificTrapNotification Variable
	gOIDCorrespondingSnmpMibID Variable
	SNMPSendTrap Function
	SNMPValidateCommunity Function
	SNMPNotify Function
	SNMPSetVar Function
	SNMPGetVar Function
	SNMPIsNotifyReady Function
	SNMPNotifyPrepare Function
	SNMPGetNextIndex Function
	SNMP_ID Type
	SNMP_INDEX Type
	SNMP_COMMUNITY_MAX_LEN Macro
	OID_MAX_LEN Macro
	SNMP_START_OF_VAR Macro
	SNMP_END_OF_VAR Macro
	SNMP_INDEX_INVALID Macro
	TRAP_TABLE_SIZE Macro
	TRAP_COMMUNITY_MAX_LEN Macro
	NOTIFY_COMMUNITY_LEN Macro

	Internal Members
	_SNMPDuplexInit Function
	_SNMPGet Function
	_SNMPGetTxOffset Macro
	_SNMPPut Function
	_SNMPSetTxOffset Macro
	AGENT_NOTIFY_PORT Macro
	appendZeroToOID Variable
	ASN_INT Macro
	ASN_NULL Macro
	ASN_OID Macro
	DATA_TYPE Enumeration
	DATA_TYPE_INFO Structure
	DATA_TYPE_TABLE_SIZE Macro
	dataTypeTable Variable
	FindOIDsInRequest Function
	GET_BULK_REQUEST Macro
	GET_NEXT_REQUEST Macro
	GET_REQUEST Macro
	GET_RESPONSE Macro
	hMPFS Variable
	INDEX_INFO Union
	IS_AGENT_PDU Macro
	IS_ASN_INT Macro
	IS_ASN_NULL Macro
	IS_GET_NEXT_REQUEST Macro
	IS_GET_REQUEST Macro
	IS_GET_RESPONSE Macro
	IS_OCTET_STRING Macro
	IS_OID Macro
	GetDataTypeInfo Function
	IS_SET_REQUEST Macro
	IS_STRUCTURE Macro
	IS_TRAP Macro
	IsASNNull Function
	MIB_INFO Union
	OCTET_STRING Macro
	OID_INFO Structure
	PDU_INFO Structure
	reqVarErrStatus Structure
	SET_REQUEST Macro
	SetErrorStatus Function
	SNMP_AGENT_PORT Macro
	SNMP_BIB_FILE_NAME Macro
	SNMP_COUNTER32 Macro
	SNMP_ERR_STATUS Enumeration
	SNMP_GAUGE32 Macro
	SNMP_IP_ADDR Macro
	SNMP_NMS_PORT Macro
	SNMP_NOTIFY_INFO Structure
	SNMP_NSAP_ADDR Macro
	IsValidLength Function
	SNMP_OPAQUE Macro
	SNMP_STATUS Union
	SNMP_TIME_TICKS Macro
	SNMP_V1 Macro
	SNMP_V2C Macro
	SNMPAgentSocket Variable
	SNMPNotifyInfo Variable
	snmpReqVarErrStatus Variable
	SNMPRxOffset Variable
	SNMPStatus Variable
	SNMPTxOffset Variable
	STRUCTURE Macro
	TRAP Macro
	trapInfo Variable
	GetDataTypeInfo Function
	GetNextLeaf Function
	GetOIDStringByAddr Function
	GetOIDStringByID Function
	IsValidCommunity Function
	IsValidInt Function
	IsValidLength Function
	IsValidOID Function
	IsValidPDU Function
	IsValidStructure Function
	OIDLookup Function
	ProcessGetSetHeader Function
	ProcessHeader Function
	ProcessSetVar Function
	ProcessVariables Function
	ReadMIBRecord Function
	SNMPCheckIfPvtMibObjRequested Function

	Stack Members
	SNMPInit Function
	SNMPTask Function

	Functions
	getSnmpV2GenTrapOid Function
	ProcessGetBulkVar Function
	ProcessGetNextVar Function
	ProcessGetVar Function
	ProcessSnmpv3MsgData Function
	SNMPGetExactIndex Function
	SNMPIdRecrdValidation Function
	SNMPIsValidSetLen Function
	Snmpv3AESDecryptRxedScopedPdu Function
	Snmpv3BufferPut Function
	Snmpv3FormulateEngineID Function
	Snmpv3GetAuthEngineTime Function
	Snmpv3GetBufferData Function
	Snmpv3InitializeUserDataBase Function
	Snmpv3MsgProcessingModelProcessPDU Function
	Snmpv3Notify Function
	Snmpv3ScopedPduProcessing Function
	Snmpv3TrapScopedpdu Function
	Snmpv3UserSecurityModelProcessPDU Function
	Snmpv3UsmAesEncryptDecryptInitVector Function
	Snmpv3UsmOutMsgAuthenticationParam Function
	Snmpv3ValidateEngineId Function
	Snmpv3ValidateSecNameAndSecLvl Function
	Snmpv3ValidateSecurityName Function

	Types
	INOUT_SNMP_PDU Enumeration
	SNMPNONMIBRECDINFO Structure
	SNMPV3MSGDATA Structure

	Variables
	getZeroInstance Variable
	gSNMPv3ScopedPduDataPos Variable
	gSNMPv3ScopedPduRequestBuf Variable
	gSNMPv3ScopedPduResponseBuf Variable
	msgSecrtyParamLenOffset Variable

	Macros
	IS_SNMPV3_AUTH_STRUCTURE Macro
	REPORT_RESPONSE Macro
	SNMP_MAX_MSG_SIZE Macro
	SNMP_V3 Macro

	SNTP Client
	Public Members
	SNTPGetUTCSeconds Function

	Stack Members
	SNTPClient Function

	Internal Members
	NTP_PACKET Structure
	dwLastUpdateTick Variable
	dwSNTPSeconds Variable
	NTP_EPOCH Macro
	NTP_FAST_QUERY_INTERVAL Macro
	NTP_QUERY_INTERVAL Macro
	NTP_REPLY_TIMEOUT Macro
	NTP_SERVER Macro
	NTP_SERVER_PORT Macro

	SSL
	Generating Server Certificates
	Public Members
	SSL_INVALID_ID Macro
	TCPAddSSLListener Function
	TCPSSLIsHandshaking Function
	TCPStartSSLClient Function
	TCPIsSSL Function
	SSLStartSession Function
	SSL_SUPPLEMENTARY_DATA_TYPES Enumeration
	SSL_PKEY_INFO Structure

	Stack Members
	SSL_STATE Enumeration
	SSLInit Function
	SSLPeriodic Function
	TCPRequestSSLMessage Function
	TCPSSLGetPendingTxSize Function
	TCPSSLHandleIncoming Function
	TCPSSLHandshakeComplete Function
	TCPSSLInPlaceMACEncrypt Function
	TCPSSLPutRecordHeader Function
	TCPStartSSLServer Function
	SSL_MIN_SESSION_LIFETIME Macro
	SSL_RSA_LIFETIME_EXTENSION Macro

	Internal Members
	CalculateFinishedHash Function
	GenerateHashRounds Function
	GenerateSessionKeys Function
	HSEnd Function
	HSGet Function
	HSGetArray Function
	HSGetWord Function
	HSPut Function
	HSPutArray Function
	HSPutROMArray Function
	HSPutWord Function
	HSStart Function
	isBufferUsed Variable
	isHashUsed Variable
	isStubUsed Variable
	masks Variable
	ptrHS Variable
	RESERVED_SSL_MEMORY Macro
	LoadOffChip Function
	SaveOffChip Function
	SM_SSL_RX_SERVER_HELLO Enumeration
	SSL_ALERT Macro
	SSL_ALERT_LEVEL Enumeration
	SSL_APPLICATION Macro
	SSL_BASE_BUFFER_ADDR Macro
	SSL_BASE_HASH_ADDR Macro
	SSL_BASE_KEYS_ADDR Macro
	SSL_BASE_SESSION_ADDR Macro
	SSL_BASE_STUB_ADDR Macro
	SSL_BUFFER Union
	SSL_BUFFER_SIZE Macro
	SSL_BUFFER_SPACE Macro
	SSL_CERT Variable
	SSL_CERT_LEN Variable
	SSL_CHANGE_CIPHER_SPEC Macro
	SSL_HANDSHAKE Macro
	SSL_HASH_SIZE Macro
	SSL_HASH_SPACE Macro
	SSL_KEYS Structure
	SSL_KEYS_SIZE Macro
	SSL_KEYS_SPACE Macro
	SSL_MESSAGES Enumeration
	SSL_RSA_EXPORT_WITH_ARCFOUR_40_MD5 Macro
	SSL_RSA_WITH_ARCFOUR_128_MD5 Macro
	SSL_SESSION Structure
	SSL_SESSION_SIZE Macro
	SSL_SESSION_SPACE Macro
	SSL_SESSION_STUB Structure
	SSL_SESSION_TYPE Enumeration
	SSL_STUB Structure
	SSL_STUB_SIZE Macro
	SSL_STUB_SPACE Macro
	SSL_VERSION Macro
	SSL_VERSION_HI Macro
	SSL_VERSION_LO Macro
	SSLBufferAlloc Function
	SSLBufferFree Function
	sslBufferID Variable
	SSLBufferSync Function
	SSLFinishPartialRecord Macro
	SSLFlushPartialRecord Macro
	sslHash Variable
	SSLHashAlloc Function
	SSLHashFree Function
	sslHashID Variable
	SSLHashSync Function
	sslKeys Variable
	sslKeysID Variable
	SSLKeysSync Function
	SSLMACAdd Function
	SSLMACBegin Function
	SSLMACCalc Function
	SSLRSAOperation Function
	sslRSAStubID Variable
	SSLRxAlert Function
	SSLRxAntiqueClientHello Function
	SSLRxCCS Function
	SSLRxClientHello Function
	SSLRxClientKeyExchange Function
	SSLRxFinished Function
	SSLRxHandshake Function
	SSLRxRecord Function
	SSLRxServerCertificate Function
	SSLRxServerHello Function
	sslSession Variable
	sslSessionID Variable
	SSLSessionMatchID Function
	SSLSessionMatchIP Function
	SSLSessionNew Function
	sslSessionStubs Variable
	SSLSessionSync Function
	SSLSessionUpdated Macro
	sslSessionUpdated Variable
	SSLStartPartialRecord Function
	sslStub Variable
	SSLStubAlloc Function
	SSLStubFree Function
	sslStubID Variable
	SSLStubSync Function
	SSLTerminate Function
	SSLTxCCSFin Function
	SSLTxClientHello Function
	SSLTxClientKeyExchange Function
	SSLTxMessage Function
	SSLTxRecord Function
	SSLTxServerCertificate Function
	SSLTxServerHello Function
	SSLTxServerHelloDone Function

	TCP
	Public Members
	INVALID_SOCKET Macro
	UNKNOWN_SOCKET Macro
	TCP_ADJUST_GIVE_REST_TO_RX Macro
	TCP_ADJUST_GIVE_REST_TO_TX Macro
	TCP_ADJUST_PRESERVE_RX Macro
	TCP_ADJUST_PRESERVE_TX Macro
	TCP_OPEN_IP_ADDRESS Macro
	TCP_OPEN_NODE_INFO Macro
	TCP_OPEN_RAM_HOST Macro
	TCP_OPEN_ROM_HOST Macro
	TCP_OPEN_SERVER Macro
	TCPAdjustFIFOSize Function
	TCPConnect Macro
	TCPClose Function
	TCPDiscard Function
	TCPDisconnect Function
	TCPFind Macro
	TCPFindArray Macro
	TCPFindArrayEx Function
	TCPFindEx Function
	TCPFindROMArray Macro
	TCPFindROMArrayEx Function
	TCPFlush Function
	TCPGet Function
	TCPGetArray Function
	TCPGetRemoteInfo Function
	TCPGetRxFIFOFree Function
	TCPGetRxFIFOFull Macro
	TCPGetTxFIFOFree Macro
	TCPGetTxFIFOFull Function
	TCPIsConnected Function
	TCPIsGetReady Function
	TCPIsPutReady Function
	TCPListen Macro
	TCPOpen Function
	TCPPeek Function
	TCPPeekArray Function
	TCPPut Function
	TCPPutArray Function
	TCPPutROMArray Function
	TCPPutROMString Function
	TCPPutString Function
	TCPRAMCopy Function
	TCPRAMCopyROM Function
	TCPWasReset Function

	Stack Members
	SOCKET_INFO Structure
	TCB Structure
	TCB_STUB Structure
	TCP_SOCKET Type
	TCP_STATE Enumeration
	TCPInit Function
	TCPProcess Function
	TCPTick Function
	TCPSSLDecryptMAC Function
	TCPStartSSLClientEx Function

	Internal Members
	ACK Macro
	CloseSocket Function
	FIN Macro
	FindMatchingSocket Function
	HandleTCPSeg Function
	hCurrentTCP Variable
	LOCAL_PORT_END_NUMBER Macro
	LOCAL_PORT_START_NUMBER Macro
	MyTCB Variable
	MyTCBStub Variable
	PSH Macro
	RST Macro
	SendTCP Function
	SENDTCP_KEEP_ALIVE Macro
	SENDTCP_RESET_TIMERS Macro
	SwapTCPHeader Function
	SYN Macro
	SyncTCB Function
	SyncTCBStub Macro
	SYNQueue Variable
	TCBStubs Variable
	TCP_AUTO_TRANSMIT_TIMEOUT_VAL Macro
	TCP_WINDOW_UPDATE_TIMEOUT_VAL Macro
	TCP_CLOSE_WAIT_TIMEOUT Macro
	TCP_DELAYED_ACK_TIMEOUT Macro
	TCP_FIN_WAIT_2_TIMEOUT Macro
	TCP_HEADER Structure
	TCP_KEEP_ALIVE_TIMEOUT Macro
	TCP_MAX_RETRIES Macro
	TCP_MAX_SEG_SIZE_RX Macro
	TCP_MAX_SEG_SIZE_TX Macro
	TCP_MAX_SYN_RETRIES Macro
	TCP_MAX_UNACKED_KEEP_ALIVES Macro
	TCP_OPTIMIZE_FOR_SIZE Macro
	TCP_OPTIONS Structure
	TCP_OPTIONS_END_OF_LIST Macro
	TCP_OPTIONS_MAX_SEG_SIZE Macro
	TCP_OPTIONS_NO_OP Macro
	TCP_SOCKET_COUNT Macro
	TCP_START_TIMEOUT_VAL Macro
	TCP_SYN_QUEUE Structure
	TCP_SYN_QUEUE_MAX_ENTRIES Macro
	TCP_SYN_QUEUE_TIMEOUT Macro
	URG Macro

	Variables
	NextPort Variable

	TFTP
	Public Members
	TFTPClose Macro
	TFTPCloseFile Function
	TFTPGet Function
	TFTPGetError Macro
	TFTPIsFileClosed Function
	TFTPIsFileOpened Function
	TFTPIsFileOpenReady Macro
	TFTPIsGetReady Function
	TFTPIsOpened Function
	TFTPIsPutReady Function
	TFTPOpen Function
	TFTPOpenFile Function
	TFTPOpenROMFile Function
	TFTPPut Function
	TFTP_ACCESS_ERROR Enumeration
	TFTP_FILE_MODE Enumeration
	TFTP_RESULT Enumeration
	TFTPGetUploadStatus Function
	TFTPUploadFragmentedRAMFileToHost Function
	TFTPUploadRAMFileToHost Function
	TFTP_CHUNK_DESCRIPTOR Structure
	TFTP_UPLOAD_COMPLETE Macro
	TFTP_UPLOAD_CONNECT Macro
	TFTP_UPLOAD_CONNECT_TIMEOUT Macro
	TFTP_UPLOAD_GET_DNS Macro
	TFTP_UPLOAD_HOST_RESOLVE_TIMEOUT Macro
	TFTP_UPLOAD_RESOLVE_HOST Macro
	TFTP_UPLOAD_SEND_DATA Macro
	TFTP_UPLOAD_SEND_FILENAME Macro
	TFTP_UPLOAD_SERVER_ERROR Macro
	TFTP_UPLOAD_WAIT_FOR_CLOSURE Macro

	Stack Members
	TFTP_ARP_TIMEOUT_VAL Macro
	TFTP_GET_TIMEOUT_VAL Macro
	TFTP_MAX_RETRIES Macro

	Internal Members
	MutExVar Variable
	TFTP_BLOCK_SIZE Macro
	TFTP_BLOCK_SIZE_MSB Macro
	TFTP_CLIENT_PORT Macro
	TFTP_OPCODE Enumeration
	TFTP_SERVER_PORT Macro
	TFTP_STATE Enumeration
	_tftpError Variable
	_tftpFlags Variable
	_tftpRetries Variable
	_TFTPSendAck Function
	_TFTPSendFileName Function
	_TFTPSendROMFileName Function
	_tftpSocket Variable
	_tftpStartTick Variable
	_tftpState Variable
	smUpload Variable
	uploadChunkDescriptor Variable
	uploadChunkDescriptorForRetransmit Variable
	vUploadFilename Variable
	vUploadRemoteHost Variable
	wUploadChunkOffset Variable
	wUploadChunkOffsetForRetransmit Variable

	Tick
	Public Members
	TICK Type
	TICK_HOUR Macro
	TICK_MINUTE Macro
	TICK_SECOND Macro
	TickConvertToMilliseconds Function
	TickGet Function
	TickGetDiv256 Function
	TickGetDiv64K Function

	Stack Functions
	TickInit Function
	TickUpdate Function

	Internal Members
	dwInternalTicks Variable
	GetTickCopy Function
	TICKS_PER_SECOND Macro
	vTickReading Variable

	UDP
	Public Members
	INVALID_UDP_PORT Macro
	INVALID_UDP_SOCKET Macro
	UDP_SOCKET Type
	UDPOpenEx Function
	UDPOpen Macro
	UDPClose Function
	UDPDiscard Function
	UDPFlush Function
	UDPGet Function
	UDPGetArray Function
	UDPIsGetReady Function
	UDPIsPutReady Function
	UDPPut Function
	UDPPutArray Function
	UDPPutROMArray Function
	UDPPutROMString Function
	UDPPutString Function
	UDPSetRxBuffer Function
	UDPSetTxBuffer Function
	UDPIsOpened Function
	UDP_OPEN_IP_ADDRESS Macro
	UDP_OPEN_NODE_INFO Macro
	UDP_OPEN_RAM_HOST Macro
	UDP_OPEN_ROM_HOST Macro
	UDP_OPEN_SERVER Macro

	Stack Members
	UDPInit Function
	UDPProcess Function
	UDPTask Function

	Internal Members
	activeUDPSocket Variable
	FindMatchingSocket Function
	LastPutSocket Variable
	LOCAL_UDP_PORT_END_NUMBER Macro
	LOCAL_UDP_PORT_START_NUMBER Macro
	SocketWithRxData Variable
	UDP_HEADER Structure
	UDP_PORT Type
	UDP_SOCKET_INFO Structure
	UDPRxCount Variable
	UDPSocketInfo Variable
	UDPTxCount Variable
	wGetOffset Variable
	wPutOffset Variable

	Types
	UDP_STATE Enumeration

	Wi-Fi API
	Wi-Fi Connection Profile
	Connection Profile Public Members
	WF_CPCreate Function
	WF_CPDelete Function
	WF_CPGetAdHocBehavior Function
	WF_CPGetBssid Function
	WF_CPGetDefaultWepKeyIndex Function
	WF_CPGetElements Function
	WF_CPGetIds Function
	WF_CPGetNetworkType Function
	WF_CPGetSecurity Function
	WF_CPGetSsid Function
	WF_CPSetAdHocBehavior Function
	WF_CPSetBssid Function
	WF_CPSetDefaultWepKeyIndex Function
	WF_CPSetElements Function
	WF_CPSetNetworkType Function
	WF_CPSetSecurity Function
	WF_CPSetSsid Function
	WFCPElementsStruct Structure

	Connection Profile Internal Members
	LowLevel_CPGetElement Function
	LowLevel_CPSetElement Function

	Wi-Fi Connection Algorithm
	Connection Algorithm Public Members
	WF_CAGetBeaconTimeout Function
	WF_CAGetBeaconTimeoutAction Function
	WF_CAGetChannelList Function
	WF_CAGetConnectionProfileList Function
	WF_CAGetDeauthAction Function
	WF_CAGetElements Function
	WF_CAGetEventNotificationAction Function
	WF_CAGetListenInterval Function
	WF_CAGetListRetryCount Function
	WF_CAGetMaxChannelTime Function
	WF_CAGetMinChannelTime Function
	WF_CAGetProbeDelay Function
	WF_CAGetRssi Function
	WF_CAGetScanCount Function
	WF_CAGetScanType Function
	WF_CASetBeaconTimeout Function
	WF_CASetBeaconTimeoutAction Function
	WF_CASetChannelList Function
	WF_CASetConnectionProfileList Function
	WF_CASetDeauthAction Function
	WF_CASetElements Function
	WF_CASetEventNotificationAction Function
	WF_CASetListenInterval Function
	WF_CASetListRetryCount Function
	WF_CASetMaxChannelTime Function
	WF_CASetMinChannelTime Function
	WF_CASetProbeDelay Function
	WF_CASetRssi Function
	WF_CASetScanCount Function
	WF_CASetScanType Function
	WFCAElementsStruct Structure

	Connection Algorithm Internal Members
	LowLevel_CAGetElement Function
	LowLevel_CASetElement Function
	SetEventNotificationMask Function

	Wi-Fi Connection Manager
	Connection Manager Public Members
	WF_CMConnect Function
	WF_CMDisconnect Function
	WF_CMGetConnectionState Function
	WF_CMInfoGetFSMStats Function

	Wi-Fi Scan
	Scan Public Members
	WF_Scan Function
	WF_ScanGetResult Function

	Wi-Fi Tx Power Control
	Tx Power Control Public Members
	WF_TxPowerGetMinMax Function
	WF_TxPowerSetMinMax Function
	WF_TxPowerGetFactoryMax Function

	Wi-Fi Power Save
	Power Save Public Members
	WF_GetPowerSaveState Function
	WF_HibernateEnable Function
	WF_PsPollDisable Function
	WF_PsPollEnable Function

	Power Save Internal Members
	SendPowerModeMsg Function
	SetPowerSaveState Function

	Wi-Fi Miscellaneous
	Wi-Fi Miscellaneous Public Members
	WF_GetDeviceInfo Function
	WF_GetMacAddress Function
	WF_GetMacStats Function
	WF_GetMultiCastFilter Function
	WF_GetRegionalDomain Function
	WF_GetRtsThreshold Function
	WF_SetMacAddress Function
	WF_SetMultiCastFilter Function
	WF_SetRegionalDomain Function
	WF_SetRtsThreshold Function
	tWFDeviceInfoStruct Structure
	WFMacStatsStruct Structure

	WF_ProcessEvent
	Access Point Compatibility
	WiFi Tips and Tricks
	Hot Topics

	Index

